FANUC AC SERVO MOTOR *i* series FANUC AC SERVO MOTOR *i* series FANUC LINEAR MOTOR L*i*S series FANUC SYNCHRONOUS BUILT-IN SERVO MOTOR D*i*S series

PARAMETER MANUAL

B-65270EN/08

• No part of this manual may be reproduced in any form.

• All specifications and designs are subject to change without notice.

The products in this manual are controlled based on Japan's "Foreign Exchange and Foreign Trade Law". The export from Japan may be subject to an export license by the government of Japan.

Further, re-export to another country may be subject to the license of the government of the country from where the product is re-exported. Furthermore, the product may also be controlled by re-export regulations of the United States government.

Should you wish to export or re-export these products, please contact FANUC for advice.

In this manual we have tried as much as possible to describe all the various matters. However, we cannot describe all the matters which must not be done, or which cannot be done, because there are so many possibilities.

Therefore, matters which are not especially described as possible in this manual should be regarded as "impossible".

This manual contains the program names or device names of other companies, some of which are registered trademarks of respective owners. However, these names are not followed by or TM in the main body.

General Safety Precautions

- When an abnormality such as an alarm or a hardware failure occurs, the operations described in the specifications are not guaranteed unless otherwise specifically noted. When action corresponding to the abnormality is specifically described, take the action. When no action is described, please contact FANUC.
- The signals and functions described in the specifications cannot be used separately for safety functions unless otherwise described as being usable for the safety functions. Their specifications are not assumed to be used as the safety functions in this case, an unexpected danger may be caused. For information about the safety functions, please contact FANUC.

Generally, the safety functions represent functions that protect the operators from machine danger.

A wrong device connection or setting can lead to unpredictable operation. When starting
to operate the machine for the first time after assembling the machine, replacing
components, or modifying parameter settings, exercise the greater care by, for
example, reducing the torque limit value, error detection level, or operating speed or by
operating the machine in such a way that an emergency stop can be made quickly.

DEFINITION OF WARNING, CAUTION, AND NOTE

This manual includes safety precautions for protecting the user and preventing damage to the machine. Precautions are classified into Warning and Caution according to their bearing on safety. Also, supplementary information is described as a Note. Read the Warning, Caution, and Note thoroughly before attempting to use the machine.

Applied when there is a danger of the user being injured or when there is a damage of both the user being injured and the equipment being damaged if the approved procedure is not observed.

Applied when there is a danger of the equipment being damaged, if the approved procedure is not observed.

NOTE

The Note is used to indicate supplementary information other than Warning and Caution.

- Read this manual carefully, and store it in a safe place.

TABLE OF CONTENTS

DE	FINITIC	ON OF	WARNING, CAUTION, AND NOTE	s-1
1	OVEF	RVIEW		1
	1.1	NC MC	DELS AND APPLICABLE SERVO SOFTWARE	1
	1.2	ABBRE	EVIATIONS OF THE NC MODELS COVERED BY THIS MANUAL	2
	1.3	RELAT	ED MANUALS	3
2	SETT		ARAMETERS OF α <i>i</i> S/α <i>i</i> F/β <i>i</i> S/β <i>i</i> F SERIES SERVO	
	мото)R		5
	2.1	INITIAL	LIZING SERVO PARAMETERS	5
		2.1.1	Before Servo Parameter Initialization	5
		2.1.2	Parameter Initialization Flow	6
		2.1.3	Servo Parameter Initialization Procedure	6
		2.1.4	Servo Parameter Initialization Procedure for the Series 0i-D	24
			2.1.4.1 PARAMETER SETTING SUPPORT screen (SERVO SETTING)	24
			2.1.4.2 SERVO SETTING screen: Setting items	25
			2.1.4.3 PARAMETER SETTING SUPPORT screen (SERVO PARAMETER)	26
		0.1.5	2.1.4.4 PARAMETER SETTING SUPPORT screen (SERVO GAIN TUNING)	
		2.1.5	Setting Servo Parameters when a Separate Detector for the Serial Interface is	28
		216	Setting Servo Parameters when an Analog Input Senarate Detector Interface	20
		2.1.0	Unit is Used	39
		217	Setting Parameters when an $\alpha i CZ$ Sensor is Used	40
		2.1.7	Setting Parameters When an Acceleration Sensor or Temperature Detection	10
		2.1.0	Circuit Is Used	43
		2.1.9	Actions for Illegal Servo Parameter Setting Alarms	49
		2.1.10	Notes on Using the Control Axis Detach Function	62
		2.1.11	Alarm Detection When an Error Occurs (Function for Monitoring the Difference	e
			in Error between the Semi-Closed and Full-Closed Modes and Dynamic Error	
			Monitoring)	63
			2.1.11.1 Function for monitoring the difference in error between the semi-closed and	
			full-closed modes	63
			2.1.11.2 Detection of excessive error between the estimated position and actual	(5
	0.0	0 C TT I		65
	2.2	SEIII	NG PARAMETERS FOR LARGE SERVO MOTORS	. 69
		2.2.1	Motor Models and System Configurations.	69
		2.2.2	Parameter Setting for the Four-winding and Two-winding Modes	69
		2.2.3	December 2000/2000/11/2000/2000/11/2000/2000/11/2000/2000/11/2000/2000/11/2000/2000/11/2000/2000/11/2000/2000/11/2000/2000/11/2000/2000/11/2000/2000/11/2000/2000/11/2000/2000/11/2000/2000/11/2000/2000/11/2000/2000/11/2000/2000/2000/11/2000/2000/2000/11/2000/2000/2000/11/2000/2000/2000/11/2000/2000/2000/11/2000/2000/2000/11/2000/2000/2000/11/2000/2000/2000/11/2000/2000/2000/11/2000/2000/2000/11/2000/2000/2000/11/2000/2000/2000/11/2000/2000/2000/11/2000/2000/2000/11/2000/2000/2000/11/2000/2000/2000/11/2000/11/2000/2000/2000/2000/2000/11/2000/2000/2000/11/2000	/ 3
		2.2.4	Parameter Setting for a 10-Pole Motors (α /S2000/2000HV, α /S3000/2000HV)	/4
3	SETT	ING PA	ARAMETERS OF LINEAR MOTOR AND	
	SYNC	HRON	OUS BUILT-IN SERVO MOTOR	75
	3.1	LINEA	R MOTOR PARAMETER SETTING	75
	••••	3.1.1	Procedure for Setting the Initial Parameters of Linear Motors	75
		3.1.2	Smoothing Compensation for Linear Motor	93
	3.2	SYNC	HRONOUS BUILT-IN SERVO MOTOR PARAMETER SETTING	97
	0.2	3.2.1	Procedure for Setting the Initial Parameters of Synchronous Built-in Servo	
			Motors	97
			3.2.1.1 Parameter Setting Procedure (1) (Initialization)	98

	3.3	3.2.2 DETE WHEN	3.2.1.2 Parameter setting procedure 2 (pole position detection) (optional function 3.2.1.3 Parameter setting procedure 3 (OVC alarm parameters) Smoothing Compensation for Synchronous Built-in Servo Motor CTION OF AN OVERHEAT ALARM BY SERVO SOFTWARE I A LINEAR MOTOR AND A SYNCHRONOUS BUILT-IN SERVO	on) 109 120 125
		MOTC	OR ARE USED	126
4	αiS/c	xiF/BiS/	/β <i>i</i> F/L <i>i</i> S/D <i>i</i> S SERIES PARAMETER ADJUSTMENT	132
	4.1	SERV	O TUNING SCREEN AND DIAGNOSIS INFORMATION	132
		4.1.1	Servo Tuning Screen	132
		4.1.2	Diagnosis Information List	134
		4.1.3	Actual Current Peak Hold Display	137
		4.1.4	Acceleration Monitor Function	138
	4.2	ACTIC	DNS FOR ALARMS	138
	4.3	ADJUS	STING PARAMETERS FOR HIGH-SPEED AND HIGH-PRECISI	ION
		MACH	IINING	148
		4.3.1	Servo HRV Control Adjustment Procedure	148
		4.3.2	High-speed Positioning Adjustment Procedure	165
		4.3.3	Rapid Traverse Positioning Adjustment Procedure	167
		4.3.4	Vibration in the Stop State	1/1
		4.3.3	vibration during Travel	1/3
		437	Overshoot	174
_	050			470
5	SER			1/6
	5.1	SERV		1/6
		5.1.1 5.1.2	Servo HRV2 Control	1/8 179
		5.1.2	Servo HRVA Control	180
		514	Servo Card and Number of Servo Controlled Axes	183
		5.1.5	High-Speed HRV Current Control	
	5.2	CUTTI	ING, RAPID SWITCHING FUNCTION	186
	5.3	VIBRA	TION SUPPRESSION IN THE STOP STATE	190
		5.3.1	Velocity Loop High Cycle Management Function	190
		5.3.2	Acceleration Feedback Function	192
		5.3.3	Variable Proportional Gain Function in the Stop State	193
		5.3.4	Current Loop 1/2 PI Control Function	195
	5.4	MACH	IINE RESONANCE ELIMINATION FUNCTION	197
		5.4.1	Selecting a Resonance Elimination Function	197
		5.4.2	Torque Command Filter (Middle-Frequency Resonance Elimination Filter)	198
		5.4.3	Resonance Elimination Filter Function (High-Frequency Resonance Elimination Filter)	100
		5.4.4	Disturbance Elimination Filter Function (Low-Frequency Resonance	177
			Elimination Filter)	203
		5.4.5	Resonance Elimination Filter L (Low-Frequency Resonance Elimination Filter)	
		5.4.6	Observer Function	208
		5.4.7	Vibration Damping Control Function	211
		5.4.8	Dual Position Feedback Function (Optional Function)	213
		5.4.9	Machine Speed Feedback Function	218
		5.4.10	Machining Point Control	220
		5.4.11	I orque Command Filter (Secondary) (High-frequency Resonance Eliminat	10n
			1 11001 /	

5.5	CONT	OUR ERROR SUPPRESSION FUNCTION	224
	5.5.1	Feed-forward Function	
	5.5.2	Cutting/Rapid Feed-forward Switching Function	
	5.5.3	Feed-forward Timing Adjustment Function	
	5.5.4	Backlash Acceleration Function	230
	5.5.5	Two-stage Backlash Acceleration Function	234
	556	Static Friction Compensation Function	246
	557	Torsion Preview Control Function	248
	558	Overshoot Compensation Function	255
	5.5.0	Interactive Force Compensation Function	260
56	FUNC	TION FOR REDUCING EFFECTS OF VARIATIONS IN MACHIN	JF
0.0	CHAR	ACTERISTICS	276
	561	Inertia Estimation Function	2.76
	5.6.2	Adaptive Resonance Elimination Filter	282
57			202 200
5.7			200
	5.7.1	Position Gain Switching Function	
	5.7.2	Low-speed Integral Function	290
5.8	CONT	ROL STOP FUNCTIONS	292
	5.8.1	Brake Control Function	292
	5.8.2	Torque Limit Setting Function during Brake Control	295
	5.8.3	Quick Stop Type 1 at Emergency Stop	
	5.8.4	Quick Stop Type 2 at Emergency Stop	
	5.8.5	Lifting Function Against Gravity at Emergency Stop	
		5.8.5.1 Lifting function against gravity at emergency stop	299
		5.8.5.2 Function based on the DI signal for switching the distance to lift	303
		5.8.5.3 Method of setting a distance to lift in µm	304
	5.8.6	Quick Stop Function for Hardware Disconnection of Separate Detector	
	5.8.7	Quick Stop Function for Separate Serial Detector Alarms	
	5.8.8	Quick Stop Function at OVL and OVC Alarm	
5.9	UNEX	PECTED DISTURBANCE TORQUE DETECTION FUNCTION	
	(OPTI	ONAL FUNCTION)	
	591	Unexpected Disturbance Torque Detection Function	310
	592	Cutting/Rapid Unexpected Disturbance Torque Detection Switching Function	n 319
	593	Unexpected Disturbance Torque Detection Switching Function Depending	on
	5.7.5	Acc	320
5 10	MULT	IPI F-MOTOR DRIVING (TANDEM DRIVING)	322
0.10	5 10 1	Position Tandem	328
	5.10.1	5 10 1 1 Velocity Loon Integrator Conv Function	328
		5.10.1.2 Preload function	320
		5 10 1.3 Functions for preventing damage between two axes	332
		5.10.1.4 Tandem Disturbance Elimination Control (Ontional Function)	334
		5 10 1 5 Synchronous axes automatic compensation	341
		5 10 1 6 Functions for sharing a separate detector	346
		5 10 1 7 Examples of position tandem setting	348
	5 10 2	Multiaxis Tandem	349
	5 10 3	Turning Functions On and Off Using a PMC Signal	359
	5 10 4	Torque Tandem Control (Ontional Function)	350
	J.10.T	5 10 4 1 Damping compensation function	363
		5 10 4 2. Velocity feedback average function	365
		5 10 4 3 Motor feedback sharing function	365
		5 10 4 4 Tandem speed difference alarm function	366
		5 10 4 5 Example of torque tandem setting	367
		5.10.4.6 Block Diagrams	
	5.10.5	Velocity Tandem Control	

	5.11	TORQUE CONTROL FUNCTION	371
	5.12	USING A SERVO MOTOR FOR SPINDLE CONTROL	373
		5.12.1 Speed Arrival Signal and Zero-Speed Detecting Signal	373
		5.12.2 Control Stop Judgment in the Quick Stop Function at Emergency Stop	
	F 40	5.12.3 Load Meter Display	379
	5.13	COMPENSATION FOR REVERSE OPERATION IN HIGH-SPEED FSS	B
			381
	5.14	STOP	383
6	LEAR	NING CONTROL FUNCTIONS (OPTIONAL FUNCTION)	.384
7	SERV	O TUNING TOOL SERVO GUIDE	.389
8	DETA	ILS OF PARAMETERS	.406
9	PARA	METER LIST	.439
•	9.1	STANDARD PARAMETERS FOR THE αi SERIES SERVO MOTORS	442
	•••	9.1.1 α <i>i</i> S Series	
		9.1.2 α <i>i</i> S Series HV	446
		9.1.3 α <i>i</i> F Series	450
		9.1.4 <i>αi</i> F Series HV	451
		9.1.5 α <i>Ci</i> Series	452
	9.2	STANDARD PARAMETERS FOR THE βi SERIES SERVO MOTORS	. 453
		9.2.1 β <i>i</i> S Series	454
		9.2.2 β <i>i</i> S Series HV	457
		9.2.3 β <i>i</i> Sc Series	458
		9.2.4 β <i>i</i> F Series	459
	9.3	STANDARD PARAMETERS FOR THE LINEAR MOTORS	. 460
		9.3.1 Linear Motor L <i>i</i> S Series [200V]	461
		9.3.2 Linear Motor L <i>i</i> S Series [400V]	463
	9.4	STANDARD PARAMETERS FOR THE SYNCHRONOUS BUILT-IN	
		SERVO MOTORS	. 465
		9.4.1 Synchronous Built-in Servo Motor D <i>i</i> S Series [200V]	466
		9.4.2 Synchronous Built-in Servo Motor DiS Series [400V]	47/0

APPENDIX

Α	ANA	LOG SERVO ADAPTER SETTING PROCEDURE	
В	PAR	AMETERS SET WITH VALUES IN DETECTION UNITS	
	B.1	PARAMETERS FOR 30 <i>i</i> -A Series, 30 <i>i</i> -B Series	
	B.2	PARAMETERS FOR Power Motion <i>i</i> -A	
	B.3	PARAMETERS FOR 0 <i>i</i> -D Series	487
	B.4	PARAMETERS FOR Series 16 <i>i</i> , 18 <i>i</i> , 21 <i>i</i> , 0 <i>i</i> /0 <i>i</i> Mate -C	
	B.5	PARAMETERS FOR Power Mate <i>i</i>	
	B.6	PARAMETERS FOR Series 15 <i>i</i>	
С	PAR	AMETERS RELATED TO HIGH-SPEED AND HIGH PRECI	SION

OPERATIONS)4
------------	----

	C.1	MODEL-SPECIFIC INFORMATION	495
		C.1.1 Series $30i/31i/32i$ -A/B	495
		C.1.2 Series 35 <i>t</i> -B, Power Motion <i>t</i> -A	497
		C.1.4 Series 16 <i>i</i> /18 <i>i</i> /21 <i>i</i> /0 <i>i</i> /0 <i>i</i> Mate-MB, 0 <i>i</i> /0 <i>i</i> Mate-MC/20 <i>i</i> -FB	503
		C.1.5 Series 15 <i>i</i> -MB	511
	C.2	SERVO PARAMETERS RELATED TO HIGH-SPEED AND	
		HIGH PRECISION OPERATIONS	513
D	VELO	CITY LIMIT VALUES IN SERVO SOFTWARE	519
Е	DETA	ILS OF HIGH-SPEED AND HIGH-PRECISION	
	ADJU	STMENT	523
F	USING	G THE SERVO CHECK INTERFACE UNIT	540
G	SERV	O FUNCTIONS THAT ARE NOT USED WITH THE 30 <i>i</i> AND	
	0 <i>i</i> -D S	Series	547
	G.1	FINE ACCELERATION/DECELERATION (FAD) FUNCTION	547
	G.2	RISC FEED-FORWARD FUNCTION	554
Н	METH	ODS OF STARTING UP THE MACHINE WITHOUT	
	CONN	IECTING AMPLIFIERS AND FEEDBACK CABLES	556
	H.1	FEEDBACK DUMMY FUNCTION	556
	H.2	USING THE DUMMY FEEDBACK FUNCTION FOR A MULTIAXIS	
		SERVO AMPLIFIER WHEN AN AXIS IS NOT IN USE	558
I	HRV1	CONTROL PARAMETERS	560
J	SETTI	INGS FOR THE POWER CONSUMPTION MONITOR	
	FUNC	TION	571
	J.1	INTERNAL UNIT SETTINGS AND COIL RESISTANCE SETTINGS	571
	J.2	SETTINGS FOR SERVO AMPLIFIER LOSS COEFFICIENTS A AND B	575
	J.3	SETTINGS FOR POWER SUPPLY MODULE LOSS COEFFICIENTS C	500
		AND D	580
Κ	CORR	RESPONDENCE OF SERVO PARAMETER NUMBERS	
	BETW	EEN Series 15 <i>i</i> , AND Series 30 <i>i</i> , 0 <i>i</i> , AND OTHERS	582
L	CONN	IECTING A LARGE SERVO MOTOR USING A PWM	
	DISTR	RIBUTION MODULE	586
	L.1	SETTING PARAMETERS FOR A PWM DISTRIBUTION MODULE	
			586
	L.2	DATA MEASUREMENT AND DIAGNOSIS WITH A PWM DISTRIBUTIO	N 500
. -			500
Μ	QUAD	PRANT PROTRUSION TUNING USING SERVO GUIDE	592

ADDITIONAL INFORMATION

OVERVIEW

This manual describes the servo parameters of the CNC models using FANUC AC SERVO MOTOR αiS , αiF , βiS , βiF , LiS, and DiS series. The descriptions include the servo parameter start-up and adjustment procedures. The meaning of each parameter is also explained.

Chapter 1, "OVERVIEW", consists of the following sections:

1.1	NC MODELS AND APPLICABLE SERVO SOFTWARE	1
1.2	ABBREVIATIONS OF THE NC MODELS COVERED BY THIS MANUAL	2
13	RELATED MANUALS	3

1.1 NC MODELS AND APPLICABLE SERVO SOFTWARE

NC product name	Series and edition of applicable servo software	NC product name
Series 30 <i>i</i> -MODEL B Series 31 <i>i</i> -MODEL B Series 32 <i>i</i> -MODEL B Series 35 <i>i</i> -MODEL B Power Motion <i>i</i> -MODEL A	Series 90G0/03.0 and subsequent editions	For SERVO HRV2,3,4 control (Note 3)
Sorios 20: MODEL A	Series 90D0/A(01) and subsequent editions	For SERVO HRV4 control (Note 1) (Note 3)
Series 31 <i>i</i> -MODEL A	Series 90E0/A(01) and subsequent editions	For SERVO HRV2,3 control (Note 2)
Selles 321-MODEL A	Series 90E1/01.0 and subsequent editions	For SERVO HRV2,3 control (Note 2)
	Series 90C5/01.0 and subsequent editions	For SERVO HRV2,3 control (Note 4)
Series 0 <i>i</i> -MODEL D	Series 90C8/01.0 and subsequent editions	For SERVO HRV2,3 control (Note 4)
Series 0 <i>i</i> Mate-MODEL D	Series 90E5/01.0 and subsequent editions	For SERVO HRV2,3 control (Note 4)
	Series 90E8/01.0 and subsequent editions	For SERVO HRV2,3 control (Note 4)

NOTE

- 1 When using servo HRV4 control with Series 30*i*-A and 31*i*-A, use Series 90D0.
- 2 The servo software Series 90E0 is applied with an ordinary order. If you want to use a new function with priority, select Series 90E1.
- 3 With the Series 32*i*, 35*i*-B, and Power Motion *i*-A, servo HRV4 control cannot be used.
- 4 The servo software Series 90C5 and 90E5 are applied with an ordinary order. If you want to use a new function with priority, select the Series 90C8 or 90E8.

Servo software series map

1.2 ABBREVIATIONS OF THE NC MODELS COVERED BY THIS MANUAL

In this manual, the NC product names are abbreviated as follows.

NC product name	Abbreviations		
FANUC Series 30 <i>i</i> -MODEL B	Series 30 <i>i</i> -B		
FANUC Series 31 <i>i</i> -MODEL B	Series 31 <i>i</i> -B	20: D Corios	
FANUC Series 32 <i>i</i> -MODEL B	Series 32i-B	SOI-D Selles	30 <i>i</i> Series and so on
FANUC Series 35 <i>i</i> -MODEL B	Series 35 <i>i</i> -B	30 <i>i</i> Series etc.	
Power Motion <i>i</i> -MODEL A	Power Motion <i>i</i> -A		FS30 <i>i</i> and so on
FANUC Series 30 <i>i</i> -MODEL A	Series 30 <i>i</i> -A	FS30 <i>i</i> etc.	
FANUC Series 31 <i>i</i> -MODEL A	Series 31 <i>i</i> -A	30 <i>i</i> -A Series	
FANUC Series 32 <i>i</i> -MODEL A	Series 32 <i>i</i> -A		
FANUC Series 0 <i>i</i> -MODEL D	Series 0 <i>i</i> -D	0: D Sorios	FS0 <i>i</i> -D and so on
FANUC Series 0 <i>i</i> Mate-MODEL D	Series 0 <i>i</i> Mate-D		FS0 <i>i</i> -D etc.

1.3 RELATED MANUALS

The following manuals are available for FANUC AC SERVO MOTOR αi or βi series, LINEAR MOTOR *Li*S series, or SYNCHRONOUS BUILT-IN SERVO MOTOR *Di*S series. In the table, this manual is marked with an asterisk (*).

Document **Major contents** Major usage **Document name** number FANUC AC SERVO MOTOR α*i* series B-65262EN DESCRIPTIONS FANUC AC SERVO MOTOR βi series B-65302EN Specification DESCRIPTIONS Selection of motor Characteristics FANUC LINEAR MOTOR LiS series Connection of External dimensions B-65222EN DESCRIPTIONS motor Connections FANUC SYNCHRONOUS BUILT-IN SERVO MOTOR D*i*S series B-65332EN DESCRIPTIONS FANUC SERVO AMPLIFIER α*i*SV series Specifications and B-65282EN DESCRIPTIONS functions Selection of Installation amplifier External dimensions FANUC SERVO AMPLIFIER β*i*SV series Connection of B-65322EN and maintenance DESCRIPTIONS amplifier area Connections FANUC AC SERVO MOTOR α*i*S series FANUC AC SERVO MOTOR αi series Start up the FANUC AC SPINDLE MOTOR αi series B-65285EN system FANUC SERVO AMPLIFIER α*i* series Start up procedure (Hardware) MAINTENANCE MANUAL Troubleshooting Troubleshooting FANUC SERVO MOTOR β*i*S series Maintenance of motor Maintenance of FANUC AC SPINDLE MOTOR βi series B-65325EN motor FANUC SERVO AMPLIFIER βi series MAINTENANCE MANUAL FANUC AC SERVO MOTOR α*i* series FANUC AC SERVO MOTOR β*i* series FANUC LINEAR MOTOR LiS series B-65270EN • Start up the FANUC SYNCHRONOUS BUILT-IN SERVO Initial setting system (Software) MOTOR DiS series Setting parameters • Turning the PARAMETER MANUAL Description of system FANUC AC SPINDLE MOTOR αi series parameters (Parameters) FANUC AC SPINDLE MOTOR Bi series B-65280EN FANUC BUILT-IN SPINDLE MOTOR Bi series PARAMETER MANUAL

Table 1.3 Related manuals

Other manufactures' products referred to in this manual

- * IBM is registered trademark of International Business Machines Corporation.
- MS-DOS and Windows are registered trademarks of Microsoft Corporation.

All other product names identified throughout this manual are trademarks or registered trademarks of their respective companies.

Supplementary note

In this manual, the servo parameters are explained using the following notation:

The following $\alpha i/\beta i$ Pulsecoders are available.

Pulsecoder name	Resolution	Туре
α <i>i</i> A16000	16,000,000 pulse/rev	Absolute
α <i>i</i> A1000	1,000,000 pulse/rev	Absolute
α <i>i</i> Ι 1000	1,000,000 pulse/rev	Incremental
β <i>i</i> A128	131,072 pulse/rev	Absolute
βiA64	65,536 pulse/rev	Absolute

When parameters are set, these pulse coders are all assumed to have a resolution of 1,000,000 pulses per motor revolution.

2

SETTING PARAMETERS OF $\alpha i S/\alpha i F/\beta i S/\beta i F$ SERIES SERVO MOTOR

Chapter 2, "SETTING PARAMETERS OF $\alpha iS/\alpha iF/\beta iS/\beta iF$ SERIES SERVO MOTOR ", consists of the following sections:

INITIA	LIZING SERVO PARAMETERS	5
2.1.1	Before Servo Parameter Initialization	5
2.1.2	Parameter Initialization Flow	6
2.1.3	Servo Parameter Initialization Procedure	6
2.1.4	Servo Parameter Initialization Procedure for the Series 0i-D	24
	2.1.4.1 PARAMETER SETTING SUPPORT screen (SERVO SETTING)	24
	2.1.4.2 SERVO SETTING screen: Setting items	25
	2.1.4.3 PARAMETER SETTING SUPPORT screen (SERVO PARAMETER)	26
	2.1.4.4 PARAMETER SETTING SUPPORT screen (SERVO GAIN TUNING)	27
2.1.5	Setting Servo Parameters when a Separate Detector for the Serial Interface is Used	28
2.1.6	Setting Servo Parameters when an Analog Input Separate Detector Interface Unit is Used	.39
2.1.7	Setting Parameters when an <i>ai</i> CZ Sensor is Used	40
2.1.8	Setting Parameters When an Acceleration Sensor or Temperature Detection Circuit Is	
	Used	43
2.1.9	Actions for Illegal Servo Parameter Setting Alarms	.49
2.1.10	Notes on Using the Control Axis Detach Function	62
2.1.11	Alarm Detection When an Error Occurs (Function for Monitoring the Difference in	
	Error between the Semi-Closed and Full-Closed Modes and Dynamic Error Monitoring)	63
	2.1.11.1 Function for monitoring the difference in error between the semi-closed	
	and full-closed modes	.63
	2.1.11.2 Detection of excessive error between the estimated position and actual	
	position (dynamic error monitoring)	65
SETTI	NG PARAMETERS FOR LARGE SERVO MOTORS	.69
2.2.1	Motor Models and System Configurations	.69
2.2.2	Parameter Setting for the Four-Winding and Two-Winding Modes	.69
2.2.3	Setting Parameters in the Torque Tandem Configuration	.73
2.2.4	Parameter Setting for a 16-Pole Motors (aiS2000/2000HV, aiS3000/2000HV)	74
	INITIA 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.1.7 2.1.8 2.1.9 2.1.10 2.1.11 SETTII 2.2.1 2.2.2 2.2.3 2.2.4	 INITIALIZING SERVO PARAMETERS

2.1 INITIALIZING SERVO PARAMETERS

2.1.1 Before Servo Parameter Initialization

Before starting servo parameter initialization, confirm the following:	
<1> NC model	(ex.: Series 30 <i>i</i> -B)
<2> Servo motor model	(ex.: α <i>i</i> F8/3000)
<3> Pulsecoder built in a motor	(ex.: α <i>i</i> A1000)
<4> Is the separate position detector used?	(ex.: Not used)
<5> Distance the machine tool moves per revolution of the motor	
	(ex.:10 mm per one revolution)
<6> Machine detection unit	(ex.:0.001 mm)
<7> NC command unit	(ex.:0.001 mm)

2.1.2 Parameter Initialization Flow

Use the procedure below to initialize the servo parameters. For details of each setting item, see Subsection 2.1.3.

Preparation

_

- Turn on the power in the emergency stop state.
- Enable parameter writing.
 - Display the servo setting screen. \rightarrow See 2.1.3 (1).

ervo parameter setting	
Description of setting	Reference item
Initialization bit	→ 2.1.3 (2)
Motor ID No. setting	→ 2.1.3 (3)
AMR setting	→ 2.1.3 (4)
CMR setting	→ 2.1.3 (5)
Flexible feed gear setting	→ 2.1.3 (6)
Motor rotation direction setting	→ 2.1.3 (7)
Setting of the number of velocity pulses and the number of position pulses	→ 2.1.3 (8)
Reference counter setting	→ 2.1.3 (9)
Full-closed system setting	→ 2.1.3 (10)
Servo loop gain setting	\rightarrow 2.1.3 (11)

2.1.3 Servo Parameter Initialization Procedure

(1) Preparation

Switch on the NC in an emergency stop state.

Enable parameter writing (PWE = 1).

Initialize servo parameters on the servo setting screen.

For the Power Motion *i*-A or another model with no display, specify a value for the number corresponding to each item on the SERVO SETTING screen. See Fig. 2.1.3.

To display the servo setting screen, follow the procedure below, using the key on the NC.

SYSTEM

• 0*i*-D Series

Press the

 \diamond

SYSTEM

function key several times until the PARAMETER SETTING SUPPORT screen

appears.

Press soft key [(OPRT)], move the cursor to the SERVO SETTING item, and press [SELECT] to display the PARAMETER SETTING SUPPORT screen.

PARAMETER	SETTING	00000 N00000
MENU 1.	START UP	AXIS SETTING
		FSSB (AMP)
		FSSB (AXIS)
		SERVO SETTING
		SERVO PARAMETER
		SERVO GAIN TUNING
		HIGH-PRECISION
		SPINDLE SETTING
		MISCELLANY
2.	TUNING	SERVO TUNING
		SPINDLE TUNING
		AICC TUNING
A)^		
MDI ****	*** ***	16:36:18
SELECT)	1	

Fig. 2.1.3(a) PARAMETER SETTING SUPPORT screen

With 0i-D Series, two types of servo setting screens are available: the standard screen and the conventional compatible screen. Initialization can be performed by using either of the screens. For the standard screen refer to Subsection 2.1.4. "Servo Parameter Initialization Procedure for the Series

For the standard screen, refer to Subsection 2.1.4, "Servo Parameter Initialization Procedure for the Series 0i-D". This Subsection describes the method of setting using the <u>conventional compatible screen</u>.

(Standard screen)		(Conventional comp	atible screen)
SERVO SETTING	00000 N00000	SERVO SETTING	(00000 N00000
X AXIS	PAGE: 1/2		X AXIS	Y AXIS
MOTOR TYPE	0	INITIAL SET BITS	00000010	000000010
STD. PRM. LOAD	1	MOTOR ID NO.	273	273
MOTOR ID NO.	273	AMR	000000000	000000000
MOTOR NAME	α iF4∕4000	CMR	2	2
DETECTION UNIT (um)	0.1000	FEEDGEAR N	1	1
		(N∕M) M	100	100
		DIRECTION SET	111	111
		VELOCITY PULSE NO.	8192	8192
0:STD. MOTOR (LINEAR AXIS)	[POSITION PULSE NO.	12500	12500
1:STD. MOTOR (ROTARY AXIS)		REF. COUNTER	10000	10000
A) ^		A) ^		
MDI **** *** *** 17:06:	16	MDI **** *** ***	17:07:0	4
MENU CHANGE)+	(MENU CHANGE)+

Fig. 2.1.3(b) 0*i*-D Series Servo tuning screen

When the servo setting screen (standard screen) is displayed, the servo setting screen (conventional compatible screen) can be displayed by operating the soft keys as follows: $[(OPRT)] \rightarrow [\Box] \rightarrow [CHANGE]$

● 30*i* Series

$$\left[\bigotimes_{\text{SYSTEM}} \right] \rightarrow [\text{SYSTEM}] \rightarrow [\rhd] \rightarrow [\text{SV-PRM}]$$

If no servo screen appears, set the following parameter as shown, and switch the NC off and on again.

		#7	#6	#5	#4	#3	#2	#1	#0
3111	Ι								SVS
	$\sqrt{1}$	1 D' 1							

SVS (#0) 1: Displays the servo screen.

When the following screen appears, move the cursor to the item you want to specify, and enter the value directly.

Servo set		X axis	01000 N0000 Z axis	Corresponding parameter number
INITIAL SET BITS Motor ID No. AMR CMR CMR (N/M) Feed gear (N/M) Direction Set Velocity Pulse No. Position Pulse No. Ref. counter	N M N M	00000010 16 00000000 2 0 0 1 1 100 111 8192 12500 10000	00000010 16 00000000 2 0 0 1 1 100 111 8192 12500 10000	No.2000 No.2020 No.2001 No.1820 No.1822 No.1823 No.2084 No.2085 No.2022 No.2022 No.2023 No.2024 No.1821

Fig. 2.1.3 (a) 30*i* Series Servo setting screen

NOTE

CMR(N/M) is displayed when arbitrary command multiplier (option) is enabled.

(2) Initialization

Start initialization. Do not power off the NC until step (12).

	#7	#6	#5	#4	#3	#2	#1	#0
2000							DGPR	PLC0

Reset initialization bit 1 (No.2000) to 0. DGPR(#1)=0

(3) Motor ID No. setting

Specify the motor ID number.

Select the motor ID number of a motor to be used according to the motor model and motor specification (the middle four digits in A06B-<u>****</u>-B***) listed in the following tables.

The mark " \Box " indicates a value that varies depending on the used options.

The mark "-" indicates that automatic loading of standard parameters is not supported as of November, 2012. Alternatively, this mark indicates an invalid combination.

NOTE

For linear motors and synchronous built-in servo motors, see Chapter 3, "SETTING PARAMETERS OF LINEAR MOTOR AND SYNCHRONOUS BUILT-IN SERVO MOTOR".

α*i*S series servo motor

Motor model	Motor specification	Motor ID No. (HRV2)	90G0	90D0 90E0	90E1	90C5 90E5	90C8 90E8
α <i>i</i> S 2/5000	0212	262	03.0	А	01.0	А	А
α <i>i</i> S 2/6000	0218	284	03.0	G	01.0	А	А
α <i>i</i> S 4/5000	0215	265	03.0	А	01.0	А	А
α <i>i</i> S 4/6000	0210	466	03.0	28.0	04.0	D	А
α <i>i</i> S 8/4000	0235	285	03.0	А	01.0	А	А
α <i>i</i> S 8/6000	0232	290	03.0	G	01.0	А	А
α <i>i</i> S 12/4000	0238	288	03.0	А	01.0	А	А
α <i>i</i> S 12/6000	0230	462	03.0	27.0	01.0	D	А
α <i>i</i> S 22/4000	0265	315	03.0	А	01.0	А	А
α <i>i</i> S 22/6000	0262	452	03.0	Q	01.0	А	А
α <i>i</i> S 30/4000	0268	318	03.0	А	01.0	А	А
α <i>i</i> S 40/4000	0272	322	03.0	А	01.0	А	А
α <i>i</i> S 50/2000	0042	468	03.0	28.0	04.0	D	А
α <i>i</i> S 50/3000	0275-B□0□	324	03.0	В	01.0	А	А
α <i>i</i> S 50/3000 FAN	0275-B□1□	325	03.0	А	01.0	А	А
α <i>i</i> S 60/2000	0044	470	03.0	28.0	04.0	D	А
α <i>i</i> S 60/3000 FAN	0278	328	03.0	28.0	04.0	D	А
α <i>i</i> S 100/2500	0285-B□0□	335	03.0	А	01.0	А	А
α <i>i</i> S 100/2500 FAN	0285-B□1□	330	03.0	Р	01.0	А	А
α <i>i</i> S 200/2500	0288-B□0□	338	03.0	А	01.0	А	А
α <i>i</i> S 200/2500 FAN	0288-B□1□	334	03.0	Р	01.0	А	А

α*i***S series servo motor** (for 200-V driving, multiple windings)

Motor model	Motor specifica tion	Number of windings	Motor ID No. (HRV2)	90G0	90D0 90E0	90E1	90C5 90E5	90C8 90E8
α <i>i</i> S 300/2000	0292	2	342	03.0	В	01.0	А	А
α <i>i</i> S 500/2000	0295	2	345	03.0	А	01.0	А	А

α*i*F series servo motor

Motor model	Motor specification	Motor ID No. (HRV2)	90G0	90D0 90E0	90E1	90C5 90E5	90C8 90E8
α <i>i</i> F 1/5000	0202	252	03.0	А	01.0	А	А
α <i>i</i> F 2/5000	0205	255	03.0	А	01.0	А	А
α <i>i</i> F 4/4000	0223	273	03.0	А	01.0	А	А
α <i>i</i> F 8/3000	0227	277	03.0	А	01.0	А	А
α <i>i</i> F 8/4000	0228	492	18.0	-	-	-	-
α <i>i</i> F 12/3000	0243	293	03.0	А	01.0	А	А
α <i>i</i> F 22/3000	0247	297	03.0	А	01.0	А	А
α <i>i</i> F 22/4000	0248	494	18.0	-	-	-	-
α <i>i</i> F 30/3000	0253	303	03.0	А	01.0	А	А
α <i>i</i> F 40/3000	0257-B□0□	307	03.0	A	01.0	А	A
α <i>i</i> F 40/3000 FAN	0257-B□1□	308	03.0	А	01.0	А	А

Motor model	Motor specification	Motor ID No. (HRV2)	90G0	90D0 90E0	90E1	90C5 90E5	90C8 90E8
α <i>i</i> S 2/5000HV	0213	263	03.0	А	01.0	А	А
α <i>i</i> S 2/6000HV	0219	287	03.0	G	01.0	А	А
α <i>i</i> S 4/5000HV	0216	266	03.0	А	01.0	А	А
α <i>i</i> S 4/6000HV	0214	467	03.0	28.0	04.0	D	А
α <i>i</i> S 8/4000HV	0236	286	03.0	А	01.0	А	А
α <i>i</i> S 8/6000HV	0233	292	03.0	G	01.0	А	А
α <i>i</i> S 12/4000HV	0239	289	03.0	А	01.0	А	А
α <i>i</i> S 12/6000HV	0237	463	03.0	27.0	01.0	D	А
α <i>i</i> S 22/4000HV	0266	316	03.0	А	01.0	А	А
α <i>i</i> S 22/6000HV	0263	453	03.0	Q	01.0	А	А
α <i>i</i> S 30/4000HV	0269	319	03.0	А	01.0	А	А
α <i>i</i> S 40/4000HV	0273	323	03.0	А	01.0	А	А
α <i>i</i> S 50/2000HV	0043	469	03.0	28.0	04.0	D	А
α <i>i</i> S 50/3000HV	0276-B□0□	327	03.0	В	01.0	А	А
α <i>i</i> S 50/3000HV FAN	0276-B□1□	326	03.0	А	01.0	А	А
α <i>i</i> S 60/2000HV	0045	471	03.0	28.0	04.0	D	А
α <i>i</i> S 60/3000HV FAN	0279	329	03.0	28.0	04.0	D	А
α <i>i</i> S 100/2500HV	0286-B□0□	336	03.0	В	01.0	А	А
α <i>i</i> S 100/2500HV FAN	0286-B□1□	331	03.0	Р	01.0	А	А
α <i>i</i> S 200/2500HV	0289-B□0□	339	03.0	В	01.0	А	А
α <i>i</i> S 200/2500HV FAN	0289-B□1□	337	03.0	Р	01.0	А	А
α <i>i</i> S 300/2000HV	0293	343	03.0	В	01.0	А	А
α <i>i</i> S 300/3000HV ^(Note)	0290	344	03.0	28.0	04.0	F	А
α <i>i</i> S 500/2000HV	0296	346	03.0	В	01.0	А	А
α <i>i</i> S 500/3000HV ^(Note)	0297	347	03.0	28.0	04.0	F	А

α <i>i</i> S series servo motor (for 400-V drivin

NOTE

A servo amplifier (αi SV or αi PS) corresponding to voltage information is required. For details, see Section 2.2, "SETTING PARAMETERS FOR LARGE SERVO MOTORS".

α <i>i</i> S series servo motor	(for 400-V driv	ving, multiple	windings)
---------------------------------	-----------------	----------------	-----------

Motor model	Motor specific ation	Number of windings	Motor ID No. (HRV2)	90G0	90D0 90E0	90E1	90C5 90E5	90C8 90E8
α <i>i</i> S 1000/2000HV	0298	2	348	03.0	В	01.0	А	Α
α <i>i</i> S 1000/2000HV ^(Note)	0098	2	458	03.0	28.0	04.0	F	А
:S 1000/2000LIV (Note)	0000	0000 4	350 (PDM)	-	-	-	D	Α
	0099	4	465	03.0	28.0	04.0	-	-
arie 2000/2000HV (Note)	0001	4	454 (PDM)	-	-	-	D	А
ais 2000/2000HV	0091 4	4 459 03.0	03.0	28.0	04.0	-	-	
α <i>i</i> S 2000/2000HV ^(Note)	0001	4	470	10.0	22.0	10.0	-	
For spindle use	0091	4	476	12.0	33.0	10.0	F	D
~; S 3000/2000HV (Note)		4	455 (PDM)	_	-	-	D	Α
ais 3000/2000HV	0092	4	460	03.0	28.0	04.0	-	-

NOTE

A servo amplifier (αi SV or αi PS) corresponding to voltage information is required. For details, see Section 2.2, "SETTING PARAMETERS FOR LARGE SERVO MOTORS".

The number followed by (PDM) is used as the motor number in a configuration in which a PWM distribution module (PDM) is used.

α*i*F series servo motor (for 400-V driving)

Motor model	Motor specification	Motor ID No. (HRV2)	90G0	90D0 90E0	90E1	90C5 90E5	90C8 90E8
α <i>i</i> F 4/4000HV	0225	275	03.0	А	01.0	А	А
α <i>i</i> F 8/3000HV	0229	279	03.0	А	01.0	А	А
α <i>i</i> F 8/4000HV	0220	493	18.0	-	-	-	-
α <i>i</i> F 12/3000HV	0245	295	03.0	А	01.0	А	А
α <i>i</i> F 22/3000HV	0249	299	03.0	А	01.0	А	А
α <i>i</i> F 22/4000HV	0240	495	18.0	-	-	-	-
α <i>i</i> F 30/3000HV	0255	304	12.0	33.0	10.0	F	С
α <i>i</i> F 40/3000HV	0259-B□0□	309	12.0	33.0	10.0	F	С
α <i>i</i> F 40/3000HV FAN	0259-B□1□	479	12.0	33.0	10.0	F	С

αCi series servo motor

Motor model	Motor specification	Motor ID No. (HRV2)	90G0	90D0 90E0	90E1	90C5 90E5	90C8 90E8
α C 4/3000 <i>i</i>	0221	271	03.0	А	01.0	А	А
α C8/2000 <i>i</i>	0226	276	03.0	А	01.0	А	А
α C12/2000 <i>i</i>	0241	291	03.0	А	01.0	А	А
α C22/2000 <i>i</i>	0246	296	03.0	А	01.0	А	А
αC30/1500 <i>i</i>	0251	301	03.0	А	01.0	А	А

β*i*S series servo motor

Motor model	Motor specification	Amplifier driving	Motor ID No. (HRV2)	90G0	90D0 90E0	90E1	90C5 90E5	90C8 90E8
β <i>i</i> S0.2/5000	0111	4A	260	03.0	А	01.0	А	А
β <i>i</i> S 0.3/5000	0112	4A	261	03.0	А	01.0	А	А
β <i>i</i> S 0.4/5000	0114	20A	280	03.0	Α	01.0	А	А
β <i>i</i> S 0.5/6000	0115	20A	281	03.0	G	01.0	А	А
β <i>i</i> S 1/6000	0116	20A	282	03.0	G	01.0	А	А
BiS 2/4000	0061 ^(Note 1,2)	20A	253	03.0	В	01.0	А	А
β <i>i</i> S 2/4000		40A	254	03.0	В	01.0	А	А
RIE 4/4000	0063 ^(Note 1,2)	20A	256	03.0	В	01.0	А	А
p/S 4/4000		40A	257	03.0	В	01.0	А	А
BIS 8/3000	0075(Note 1,2)	20A	258	03.0	В	01.0	А	А
p/3 8/3000	0075	40A	259	03.0	В	01.0	А	А
BiS 12/2000	0077(Note 1,2)	20A	269	03.0	K	01.0	А	А
p/3 12/2000	0077	40A	268	03.0	Р	01.0	А	А
BiS 12/3000	0079(Note 2)	40A	272	03.0	В	01.0	А	А
p/3 12/3000	0078	80A	477	12.0	33.0	10.0	F	С
BiS 22/2000	0005 (Note 2)	40A	274	03.0	В	01.0	А	A
pi3 22/2000	0085,000 -/	80A	478	12.0	33.0	10.0	F	С
βiS 22/3000	0082	80A	313	03.0	Q	01.0	А	А
β <i>i</i> S 30/2000	0087	80A	472	03.0	29.0	05.0	F	A

2. SETTING PARAMETERS OF *aiS/aiF/βiS/βiF* SERIES SERVO MOTOR

B-65270EN/08

Motor model	Motor specification	Amplifier driving	Motor ID No. (HRV2)	90G0	90D0 90E0	90E1	90C5 90E5	90C8 90E8
β <i>i</i> S 40/2000	0089	80A	474	03.0	29.0	05.0	F	A

β*i*S series servo motor (for 400-V driving)

Motor model	Motor specification	Amplifier driving	Motor ID No. (HRV2)	90G0	90D0 90E0	90E1	90C5 90E5	90C8 90E8
β <i>i</i> S 2/4000HV	0062	10A	251	03.0	J	01.0	А	А
β <i>i</i> S 4/4000HV	0064	10A	264	03.0	J	01.0	А	А
β <i>i</i> S 8/3000HV	0076	10A	267	03.0	J	01.0	А	А
β <i>i</i> S 12/3000HV	0079	20A	270	03.0	J	01.0	А	А
β <i>i</i> S 22/2000HV	0086	20A	278	03.0	J	01.0	А	А
β <i>i</i> S 22/3000HV	0083	40A	314	03.0	Q	01.0	А	А
β <i>i</i> S 30/2000ΗV	0088	40A	473	03.0	29.0	05.0	F	А
β <i>i</i> S 40/2000HV	0090	40A	475	03.0	29.0	05.0	F	A

β*i*S series servo motor (dedicated to FS0*i*)

Motor model	Motor specification	Amplifier driving	Motor ID No. (HRV2)	90C5 90E5	90C8 90E8
BIS 2/4000		20A	306	Α	А
pis 2/4000		40A	310	А	А
β <i>i</i> S 4/4000		20A	311	А	А
	0003-ВШШ0	40A	312	А	А
P:5 9/2000		20A	283	А	А
p/S 8/3000	0075-ВЦЦб	40A	294	А	А
R:S 12/2000		20A	298	А	А
p/S 12/2000	0077-ВЦЦо	40A	300	А	А
R:S 22/1500		20A	302	A	A
pi3 22/1500	0004-B⊡⊡0	40A	305	А	А

The motor models above can be driven only with Series 90C5, 90E5, 90C8, or 90E8 for the 0*i*-D Series.

NOTE

A βi SVSP servo amplifier is assumed to be used for a combination in which an amplifier with higher power is used.

β*i*Sc series servo motor (dedicated to FS0*i* Mate-TD)

Motor model	Motor specification	Amplifier driving	Motor ID No. (HRV2)	90C5 90E5	90C8 90E8
0:50 2/4000		20A	306	А	А
p/SC 2/4000	0061-BLL1	40A	310	А	А
8:50 1/1000		20A	311	А	А
β/30 4/4000	0063-BLL1	40A	312	А	А
8:So 8/2000		20A	283	А	А
BISC 8/3000	0075-8007	40A	294	А	А
β <i>i</i> Sc 12/2000		20A	298	А	А
		40A	300	A	A

The motor models above can be driven only with Series 90C5, 90E5, 90C8, or 90E8 for the 0*i*-D Series.

NOTE

A β *i*SVSP servo amplifier is assumed to be used for a combination in which an amplifier with higher power is used.

β*i*F series servo motor

Motor model	Motor specification	Amplifier driving	Motor ID No. (HRV2)	90G0	90D0 90E0	90E1	90C5 90E5	90C8 90E8
B:E 1/3000	0051	20A	483	18.0	-	-	-	04.0
piF 4/3000	0051	40A	484	18.0	-	-	-	04.0
8:E 8/2000	0050	20A	485	18.0	-	-	-	04.0
p/F 8/2000	0052	40A	486	18.0	-	-	-	04.0
0:5 12/2000	0050	20A	487	18.0	-	-	-	04.0
piF 12/2000	0053	40A	488	18.0	-	-	-	04.0
0:F 22/2000	0054	40A	489	18.0	-	-	-	04.0
p/F 22/2000	0054	80A	490	18.0	-	-	-	04.0
β <i>i</i> F 30/1500	0055	80A	491	18.0	-	-	-	04.0

NOTE

A βi SVSP servo amplifier is assumed to be used for a combination in which an amplifier with higher power is used.

(4) AMR setting

Set, as AMR, a setting value of following table.

Motor type	AMR setting
$\alpha i S / \alpha i F / \beta i S / \beta i F$ motor	0000000
(other than αi S2000HV and αi S3000HV)	
αi S2000HV and αi S3000HV	00001000

(5) CMR setting

Set, as CMR, a specified magnification for the amount of movement from the NC to the servo system. CMR = Command unit / Detection unit

CIVIN -	Command unit / Detection unit	
CMR	1/2 to 48	Setting value = CMR × 2

Usually, set CMR with 2 to parameter No. 1820, because command unit = detection unit (CMR = 1).

If the detection unit may be a special value, you can enable arbitrary command multiplier (option) and specify numerator N denominator M of command-unit/detection unit = N/M for parameters Nos. 1822 and 1823, respectively. A value of 1 or greater must be specified for parameters Nos. 1822 and 1823.

Valid data range of CMR when arbitrary multiplication is enabled

CMR 1/9999 to 9999/1	Setting value = CMR

(6) Flexible feed gear setting

Specify the flexible feed gear (F·FG). This function makes it easy to specify a detection unit for the leads and gear reduction ratios of various ball screws by changing the number of position feedback pulses from the Pulsecoder or separate detector. It converts the incoming number of pulses from the position detector so that it matches the commanded number of pulses. When using a linear motor, set F·FG according to the description in Section 3.1, "LINEAR MOTOR PARAMETER SETTING". When using a synchronous built-in servo motor, set F·FG according to the description in Section 3.2, "SYNCHRONOUS BUILT-IN SERVO MOTOR PARAMETER SETTING".

(a) Semi-closed feedback loop

Setting for the αi Pulsecoder

↓ (Note 1) F·FG numerator (≤ 32767)	Necessary position feedback pulses per motor revolution	(as irreducible fraction)
F·FG denominator (\leq 32767)	1,000,000 ← (Note 2)	

NOTE

- 1 For both F.FG numerator and denominator, the maximum setting value (after reduced) is 32767.
- 2 αi Pulse coders assume one million pulses per motor revolution, irrespective of resolution, for the flexible feed gear setting.
- 3 If the calculation of the number of pulses required per motor revolution involves π , such as when a rack and pinion are used, assume π to be approximately 355/113.

Example of setting

If the ball screw used in direct coupling has a lead of 5 mm/rev and the detection unit is 1 µm The number of pulses generated per motor turn (5 mm) is:

5/0.001 = 5,000 (pulses)

Because the αi Pulsecoder feeds back 1,000,000 pulses per motor turn:

FFG = 5,000 / 1,000,000 = 1 / 200

Other FFG (numerator/denominator) setting examples, where the gear reduction ratio is assumed to be 1:1

Detection unit	Ball screw lead					
Detection unit	6mm	8mm	10mm	12mm	16mm	20mm
1µm	6 / 1000	8 / 1000	10 / 1000	12 / 1000	16 / 1000	20 / 1000
0.5µm	12 / 1000	16 / 1000	20 / 1000	24 / 1000	32 / 1000	40 / 1000
0.1μm	60 / 1000	80 / 1000	100 / 1000	120 / 1000	160 / 1000	200 / 1000

Example of setting

If the gear reduction ratio between the rotary axis motor and table is 10:1 and the detection unit is 1/1,000 degrees

The table rotates through 360/10 degrees when the motor makes one turn.

The number of position pulses necessary for the motor to make one turn is:

 $360/10 \div (1/1000) = 36,000$ pulses

F·FG numerator	36,000	_ 36
F·FG denominator	1,000,000	1,000

Example of setting

If the gear reduction ratio between the rotary axis motor and table is 300:1 and the detection unit is 1/10,000 degrees

The table rotates through 360/300 degrees when the motor makes one turn.

The number of position pulses necessary for the motor to make one turn is:

 $360/300 \div (1/10,000) = 12,000$ pulses

 $\frac{\text{F} \cdot \text{FG numerator}}{\text{F} \cdot \text{FG denominator}} = \frac{12,000}{1,000,000} = \frac{12}{1,000}$

Example of setting

If a rack and pinion are used in direct coupling, the radius of the pinion is 10 mm, and the detection unit is $1 \ \mu m$

The rack moves by 20π mm when the motor makes one turn.

The number of pulses generated per motor turn is $20\pi/0.001 \approx (20 \times 355/113)/0.001 = 7,100,000/113$ (pulses)

F·FG numerator 7100,000 71

F·FG denominator 1,000,000 × 113 1,130

(b) Full-closed feedback loop

Setting for use of a separate detector (full-closed)

F·FG numerator (≤ 32767)	=	Number of position pulses corresponding to a predetermined amount of travel	(as irreducible fraction)
F⋅FG denominator (≤ 32767)		Number of position pulses corresponding to a predetermined amount of travel from a separate detector	

Example of setting

To detect a distance of 1-µm using a 0.5-µm scale, set the following:

(L represents a constant distance.)

Numerator of F·FG	L/1	1
Denominator of F·FG	$=$ $\frac{L}{0.5}$ =	2

Other FFG (numerator/denominator) setting examples

Detection with	Scale resolution			
Detection unit	1 μm	0.5 μm	0.1 μm	0.05 μm
1 µm	1 / 1	1/2	1 / 10	1 / 20
0.5 μm	-	1 / 1	1 / 5	1 / 10
0.1 μm	-	-	1 / 1	1 / 2

NOTE

The maximum rotation speed allowable with servo software depends on the detection unit. (See Appendix D, "VELOCITY LIMIT VALUES IN SERVO SOFTWARE".) Select a detection unit that enables a requested maximum rotation speed to be realized. When a speed of up to 6000 revolutions is used as a live tool in the direct motor connection mode, in particular, use a detection unit of 2/1000 deg (IS-B setting, CMR=1/2, flexible feed gear=18/100).

(7) Motor rotation direction setting

Set the direction in which the motor is to turn when a positive value is specified as a move command. For linear motors, set the parameter according to the description in Section 3.1, "LINEAR MOTOR PARAMETER SETTING". For synchronous built-in servo motors, set the parameter according to the description in Section 3.2, "SYNCHRONOUS BUILT-IN SERVO MOTOR PARAMETER SETTING".

111	Clockwise as viewed from the Pulsecoder
-111	Counterclockwise as viewed from the Pulsecoder

B-65270EN/08

(8) Specify the number of velocity pulses and the number of position pulses.

Set the number of velocity pulses and the number of position pulses according to the connected detector. For linear motors, set these parameters according to the description in Section 3.1, "LINEAR MOTOR PARAMETER SETTING". For synchronous built-in servo motors, set these parameters according to the description in Section 3.2, "SYNCHRONOUS BUILT-IN SERVO MOTOR PARAMETER SETTING".

(a) Number of velocity pulses

Set the number of velocity pulses to 8192.	
$\alpha i S/\alpha i F/\beta i S/\beta i F$ motor	8192

(b) Number of position pulses

(b)-1 Number of position pulses for semi-closed feedback loop

Set the number of position pulses to 12500.

Number of position pulses	12500
(giS/giE/ßiS/ßiE motor, semi-closed feedback loo	n) $ ^{12000}$

(b)-2 Number of position pulses for full-closed feedback loop (See Subsections 2.1.5 and 2.1.6)

Set the number of position pulses to the number of pulses fed back from the separate detector when the motor makes one turn. (The flexible feed gear has nothing to do with the calculation of the number of position pulses).

Number of position pulses (full-closed feedback loop)	Number of pulses fed back from the separate detector
	when the motor makes one turn

When using a serial rotary scale with a resolution of 1,000,000 pulses per revolution, set the value obtained using the following formula:

Number of position pulses (full-closed feedback loop) (*) 1,000,000 pulses / rev	12,500 \times (motor-table gear reduction ratio)
---	--

Example 1:

Parallel type, serial linear scale

If the ball screw used in direct coupling has a lead of 10 mm and the separate detector used has a resolution of 0.5 μ m per pulse

Number of position pulses = 10 / 0.0005 = 20,000

Example 2:

Serial rotary scale

If the motor-table gear reduction ratio is 10:1,

Number of position pulses = $12,500 \times (1/10) = 1,250$

Example 3:

Serial rotary scale

If the motor-table gear reduction ratio is indivisible by 7:1,

Number of position pulses = $12,500 \times (1/7) = 1785.714286 \Rightarrow 1786$ (rounded to the nearest integer)

NOTE

If the calculated number of position pulses is not an integer, set the nearest integer.

Let the calculated value be P and its nearest integer be P'. Then, the position gain and feed-forward coefficient are multiplied by P/P'. If the gear reduction ratio is large and the calculated value is small, they are largely affected. If there is a problem, make a fine adjustment by specifying an appropriate value for the position gain (parameter No. 1825) and feed-forward coefficient (parameter No. 2092).

(b)-3 If the setting for the number of position pulses is larger than 32767

If the number of position pulses exceeds 32767, set the number of position pulses with a product of two parameters, using the conversion coefficient for the number of position feedback pulses.

2185	Conversion coefficient for the number of position feedback pulses

 \rightarrow See Supplementary 3 of Subsection 2.1.9.

NOTE

By setting initialization bit 0 of No. 2000 to 1, the number of velocity pulses and the number of position pulses can be internally increased by a factor of 10. Usually, however, set bit 0 of No. 2000 to 0. If the number of position pulses is beyond the setting range, use a position pulse conversion coefficient (parameter No. 2185). Only in the situations indicated below, set bit 0 of No. 2000 to 1, set the number of velocity pulses to one-tenth of the value to be originally set, and also set the number of position pulses to one-tenth of the value to be originally set.

 When the number of velocity pulses exceeds 32767 because a high-resolution detector is used with a linear motor or synchronous built-in servo motor

(9) Reference counter setting

Specify the reference counter.

The reference counter is used in making a return to the reference position by a grid method.

(a) Semi-closed loop

(Linear axis)	
Count on the reference counter	Number of position pulses corresponding to a single motor revolution or the same number divided by an integer value
(Rotary axis)	
Count on the reference counter	Number of position pulses corresponding to a single motor revolution/N, or the same number divided by an integer value
* When the motor-table gear redu	ction ratio is N/D (N and D are integers, and N/D is a fraction that is reduced to
lowest terms.)	

NOTE

- 1 If the calculation above results in a fraction, a setting can be made with a fraction. See Item (a)-1.
- 2 If the number of revolutions of the motor is not an integer multiple of the number of revolutions of the table on the rotary axis, the reference counter capacity needs to be set so that the point (grid point) where the reference counter equals 0 appears at the same position relative to the table. So, with the rotary axis, the number of position pulses per motor revolution needs to be multiplied by 1/N.

Example of setting

α*i* Pulsecoder and semi-closed loop (1-μm detection)

Ball screw lead (mm/revolution)	Necessary number of position pulses (pulse/revolution)	Reference counter	Grid width (mm)
10	10000	10000	10
20	20000	20000	20
30	30000	30000	30

When the number of position pulses corresponding to a single motor revolution does not agree with the reference counter setting, the position of the zero point depends on the start point.

In such a case, set the reference counter capacity with a fraction to change the detection unit and eliminate the error in the reference counter.

Example of setting

System using a detection unit of 1 $\mu m,$ a ball screw lead of 20 mm/revolution, and a gear reduction ratio of 1/17

To eliminate the error of the reference counter, two methods of setting are available:

(a)-1 Method that sets a reference counter capacity with a fraction

(a)-2 Method that changes the detection unit

An example of each setting method is explained below.

(a)-1 Method of specifying the reference counter capacity with a fraction

The number of position pulses necessary for the motor to make one turn is: 20000/17 Set the following parameter as stated below.

1821

Reference counter capacity (numerator)

[Valid data range] 0 to 99999999

Set the numerator of a fraction for the reference counter capacity.

2179	Reference counter capacity (denominator)
[Valid data range]	0 to 100
	A value up to around 100 is assumed to be set as the denominator of the reference counter
	capacity. If a larger value is set, the grid width becomes too small, which makes it
	difficult to perform reference position return by grid method. In addition, the processing
	time of the servo software increases, which may causes a system alarm. For this reason, if
	a value of 101 or greater is set as the denominator, an invalid ordinary parameter alarm
	(detail No. 1793) is issued.
	The denominator parameter is not indicated in the servo setting screen, so it must be set in
	the parameter screen.
	In this example, set the numerator and denominator, respectively, to 20000 and 17.

NOTE Even if a setting is made with a fraction, set the number of position pulses per motor revolution/M for a semi-closed loop rotary axis when the reduction ratio is N/D. Reference counter = Number of position pulses per motor revolution/N, or The same number divided by an integer

If you want to set a value greater than 100 as the reference counter capacity (denominator), you can set the following parameter to disable invalid parameter detection.

	#7	#6	#5	#4	#3	#2	#1	#0
2299			IGNRFA					
	T1 1 (/·	· · ·	1.1			• • •	C 1 C	

- INGRFA(#5) The detection of an invalid parameter set for the denominator of the reference counter capacity is:
 - 0: Performed.
 - 1: Not performed.
 - If this parameter is set, the power must be turned off before operation is continued.

NOTE

If an invalid parameter alarm (detail No. 1793) may be issued according to the status, setting IGNRFA to 1 may cause a system alarm. In this case, set IGNRFA to 0.

(a)-2 Method of changing the detection unit

The number of position pulses necessary for the motor to make one turn is: 20000/17In this case, increase all the following parameter values by a factor of 17, and set the detection unit to $1/17 \,\mu\text{m}$.

Parameter modifica	tion	Series 30 <i>i</i> , 0 <i>i</i> -D, Power Motion <i>i</i> -A and so on
FFG	× 17	Servo screen
CMR	× 17	Servo screen
Reference counter	× 17	Servo screen
Effective area	× 17	No. 1826, 27
Position error limit in traveling	× 17	No. 1828
Position error limit in the stop sta	te × 17	No. 1829
Backlash	× 17	No. 1851, 52

Changing the detection unit from 1 μ m to 1/17 μ m requires multiplying each of the parameter settings made for the detection unit by 17.

In addition to the above parameters, there are some parameters that are to be set in detection units. For details, see Appendix B.

Making these modifications eliminates the difference between the number of position pulses corresponding to a single motor revolution and the reference counter setting.

Number of position pulses corresponding to a single motor revolution = 20000Reference counter setting = 20000

(b) Full-closed loop (See Subsections 2.1.5 and 2.1.6)

Reference counter	_	Z-phase (reference-position) interval divided by the detection unit, or this value
setting	-	sub-divided by an integer value

NOTE

If the separate detector-table rotation ratio for the rotary axis is not an integer, it is necessary to set the reference counter capacity in such a way that points where reference counter = 0 (grid points) appear always at the same position for the table.

Example of setting

Example 1)	When the Z-phase interval is 50 mm and the detection unit is 1 μ m:
	Reference counter setting = $50,000/1 = 50,000$
Example 2)	When a rotary axis is used and the detection unit is 0.001 degrees:
- /	Reference counter setting = $360/0.001 = 360,000$
Example 3)	When a linear scale is used and a single Z phase exists:
- /	Set the reference counter to 10000, 50000, or another round number.

If the calculated value of the reference counter capacity is not an integer, the reference counter capacity can be set as a fraction as in the case of a semi-closed loop. For details of parameters, see (a)-1.

NOTE The following value can be set as a reference counter capacity: (For linear axis) Number of position pulses corresponding to the Z-phase interval of a separate detector (or the same number divided by an integer) (For rotary axis) Number of position pulses per revolution of a separate detector/N (or the same number divided by an integer) (*) When the rotation ratio between the table and separate detector is N/D (N and D are integers, and N/D is a fraction that is reduced to lowest terms.)

(10) Full-closed system setting (go to (11) if a semi-closed system is in use)

For a full-closed system, it is necessary to set the following function bit.

If you want to connect the separate detector signal in the reverse direction, use the following parameter:

For a full-closed system, the use of the function for monitoring the difference in error between the semi-closed and full-closed modes is recommended. This function monitors the difference between the motor position and scale position.

2118	Dual position feedback: Level on which the difference in error between the semi-closed and full-closed modes becomes too large
[Setting value]	Level on which the difference in error is too large (μm) /detection unit (μm) or level
	on which the difference in error is too large (um)

[Setting unit]

Detection unit or 1 μ m (\rightarrow See the explanation of bit 7 of parameter No. 2420.)

If the difference between the Pulsecoder and the separate detector is greater than or equal to the value specified for the parameter, the abnormal status is assumed and an alarm is issued.

Set a value two to three times as large as the backlash. When a value of 0 is set, the detection is disabled.

(11) Servo loop gain setting

Set a value other than 0 as a servo loop gain. Usually, set an initial value of 3000 (30 [sec⁻¹]). (This initial value is adjusted later as needed.)

Servo loop gain		3000	(guideline)
[Setting unit]	$0.01 [\text{sec}^{-1}]$		

NOTE

- 1 When a servo loop gain of 0 is set, an illegal servo parameter setting alarm is issued.
- 2 If there is a problem such as vibration occurring at the time of motor rotation after the NC is started, perform servo tuning according to Chapter 4.

(12) NC restart

Switch the NC off and on again.

After the NC is switched off and on again, bit 1 of parameter No. 2000 (DGPR) is set to "1".

This completes servo parameter initialization.

If an illegal servo parameter setting alarm occurs, go to Subsec. 2.1.9.

If a servo alarm related to Pulsecoders occurs for an axis for which a servo motor or amplifier is not connected, specify the following parameter.

	#7	#6	#5	#4	#3	#2	#1	#0
2009								DMY
DMM(U 0)	T1 · 1	C 11 1	1 C			1° TT 1	CEDIAL	FFFDDAC W

DMY (#0) The serial feedback dummy function is: (See Appendix H.1, "SERIAL FEEDBACK DUMMY FUNCTIONS" for function detail)

- 0: Not used
- 1: Used

(13) Absolute position detector setting

When you are going to use an $\alpha i/\beta i$ Pulsecoder as an absolute Pulsecoder, use the following procedure.

Procedure

1. Specify the following parameter, then switch the NC off.

#0	#1	#2	#3	#4	#5	#6	#7	
					APCx			1815
					letector is:	e position d	The absolut	APCx (#5)
						ed	0: Not us	
							1: Used	
n off the CNC.	ted, turn o	r is connec	e Pulsecode	ttery for th	e that the ba	naking sure	2. After 1	
	e steps added	ל These were ז	ion is	rence posit	to the refe	est to return ed.	3. A reque	
	e α <i>i/βi</i>	for the	by jogging.	e one turn	otor to mak	the servo m	4. Cause t	
	coder.	Pulsed			e CNC.	ff and on th	5. Turn of	
			tion is	erence posi	n to the refe	lest to return yed.	6. A required display	
	e steps added e $\alpha i/\beta i$ coder.	← These were a for the Pulsec	ion is by jogging. tion is	rence posit e one turn erence posi	to the refe otor to mak e CNC. n to the refe	est to return ed. the servo m ff and on th lest to return yed.	 A requidisplay Cause t Turn of A requidisplay 	

7. Do the reference position return.

NC	DTE
1	When using a FANUC absolute Pulsecoder as an absolute position detector and making a setting so that the machine coordinate values on a rotary axis are rounded to 0° to 360° [rotary axis (A-type)], set bit 6 of parameter No. 1815 (RON) to 0.
2	If you want to use a detector with no speed data for a rotary encoder supplied by a vendor other than FANUC for absolute position detection, refer to "CORRESPONDENCE OF ROTARY SCALE WITHOUT ROTARY DATA" in "FANUC Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -MODEL B CONNECTION MANUAL (FUNCTION)

(B-64483EN-1)" and make an appropriate setting according to the detector. (See also Subsection 2.1.5, "Setting Servo Parameters when a Separate Detector for the Serial Interface Is Used".)

3 If the correct setting is not made, the machine coordinates are not established correctly at power-on.

(a) Reference position return when a serial type separate detector is used as an absolute-position detector

When a serial type separate detector is used as an absolute-position detector, the phase-Z position must be passed once before a reference position return is performed. Then, turn the CNC off then back on to allow reference position return.

(This description does not apply if a detector that does not require battery backup is in use.) When reference position return is performed, adjust the deceleration dog so that the grid-shifted reference position is not too near the deceleration dog.

To be adjusted so that the grid-shifted reference position is not too near the deceleration dog

2.1.4 Servo Parameter Initialization Procedure for the Series 0*i*-D

2.1.4.1 PARAMETER SETTING SUPPORT screen (SERVO SETTING)

(1) Displaying the SERVO SETTING screen and entering a value for each setting item

On the PARAMETER SETTING SUPPORT screen, select "SERVO SETTING" to display the SERVO SETTING screen.

PARAMETER	SETTING	00000 N00000
MENU 1.	START UP	AXIS SETTING FSSB (AMP) FSSB (AXIS) SERVO SETTING SERVO PARAMETER SERVO GAIN TUNING HIGH-PRECISION SPINDLE SETTING
2.	TUNING	MISCELLANY SERVO TUNING SPINDLE TUNING AICC TUNING
A)^		
MDI ****	*** ***	13:39:43
	FSSB PRMS	ET (OPRT) +

Fig. 2.1.4.1 (a) 0*i*-D PARAMETER SETTING SUPPORT screen

The SERVO SETTING screen consists of two pages. Enter physical constants including the gear ratio and ball screw lead according to the help message. For the motor number, see "(3) Motor ID No. setting" in Subsection 2.1.3.

SERVO SETTING	00000 N00000	SERVO SETTING	00000 N00000
X AXIS	PAGE: 1/2	X AXIS	PAGE: 2/2
MOTOR TYPE	0	GEAR RATIO(N/M)	1 2
STD. PRM. LOAD	1	SCREW PITCH (mm)	12
MOTOR ID NO.	272	DIRECTION SET	CW
MOTOR NAME	β iS12/3000	OUTER DETECTOR	1
DETECTION UNIT (um)	0.1000	RESOLUTION (um)	0.1000
		DIRECTION REVERSE	OFF
		GRID INTERVAL (mm)	12
0:STD. MOTOR(LINEAR AXIS)		PLEASE SET INTERVAL OF REF	ERENCE MARKS
1:STD. MOTOR (ROTARY AXIS)		IN CASE OF ONE REF. MARK,	PLEASE SET
		GRID INTERVAL FOR REFERENCE	E COUNTER.
A) ^		A) ^	
MDI **** *** *** 13:40:	43	MDI **** *** 13:42	:07
XA	IS INPUT +	SET AX	IS INPUT +

Fig. 2.1.4.1 (b) 0*i*-D PARAMETER SETTING SUPPORT screen (SERVO SETTING)

After you have entered values for all items, press soft key [SET]. The flexible feed gear, number of position pulses, number of velocity pulses, and other values are calculated and they are automatically set for the parameters listed in the table below.

(Parameters to be set)

Parameter No.	Description	
No.2000#1	Initialization bit	
No.2020	Motor ID number	
No.2001	AMR	
No.1820	CMR	
No.2084	FFG (numerator)	
No.2085	FFG (denominator)	
No.2274#0	Interpolation magnification	

Parameter No.	Description	
No.2022	Direction of movement	
No.2023	Number of velocity pulses	
No.2024	Number of position pulses (numerator)	
No.2185	Position pulses conversion coefficient	
No.1821	Reference counter (numerator)	
No.2179 Reference counter (denominator		

When the setting is completed, soft key [SET] disappears.

Then, press soft key [AXIS] to select another axis and enter values for the axis in the same way. After you have entered values for all axes, switch the NC off and on again.

NOTE

When the motor number or another item is set, alarm PW0000, "PLEASE TURN OFF POWER" may be issued and the alarm screen may be displayed. In this case, you do not need to turn the power off every time the alarm is issued. Display the SERVO SETTING screen again and set the remaining items.

2.1.4.2 SERVO SETTING screen: Setting items

The following table lists the setting items on the SERVO SETTING screen and the help messages displayed when these items are selected.

Item name	Help message	Remarks	
MOTOR TYPE	0: STD. MOTOR(LINEAR AXIS) 1: STD. MOTOR(ROTARY AXIS)		
STD.PRM.LOAD	 0: STD. PARAMETER LOADING IS EXECUTED AFTER POWER OFF/ON 1: STD. PARAMETER LOADING IS COMPLETED 		
MOTOR ID NO.	000-150:HRV1 α,β,LINEAR 151-250:HRV1 α <i>i</i> ,β <i>i</i> 251-350:HRV2 α <i>i</i> ,β <i>i</i>	For the Series 0 <i>i</i> -D and 30 <i>i</i> series CNC, select the motor number for HRV2.	
DETECTION UNIT(μ m)	TECTION UNIT(µ DETECTION UNIT IS LEAST RESOLUTION OF POSITION FEEDBACK PULSES THAT CNC USESFOR POSITION CONTROL.		
GEAR RATIO(N/M)	OUTPUT AXIS(MACHINE SIDE) ROTATES N REVOLUTION WHEN INPUT AXIS(MOTOR SIDE)ROTATES M REVOLUTION.		
SCREW PITCH(mm)			
MOTOR DIRECTION			
OUTER DETECTOR	0:NONE 3:SDU+SERIAL CIR.(X2048) 1:ONLY SDU 4:ANALOG SDU 2:SDU+SERIAL CIR.(X512)		

2. SETTING PARAMETERS OF *aiS/aiF/βiS/βiF* SERIES SERVO MOTOR

B-65270EN/08

Item name	Help message	Remarks
RESOLUTION (µm)	PLEASE SET RESOLUTION OR SIGNAL PITCH OF LINEAR SCALE.	These items are displayed when a value
DIRECTION REVERSE	ON: SIGN OF FEEDBACK PULSES FROM OUTER SCALE IS REVERSED OFF:SIGN IS NOT REVERSED	other than 0 is set for OUTER DETECTOR and the value indicating
GRID INTERVAL(mm)	PLEASE SET INTERVAL OF REFERENCE MARKSIN CASE OF ONE REF. MARK, PLEASE SET GRID INTERVAL FOR REFERENCE COUNTER.	a standard motor (linear axis) is set for MOTOR TYPE.
COUNT (BIT, λ)	PLEASE SET BIT NUMBER(ABS) OR LINE COUNT(INC) OF OUTER ROTARY ENCODER.	These items are displayed when a value
UNIT OF COUNT	0:PULSE/REV. 1:BIT/REV.	other than 0 is set for OUTER DETECTOR
DIRECTION REVERSE	ON: SIGN OF FEEDBACK PULSES FROM OUTER SCALE IS REVERSED OFF:SIGN IS NOT REVERSED	and the value indicating a standard motor (ROTARY AXIS) is set for MOTOR TYPE.

2.1.4.3 PARAMETER SETTING SUPPORT screen (SERVO PARAMETER)

On the PARAMETER SETTING SUPPORT screen, position the cursor on "SERVO PARAMETER" and press soft key [(OPRT)]. Soft key [INIT] appears. Execute soft key [G_INIT] to set recommended values for time constant, feed-forward, backlash acceleration, and other servo parameters for all axes.

PARAMETER SETTING	00000 N00000	SV. PRM(CUR CTRL)	00000 N00000
MENU 1. START UP	AXIS SETTING FSSB (AMP) FSSB (AXIS) SERVO SETTING SERVO PARAMETER SERVO GAIN TUNING HIGH-PRECISION SPINDLE SETTING MISCELLANY SERVO TUNING	X AXIS PAGE: 1/ 7 CUR. PI CONTROL 1 HRV3 VALID 0 HRV3 CG MULT. Z	
A) ^	SPINDLE TUNING AICC TUNING	IMPROVE CURRENT CONTROL RES RECOMMENDED SETTING "1"	PONSE
***		· · · /	
MDI **** *** *** (SELECT IN	15:22:11	MDI **** *** *** 15:22:	35 S INPUT +

Fig. 2.1.4.3 (a) 0*i*-D PARAMETER SETTING SUPPORT screen (SERVO PARAMETER)

You can also select "SERVO PARAMETER" to display the SERVO PARAMETER screen and set recommended values for each axis.

(Parameters to be set)			
Item name	Parameter No.	Setting value	
CUR. PI CONTROL	No.2203#2	1	
HRV3 CG MULT.	No.2334	150	
PI CONTROL	No.2003	1	
HIGH CYCLE PROP	No.2017#7	1	
LATEST SPEED FB	No.2006#4	1	
VG DOWN AT STOP	No.2016#3	1	
STOP LEVEL	No.2119	2 / detection unit (μm)	
VEL. GAIN	No.2021	100	
TCMD FILTER	No.2067	1166	
Item name	Parameter No.	Setting value	
-----------------	---------------	-------------------------	
CUT/RPD VG SW	No.2202#1	1	
VG MULT FOR CUT	No.2107	150	
HRV3 VG MULT.	No.2335	200	
POSITION GAIN	No.1825	5000	
FF VALID	No.2005#1	M series:1, T series :0	
RAPID FF VALID	No.1800#3	0	
ADV. FF COEFF.	No.2092	10000	
VEL. FF COEFF.	No.2069	50	
BL COMP.	No.1851	1	
FULL BL COMP.	No.2006#0	Full-closed system: 1	
		Semi-closed system: 0	
BL ACC. VALID	No.2003#5	1	
BL ACC. STOP	No.2009#7	1	
BL ACC IN CUT 1	No.2009#6	1	
BL ACC IN CUT 2	No.2223#7	1	
2 STAGE BL ACC.	No.2015#6	0	
BL ACC. VAL.	No.2048	50	
BL ACC STOP VAL	No.2082	5 / detection unit (µm)	
BL ACC. TIME	No.2071	20	

2.1.4.4 PARAMETER SETTING SUPPORT screen (SERVO GAIN TUNING)

On the PARAMETER SETTING SUPPORT screen, select "SERVO GAIN TUNING ". The SERVO GAIN TUNING screen appears.

This screen shows the value set for the velocity control gain for each axis and the automatic adjustment status. Select soft key [ALL_AX] to start velocity gain adjustment sequentially from the axis displayed on the top row.

When the adjustment is completed, "TUN. FINISH " is displayed under TUN. STATUS.

sv.	GAIN TUN.	(AUTO)		00	000 N0000	0	SV.GA	IN TUN.	(AUTO)		00	000 N0000	00
X Y Z	VELOCITY GAIN 100% 100%	CUT OVR 0% 0%	H. SP HRV 0% 0%	VEL. TUN.	GAIN STATUS		V G X Y Z	ELOCITY AIN 240% 155% 100%	CUT OVR 200% 200% 200%	H. SP HRV 200% 200%	VEL. TUN. TUN. TUN. TUN.	GAIN STATUS FINISH FINISH FINISH	
A) MD	[**** **	* ***/	15:	32:54	The day of the second s		A)^ MDI	**** **	* * *** <u> </u>	15:	34:15		
	LL AX SEL	AX			MANUAL	+	(ALL	AX SEL	AX			MANUAL	+

Fig. 2.1.4.4 (a) 0*i*-D PARAMETER SETTING SUPPORT screen (SERVO GAIN TUNING)

You can also select soft key [SEL_AX] to perform the adjustment for an axis at a time.

NOTE

For details of the PARAMETER SETTING SUPPORT screen of the Series 0*i*-D, refer to "FANUC Series 0*i*/0*i* Mate- MODEL D START-UP MANUAL (B-64304EN-3)".

2.1.5 Setting Servo Parameters when a Separate Detector for the Serial Interface is Used

(1) Overview

This subsection describes the setting of servo parameters for using a separate detector of serial output type. Perform parameter setting as described below according to the classification (model and configuration) of the serial detector used.

(2) Series and editions of applicable servo software

CNC		Servo software	Bemerke
CNC	Series Edition		Remarks
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions	
Power Motion <i>i</i> -A			
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	A(01) and subsequent editions	
	90E1	01.0 and subsequent editions	
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	A(01) and subsequent editions	HRV4
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions	
	90C8	A(01) and subsequent editions	
	90E5	A(01) and subsequent editions	
	90E8	A(01) and subsequent editions	

(3) Classification of serial detectors and usable detector examples

Usable separate detectors for the serial interface are classified into six major types as shown below. Note that parameter settings vary with these types.

(a) Linear encoder (serial output type)

	Minimum resolution (um)	Madal	Baakun
	winning resolution (µm)	woder	Баскир
Mitutoyo	20/4096	AT555	
	0.05	AT353, AT553	Not required
	0.1	ST753	
HEIDENHAIN	0.05(0.01)	LC193F, LC493F	Not required
	0.01(0.05)	LC195F, LC495F	Not required
	0.0125 (0.00125)*		
Magnescale	0.01	SR87, SR77	Not required

(*) Indicates the resolution when the αi interface is used. The software editions usable for the αi interface are Series 90G0/19.0 and subsequent editions.

(b) Linear encoder (analog output type) + high-resolution serial output circuit

	Signal pitch (µm)	Model	Backup
Mitutoyo	20	AT402E	Not allowed
HEIDENHAIN	20	LS487(C), LS187(C)	Not allowed
	4	LF485, LF185	
Renishaw	20	RG2	Not allowed
	40	RG4	

(c) Rotary encoder (serial output type)

	Number of counts/rev [*]	Model	Backup
FANUC	2 ²⁰ pulses	αA1000S	Required
HEIDENHAIN	2 ²³ pulses 2 ²⁷ pulses	RCN223F RCN227F,RCN727F RCN827F	Not required
Mitsubishi Heavy Industries	2 ²³ pulses	MPRZ + ADB20J70	Not required

	Number of counts/rev [*]	Model	Backup
Magnescale	2 ²³ pulses	RU77-4096GA	Not required
Renishaw	2 ²³ pulses, 2 ²⁷ pulses	RESOLUTE	Not required

(*) The number of counts of a rotary encoder is the number of counts by the encoder itself. For the FANUC systems, however, set parameters with regarding the number of pulses/rev as follows:

One million pulses/rev for 2^{20} counts/rev

Eight million pulses/rev for 2²³ counts/rev

Eight million pulses/rev for 2^{27} counts/rev

(d) Rotary encoder (analog output type) + interpolation circuit supplied by a vendor other than FANUC

	Number of		Dealers			
	counts/rev [*]	Signal interval (λ) Encoder		Interpolation circuit	васкир	
HEIDENHAIN	2 ²⁷ pulses	32768	ERA4280		Not allowed	
	2 ²⁷ pulses	16384	ERA4280,			
	2 ²⁷ pulses	8192	ERA4480			
	2 ²⁶ pulses	4096	ERA4480,			
	2 ²⁵ pulses	2048	ERA4880			
	2 ²⁴ pulses	1024	ERA4880	EID 1392F		
			ERM280			
			ERM280			

(*) For the FANUC systems, set parameters with regarding eight million pulses/rev.

(e) Non-binary encoder + position detection circuit for a synchronous built-in servo motor

	Signal interval (λ)/rev	Encoder	Backup
FANUC	768	α <i>i</i> CZ 768A	Not allowed
HEIDENHAIN	12000, 20000, 20000, 40000, 52000	ERN4280	Not allowed
	6000, 10000, 14000, 20000, 26000	ERN4480	
	3000, 5000, 7000, 10000, 13000	ERN4880	

(4) Setting parameters

Set the following parameters according to the type of the detector (described in the previous item).

(a) Parameter setting for a linear encoder (serial output type) (1/2)

(Parameter setting method)

In addition to the conventional settings for a separate detector (bit 1 of parameter No. 1815 and FSSB), note the following parameters:

[Flexible feed gear]

Parameter Nos. 2084 and 2085 Flexible feed gear (N/M) = Minimum resolution of detector $[\mu m]$ / controller detection unit $[\mu m]$

[Number of position pulses]

Parameter No. 2024 Number of position pulses = Amount of movement per motor revolution [mm] / detection unit of the sensor [mm]

* If the result of the above calculation does not fall in the setting range (0 to 32767) for the number of position pulses, use "position feedback pulse conversion coefficient" to specify the number of position pulses according to the following procedure. Number of position pulses to be set = $A \times B$

Select B so that A is within 32767. Then, set the following:

No.2024 = A: Position pulses parameter (32767 or less) No.2185 = B: Position pulses conversion coefficient parameter

(Example of parameter setting)

[System configuration]

- A linear encoder with a minimum resolution of $0.1 \ \mu m$ is used.
- The least input increment of the controller is 1 μ m.
- The amount of movement per motor revolution is 16 mm.

[Parameter setting]

- To enable a separate detector, set bit 1 of parameter No. 1815 to 1.
- Calculate the parameters for the flexible feed gear. Because flexible feed gear $(N/M) = 0.1 \ \mu m/1 \ \mu m = 1/10$: No. 2084 = 1 and No. 2085 = 10
- Calculate the number of position pulses. Number of position pulses = 16 mm/0.0001mm = 160000 Because this result does not fall in the setting range (0 to 32767), set A and B, respectively, with the "number of position pulses" and "position pulses conversion coefficient" by assuming: 160,000 = 10,000 × 16 → A = 10,000 and B = 16 No.2024 = 10,000, No.2185 = 16

(a) Parameter setting for a linear encoder (serial output type and αi interface) (2/2)

When linear encoder LC195F or LC495F manufactured by HEIDENHAIN is used with a 30*i*-B Series CNC, the minimum resolution can be extended.

(Series and editions of applicable servo software)

<u>enc</u>		Servo software	Domorko	
CNC	Series	Edition	Remarks	
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	19.0 and subsequent editions		
Power Motion <i>i</i> -A				

(Parameter setting method)

		#7	#6	#5	#4	#3	#2	#1	#0
2437					AILIN				
All DI(#4) Decreting I C105E on I C405E the minimum model time of the costs in									

AILIN(#4) By using LC195F or LC495F, the minimum resolution of the scale is: 0: Not extended.

1: Extended.

NOTE

1 Even when this function bit is set, the resolution used for setting the number of position pulses, flexible feed gear, and other items is $0.05 \ \mu m/0.01 \ \mu m$. If you want to use the minimum resolution of the detector as the detection unit, set AILIN to 1 and also set the flexible feed gear as listed below.

Minimum resolution setting	Minimum resolution of the detector (*)	FFG setting to use the minimum resolution of the detector as the detection unit
0.05µm	0.0125μm	4/1
0.01µm	0.00125µm	8/1

- 2 If bit 4 of parameter No. 2437 is set to 1 on hardware which does not support this function, an invalid parameter alarm (detail No. 4374) is issued.
- 3 When using this function bit, set bit 0 of parameter No. 2274 to 0. If this bit is set to 1, an invalid parameter alarm (detail No. 4374) is issued.
- 4 If this parameter is changed, the CNC must be switched off and on again.

(b) Parameter setting for a linear encoder (analog output type) + high-resolution serial conversion circuit

(Parameter setting method)

In addition to the settings for a separate detector (bit 1 of parameter No. 1815 and FSSB), note the following parameters:

First, check the type of the high-resolution serial conversion circuit to be coupled to the linear encoder, and then determine the setting of the following function bit. [Function bit]

Circuit Specification Interpolation magnification HP2048 High-resolution serial output circuit A860-0333-T501 512 0 High-resolution serial output circuit H A860-0333-T701 2048 1 High-resolution serial output circuit C A860-0333-T801 2048 1

	#7	#6	#5	#4	#3	#2	#1	#0
2274								HP2048
		·	• •	,	(1 * 1)		•	

HP2048(#0) The 2048-magnification interpolation circuit (high-resolution serial output circuit H or C) is:

- 0: Not to be used
- 1: To be used

NOTE

- 1 When high-resolution serial output circuit H is used, set the setting pin SW3 inside the circuit to "Setting B" usually.
- 2 If this bit is specified, the minimum resolution setting of the detector is assumed to be:

Encoder signal pitch/512 [µm]

If the minimum resolution (signal pitch/2048 [μ m]) is necessary as the detection unit, specify:

Flexible feed gear = 4/1

- 3 When high-resolution serial output circuit H is used, and the input frequency 750 kHz needs to be supported, set the following:
 - Set the setting pin SW3 to "Setting A".
 - Set the bit 0 (HP2048) of parameter No.2274 to 1.
 - Set the minimum resolution of the detector as: Encoder signal pitch/128 [μm] (Related report: TMS03/16E)
- When high-resolution serial output circuit C is used, no function is available which can change an interpolation magnification according to a set-up pin. (Fixed at a magnification of 2048)
 High-resolution serial output circuit C is connected to the scale with an absolute
 - address origin.

[Minimum resolution of the detector]

In the following calculation of a flexible feed gear and the number of position pulses, the minimum detector resolution to be used is:

(Linear encoder signal pitch/512 [µm])

(Specifying the above function bit appropriately makes it unnecessary to take the difference in the interpolation magnification among the high-resolution serial output circuits into account. So always use 512 for calculations.)

[Flexible feed gear]

Parameters Nos. 2084 and 2085 Flexible feed gear (N/M) = minimum resolution of the detector $[\mu m]$ /detection unit of controller $[\mu m]$

[Number of position pulses]

Parameter No. 2024

Number of position pulses =

Amount of movement per motor revolution [mm] / minimum resolution of the detector [mm]

* If the result of the above calculation does not fall in the setting range (0 to 32767) for the number of position pulses, use "position feedback pulse conversion coefficient" to specify the number of position pulses according to the following procedure. Number of position pulses to be set = $A \times B$

Select B so that A is within 32767. Then, set the following:

No.2024 = A: Position pulses parameter (32767 or less)

No.2185 = B: Position pulses conversion coefficient parameter

(Example of parameter setting)

[System configuration]

- A linear encoder with a signal pitch of 20 μ m is used.
- The linear encoder is coupled with high-resolution serial output circuit H.
- The least input increment of the controller is 1 μ m.
- The amount of movement per motor revolution is 16 mm.

[Parameter setting]

- To enable a separate detector, set bit 1 of parameter No. 1815 to 1.
- To use high-resolution serial output circuit H, set bit 0 of parameter No. 2274 to 1. Minimum resolution of the detector = $20 \ \mu m/512 = 0.0390625 \ \mu m$
- Calculate the parameters for the flexible feed gear. Because flexible feed gear (N/M)=(20/512µm)/1µm=5/128 No.2084=5, No.2085=128
- Calculate the number of position pulses. Number of position pulses = 16 mm/(20/512µm) = 409,600 Because this result does not fall in the setting range (0 to 32767), set A and B, respectively, with the "number of position pulses" and "position pulses conversion coefficient" by assuming: 409,600 = 25,600 × 16 → A = 25,600, B = 16 No.2024 = 25,600, No.2185 = 16

(c) Parameter setting for a rotary encoder (serial output type) (1/2)

For a serial output rotary encoder whose number of pulses is 2^{20} pulses, set parameters with the number of position feedback pulses assumed to be 1 million pulses per revolution.

(Parameter setting method)

In addition to the settings for a separate detector (bit 1 of parameter No. 1815 and FSSB), note the following parameters:

[Flexible feed gear]

Parameters Nos. 2084 and 2085 Flexible feed gear (N/M) = (Amount of table movement [deg] per detector revolution) / (detection unit [deg]) / 1,000,000

[Number of position pulses]

Parameter No. 2024

Number of position pulses = $12500 \times (motor-to-table reduction ratio)$

If the result of the above calculation does not fall in the setting range (0 to 32767) for the number of position pulses, use "position feedback pulse conversion coefficient" to specify the number of position pulses according to the following procedure.
 Number of position pulses to be set = A × B

Select B so that A is within 32767. Then, set the following:

No.2024 = A: Position pulses parameter (32767 or less)

No.2185 = B: Position pulses conversion coefficient parameter

(Example of parameter setting)

[System configuration]

- The least input increment of the controller is 1/1000 degrees.
- The amount of movement per motor revolution is 180 degrees (reduction ratio: 1/2)
- Table-to-separate-encoder reduction ratio = 1/1

[Parameter setting]

- To enable a separate detector, set bit 1 of parameter No. 1815 to 1.
- Calculate the parameters for the flexible feed gear. Because flexible feed gear (N/M)=360 degrees /0.001 degrees /1,000,000 =36/100 No.2084=36, No.2085=100
- Calculate the number of position pulses. Because number of position pulses = 12500 × (1/2)=6250 No.2024=6250

(c) Parameter setting for a rotary encoder (serial output type) (2/2)

For a rotary encoder for which parameters are set with the number of position feedback pulses assumed to be eight million pulses per revolution, the following settings are required.

(Series and editions of applicable servo software)

For a serial output rotary encoder whose number of counts is 2^{27} pulses, a high-resolution interface with eight million pulses assumed for setting parameters is used regardless of the number of counts by the rotary encoder. Servo control software supporting this interface is required.

CNC		Servo software	Bomorko
CN	Series	Edition	Remarks
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions	
Power Motion <i>i</i> -A			
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	J(10) and subsequent editions	
	90E1	01.0 and subsequent editions	
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	J(10) and subsequent editions	HRV4
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions	
	90C8	A(01) and subsequent editions	
	90E5	A(01) and subsequent editions	
	90E8	A(01) and subsequent editions	

[Series and editions applicable to high-resolution interfaces]

[Rotary encoders using a high-resolution interface]

• HEIDENHAIN: RCN227F, RCN727F, RCN827F

(Parameter setting method)

In addition to the settings for a separate detector (bit 1 of parameter No. 1815 and FSSB), note the following parameters:

B-65270EN/08

[Function bit] Set the following function bit to 1.

2275	#7	#6	#5	#4	#3	#2	#1 RCNCLR	#0			
800PLS (#0)	A rotary en	coder with	eight millio	n pulses pe	r revolution	n is:	RONCER	000123			
	1: To be	t: To be used.									
RCNCLR (#1)	1 he number 1° To be	The number of revolution is:									
	This function	on bit is t	o be set in	n combinat	ion with t	he number	of data m	ask digits,			
	described b	lescribed below.									
2394			1	Number of da	ta mask digit	s					
[Settings]	8 (For a rota	ary encode	with eight	million pu	ses per rev	olution)	. 1	.1 1			
	The value to detectors re	o be set in quire cleari	this parame	eter depend ed data	s on the de	tector. At p	resent, only	the above			
	This parame	eter is to be	set in com	bination wi	th RCNCL	R, described	d above.				
	NOTE										
	The	speed da	ta of the	RCN223F	. 227F. 7	27F. or 8	27F is				
	mair	ntained w	hile the po	ower to th	e separa	te detecto	or interface	e unit			
	is on	. The dat	a, howev	er, is clea	red wher	the unit i	s turned o	off.			
	Sinc the r	e the spe hower is t	ed data b urned off	it is nece	ssarv to	ineo oepe make a se	enaing on etting to c	wnere lear			
	the s	speed dat	a. In addi	tion, for the	nis reaso	n, the CN	223F, 227	Ϋ́F,			
	727F	, and 82	7F canno	t be used	with a lin	ear axis.					
	The followi eight millio	ng explain n pulses pe	s how to ca r revolutior	lculate the particulate the particulate the particulate the particulation of the particulatio	parameter v	values when	a rotary er	coder with			
	[Flexible feed gear] Parameters Nos. Nos. 2084 and 2085 Flexible feed gear (N/M) = (Amount of table movement [deg] per detector revolution) / (detection unit [deg]) / 8,000,000										
	When the n per revoluti 1/1 or great feed gear is	umber of co on. So, for ter to set th set to 8/1,	the RCN72 the detection the detection	, it correspond 27F with 2^2 1 unit to $1/8$ 1 unit is 64	nds to eigh ⁷ counts, tl ,000,000 r ,000,000 p	t million pone flexible f evolutions outside f evolutions outside per re-	osition feedl feed gear ca for less. (If t volution.)	back pulses on be set to the flexible			
	[Number of	position p	ulses]								
	Parameter N	No. 2024	$1_{000} - 100$	$\Omega(n)$	to table re	duction rati	2)				
	Nulliber of	position pu	1505 - 100,0	00×(1110101			.0)				
	 If the result of the above calculation does not fall in the setting range (0 to 32767) for the number of position pulses, use "position feedback pulse conversion coefficient" to specify the number of position pulses according to the following procedure. Number of position pulses to be set = A × B 										
	No202	A = A: Pos $B = B \cdot Pos$	ition pulses	s parameter	(32767 or coefficier	less) It parameter					
			- r			r					

[Reference counter capacity]

Parameter No. 1821

Specify the number of feedback pulses per table turn (detection unit).

* If bit 0 of parameter No. 2275 is 0, specify the number of pulses per table turn divided by 8 as the reference counter capacity. In this case, eight grid points occur per table turn.

(Example of parameter setting)

[System configuration]

- The rotary encoder RCN223F made by HEIDENHAIN is used.
- The least input increment of the controller is 1/10,000 degrees.
- The amount of movement per motor revolution is 180 degrees (reduction ratio: 1/2)
- Table-to-separate-encoder reduction ratio = 1/1

[Parameter setting]

- To enable a separate detector, set bit 1 of parameter No. 1815 to 1.
- To use the detector RCN223, set bit 0 of parameter No. 2275 to 1, bit 1 of this parameter to 1, and parameter No. 2394 to 8.
- Calculate the parameters for the flexible feed gear. Because flexible feed gear (N/M) = (360 degrees /0.0001 degrees)/8,000,000=9/20 No.2084=9, No.2085=20
- Calculate the number of position pulses. Number of position pulses = 100,000 × (1/2) = 50,000 Because this result does not fall in the setting range (0 to 32767), set A and B, respectively, with the "number of position pulses" and "position pulses conversion coefficient" by assuming: 50,000 = 12,500 × 4 → A = 12,500, B = 4 No.2024 = 12,500, No.2185 = 4
- Calculate the reference counter capacity. Reference counter capacity = 360 degrees/0.0001 degrees = 3,600,000

(About speed limit)

When a rotary encoder with eight million pulses per revolution is used as a separate detector, the maximum permissible speed that can be controlled may be 937 min⁻¹ (7500 min⁻¹ for the Series 30i-B). ^(*) (See Item (2) in the Appendix E.)

(*) The above maximum speed does not include hardware limitations. For the maximum permissible speed of the detector itself, refer to the specifications of the detector.

(Notes on a rotary encoder with no speed data)

For absolute position detectors with no speed data (data to be counted by 1 for every revolution of the detector) including those listed below, if parameters are not set correctly, the machine coordinates are not established correctly at power-on.

- HEIDENHAIN : RCN223F,RCN727F and so on
- Magnescale : RU77 and so on
- Mitsubishi Heavy Industries : MPRZ series and so on
- Renishaw : RESOLUTE (rotary encoder) and so on
- * For the detector you use, be sure to contact the manufacturer of the detector.

According to the axis type you use, set the following parameters.

2. SETTING PARAMETERS OF *aiS/aiF/βiS/βiF* SERIES SERVO MOTOR

1. Rotary axis (A-type)

	Parameter No.								
	1815#1	1815#6	1815#0	1817#3	1868	2275#1	2394		
Semi-closed mode	0	1	0	0	0	*1	*1		
Full-closed mode	1	1	0	0	0	*1	*1		

2. Rotary axis (B-type)

		Parameter No.								
	1815#1	1815#6	1815#0	1817#3	1868	2275#1	2394			
Semi-closed mode	0	0	*2	*2	*2	*1	*1			
Full-closed mode	1	0	*2	*2	*2	*1	*1			

- *1) Set a value appropriate for the detector to be used. For details, see the item described above (Parameter setting) and refer to "CORRESPONDENCE OF ROTARY SCALE WITHOUT ROTARY DATA" in "FANUC Series 30*i*/31*i*/32*i*-MODEL B CONNECTION MANUAL (FUNCTION) (B-64483EN-1)".
- *2) Set a value appropriate for the movable range of the rotary axis. For details, refer to "CORRESPONDENCE OF ROTARY SCALE WITHOUT ROTARY DATA" in "FANUC Series 30*i*/31*i*/32*i*-MODEL B CONNECTION MANUAL (FUNCTION) (B-64483EN-1)".

NOTE

If you want to use a detector with no speed data for a rotary encoder supplied by a vendor other than FANUC on a rotary axis (A-type), set bit 6 of parameter No. 1815 (RONx) to 1.

For other cases, set this bit to 0. If the correct setting is not made, the machine coordinates are not established correctly at power-on. (See FANUC Series 30*i*/31*i*/32*i*-MODEL B CONNECTION MANUAL (FUNCTION) (B-64483EN-1).)

(d) Parameter setting for a rotary encoder (analog output type) + interpolation circuit supplied by a vendor other than FANUC

For a rotary encoder for which parameters are set with the number of position feedback pulses assumed to be eight million pulses per revolution, the following settings are required.

(Series and editions of applicable servo software)

For a analog output rotary encoder whose number of counts is 2^{24} pulses or larger, a high-resolution interface with eight million pulses assumed for setting parameters is used regardless of the number of counts by the rotary encoder. Servo control software supporting this interface is required.

		Servo software	Domoska	
CNC	Series	Edition	Remarks	
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions		
Power Motion <i>i</i> -A				
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	J(10) and subsequent editions		
	90E1	01.0 and subsequent editions		
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	J(10) and subsequent editions	HRV4	
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions		
	90C8	A(01) and subsequent editions		
	90E5	A(01) and subsequent editions		
	90E8	A(01) and subsequent editions		

[Series and editions applicable to high-resolution interfaces]

[Rotary encoders using a high-resolution interface]

• HEIDENHAIN: Rotary encodes (such as the ERA4280, ERA4480, ERA4880, and ERA280) using a HEIDENHAIN interpolation circuit such as the EIB192F whose number of counts is at least 2²⁴

When a high-resolution interface is used, the number of counts is assumed to be eight million pulses per revolution. For details of parameter setting, see "(c) Parameter setting for a rotary encoder (serial output type (2/2)".

(e) Parameter setting for a rotary encoder (analog output type) + high-resolution serial output circuit

(Parameter setting method)

In addition to the settings for a separate detector (bit 1 of parameter No. 1815 and FSSB), note the following parameters:

First, check the type of the FANUC high-resolution serial output circuit to be coupled to the rotary encoder (analog type), and then determine the setting of the following function bit.

[Function bit]

Circuit	Specification	Interpolation magnification	HP2048
High-resolution serial output circuit	A860-0333-T501	512	0
High-resolution serial output circuit H	A860-0333-T701	2048	1
High-resolution serial output circuit C	A860-0333-T801	2048	1

		#7	#6	#5	#4	#3	#2	#1	#0
2274									HP2048
1102040(44	\sim	Th. 2040	····:		4	(1.1.1	- <u>4</u> :		(0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

HP2048(#0) The 2048-magnification interpolation circuit (high-resolution serial output circuit H or C) is:

- 0: Not to be used
- 1: To be used

NOTE

- 1 For a configuration of a rotary encoder (analog output type) and high-resolution serial output circuit, when an input frequency of 750 kHz needs to be supported, make the following settings:
 - Set the setting pin SW3 to "Setting A".
 - Set the bit 0 (HP2048) of parameter No.2274 to 1.
 - Set the value $\lambda/4$ for AMR conversion coefficient 1.
- 2 When high-resolution serial output circuit C is used, no function is available which can change an interpolation magnification according to a set-up pin. (Fixed at a magnification of 2048) High-resolution serial output circuit C is connected to the scale with an absolution.

High-resolution serial output circuit C is connected to the scale with an absolute address origin.

(Example of parameter setting)

- The non-binary encoder ERA4480 manufactured by HEIDENHAIN is used.
- Signal interval (λ /rev) is 60,000.
- The interpolation magnification of the high-resolution serial output circuit is 2048.
- The least input increment of the controller is 1/1000 degrees.
- The amount of movement per motor revolution is 180 degrees. (Reduction ratio: 1/2)
- Table-to-separate-encoder reduction ratio = 1/1

[Parameter setting]

- To enable a separate detector, set bit 1 of parameter No. 1815 to 1.
- The interpolation magnification of the high-resolution serial output circuit is 2048, so set bit 0 of parameter No. 2274 to 1.
- Calculate the parameters for the flexible feed gear. Because flexible feed gear (N/M)= (360 degrees /0.001 degrees)/(60,000×512)=15/128 No.2084 = 151, No.2085 = 128
- Calculate the number of position pulses. Number of position pulses = 60,000× 512/2 = 1,536,000 Because this result does not fall in the setting range (0 to 32767), set A and B, respectively, with the "number of position pulses" and "position pulses conversion coefficient" by assuming: 1,536,000 = 60,000 × 256 → A = 60,000, B = 256 No.2024=60,000, No.2185=256
- Calculate the reference counter capacity. Reference counter capacity = 360 degrees/0.0001 degrees = 3,600,000

2.1.6 Setting Servo Parameters when an Analog Input Separate Detector Interface Unit is Used

(1) Overview

An analog input separate detector interface unit (analog SDU) can be connected directly to an encoder having an analog output signal of 1 Vp-p. This subsection explains parameter settings to be made when this unit is connected to a separate detector. After performing the initialization procedure (full-closed loop) described in Subsection 2.1.3, change the setting described below according to the signal pitch of the detector.

Configuration where analog SDU is used

Fig. 2.1.6 (a) Configuration where an analog SDU is used

(2) Series and editions of applicable servo software

CNC		Servo software	Remarks
	Series	Edition	
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions	
Power Motion <i>i</i> -A			
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	J(10) and subsequent editions	
	90E1	01.0 and subsequent editions	
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	J(10) and subsequent editions	HRV4
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions	
	90C8	A(01) and subsequent editions	
	90E5	A(01) and subsequent editions	
	90E8	A(01) and subsequent editions	

(3) Setting parameters

After performing the initialization (full-closed loop) described in Subsection 2.1.3, change the following setting according to the signal pitch of the detector:

[Setting the flexible feed gear]

2084	Numerator of flexible feed gear							
2085	Denominator of flexible feed gear							
	Set the flexible feed gear according to the following equation.							
	(Equation for parameter calculation)							
	Flexible feed gear (N/M) = $\frac{\text{Detector signal pitch [µm]/512}}{\text{Detection unit of controller [µm]}}$							
[Setting the nu	mber of position pulses]							
2024	Number of position pulses (PPLS)							
	Set the number of position pulses according to the following equation:							
	(Equation for parameter calculation)							
	Number of position pulses = Amount of movement per motor revolution [mm] Detector signal pitch [mm]/512							
	If the calculation result is greater than 32767, use the following position pulse conversion coefficient (PSMPYL) to obtain the parameter setting (PPLS).							

2. SETTING PARAMETERS OF αiS/αiF/βiS/βiF SERIES SERVO MOTOR

B-65270EN/08

2185

Position pulse conversion coefficient (PSMPYL)

This parameter is used when the calculation result of the number of position pulses is greater than 32767. (Equation for parameter calculation)

Set this peremeter so that the following equation is

Set this parameter so that the following equation is satisfied:

Number of position pulses = $PPLS \times PSMPYL$

 $(\rightarrow$ See Supplementary 3 in Subsection 2.1.9.)

(Example of parameter setting)

[System configuration]

- The Series 30*i* is used.
- A linear scale with a signal pitch of 20 µm is used.
- The least input increment of the controller is $1 \mu m$.
- The amount of movement per motor revolution is 16 mm.

[Parameter setting]

- To enable a separate detector, set bit 1 of parameter No. 1815 to 1.
- Calculate the parameters for the flexible feed gear. Because flexible feed gear (N/M)=(20/512µm)/1µm=5/128 No.2084=5, No.2085=128
- Calculate the number of position pulses. Number of position pulses = 16 mm/(0.02 mm/512)= 409,600 Because this result does not fall in the setting range (0 to 32767), set A and B, respectively, with the "number of position pulses" and "position pulses conversion coefficient" by assuming: 409,600 = 25,600 × 16 → A = 25,600, B = 16 No.2024 = 25,600, No.2185 = 16

2.1.7 Setting Parameters when an *αi*CZ Sensor is Used

(1) Overview

The *ai*CZ sensors are classified into two major groups according to their application as follows:

- <1>Used as a built-in detector for a synchronous built-in servo motor ($\alpha i CZ ***A$)
- <2> Used as a separate detector ($\alpha i CZ ***AS$)

When the differences in resolution are considered, six types of sensors are available as indicated below.

For built-in detector (A860-2162-Txxx)	For separate detector (A860-2164-Txxx)	Signal interval	Number of pulses at setting
α <i>i</i> CZ 512A	α <i>i</i> CZ 512AS	512 λ /rev	500,000pulse/rev
α <i>i</i> CZ 768A	αiCZ 768AS	768 λ /rev	750,000pulse/rev
α <i>i</i> CZ 1024A	α <i>i</i> CZ 1024AS	1024 λ /rev	1,000,000pulse/rev

NOTE

When αi CZ 768A/AS is used as a built-in detector with a synchronous built-in servo motor, the sensor can be used only for the purpose of finite rotation (within ± 1 revolution).

(2) Series and editions of applicable servo software

When the αiCZ 768A is used as a built-in detector with a synchronous built-in servo motor ((3)-(a)), the servo software indicated below is needed.

CNC		Servo software	Bomorko
CNC	Series Edition		Remarks
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions	
Power Motion <i>i</i> -A			
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	J(10) and subsequent editions	
	90E1	01.0 and subsequent editions	
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	J(10) and subsequent editions	HRV4
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions	
	90C8	A(01) and subsequent editions	
	90E5	A(01) and subsequent editions	
	90E8	A(01) and subsequent editions	

(3) Setting parameters

(a) Used as the detector for a synchronous built-in servo motor)

If you want to use this sensor as the detector for a synchronous built-in servo motor, see Subsection 3.2.1, "Procedure for Setting the Initial Parameters of Synchronous Built-in Servo Motors".

(b) Used as a separate detector

After performing the initialization procedure (full-closed loop) described in Subsection 2.1.3, change the settings described below according to the signal pitch of the detector.

[Setting flexible feed gear]

2084		Flexible feed gear (numerator) (N)
2085		Flexible feed gear (denominator) (M)
	Detector	Flexible feed gear
	αiCZ 512AS	Amount of movement per motor revolution [deg]/ detection unit [deg] 500.000
	αiCZ 768AS	Amount of movement per motor revolution [deg]/ detection unit [deg] 750,000
	α <i>i</i> CZ 1024AS	Amount of movement per motor revolution [deg]/ detection unit [deg] 1,000,000

[Setting number of velocity pulses]

2023

Set the number of velocity pulses to 8192.

[Setting number of position pulses]

2024

Number of position pulses (PPLS)							
Set a value listed in the following table according to the detector used.							
Detector	Number of position pulses						
α <i>i</i> CZ 512AS	$6250 \times (gear reduction ratio from the motor to table)$						
α <i>i</i> CZ 768AS	$9375 \times (gear reduction ratio from the motor to table)$						
α <i>i</i> CZ 1024AS	$12500 \times (gear reduction ratio from the motor to table)$						

Number of velocity pulses (PULCO)

If the calculation result is greater than 32767, use the following position pulse conversion coefficient (PSMPYL) to obtain the parameter value (PPLS).

2. SETTING PARAMETERS OF αiS/αiF/βiS/βiF SERIES SERVO MOTOR

2185

Conversion coefficient for the number of position feedback pulses (PSMPYL)

This parameter is used when the calculated number of position pulses is greater than 32767.

(Equation for parameter calculation)

Set this parameter so that the following equation is satisfied:

Number of position pulses = $PPLS \times PSMPYL$

 $(\rightarrow$ See Supplementary 3 in Subsection 2.1.9.)

[Setting reference counter capacity]

1821

	Reference counter capacity							
Set one of the following values according to the detector.								
Detector	Reference counter capacity							
αiCZ 512AS	Set the number of pulses per revolution of the detector installed separately (detection unit) or a value obtained by dividing that number by an integer.							
αiCZ 768AS	Set the number of pulses per 120-degree revolution (one-third revolution) of the detector installed separately (detection unit) or a value obtained by dividing that number by an integer.							
αiCZ 1024AS	Set the number of pulses per revolution of the detector installed separately (detection unit) or a value obtained by dividing that number by an integer.							

(Example of parameter setting)

[System configuration]

- The Series 30*i* is used.
- The detector used is the $\alpha iCZ1024AS$
- The least input increment of the controller is 1/1000 deg.
- Gear ratio 1:1

[Parameter setting]

Flexible feed gear (N/M) = 360,000/1,000,000 = 9/25, so parameter No. 2084 = 9, and parameter No. 2085 = 25 Number of position pulses = 12500 Reference counter capacity = 360,000

2.1.8 Setting Parameters When an Acceleration Sensor or Temperature Detection Circuit Is Used

(1) Overview

The flow indicated below is used to make a connection and setting for using an acceleration sensor (αi GS0.1-3D) or temperature detection circuit.

Fig. 2.1.8 (b) Setting procedure for an acceleration sensor or temperature detection circuit

(2) Series and editions of applicable servo software

• Acceleration sensor and temperature detection circuit

		Servo software	Demerke		
CNC	Series	Edition	Remarks		
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	09.0 and subsequent editions			
Power Motion <i>i</i> -A					
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	P(16) and subsequent editions			
	90E1	01.0 and subsequent editions			
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	P(16) and subsequent editions	HRV4		
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions			
	90C8	A(01) and subsequent editions			
	90E5	A(01) and subsequent editions			
	90E8	A(01) and subsequent editions			

(3) Setting method

(a) Connection of an acceleration sensor or temperature detection circuit

An acceleration sensor or temperature detection circuit is connected to a separate detector interface unit. From one separate detector interface unit, only one data item can be read per axis. So, when an additional acceleration sensor or temperature detection circuit is to be used in a full-closed system, one more separate detector interface unit is required in addition to the separate detector interface unit used for a separate position detector.

2. SETTING PARAMETERS OF *aiS/aiF/βiS/βiF* SERIES SERVO MOTOR

• When an acceleration sensor or temperature detection circuit is to be added to an axis of a semi-closed system

Add a separate detector interface unit for an acceleration sensor or temperature detection circuit.

• When an acceleration sensor or temperature detection circuit is to be added to an axis of a full-closed system

Add a separate detector interface unit for an acceleration sensor or temperature detection circuit

NOTE

- 1 When an acceleration sensor or temperature detection circuit is added to an axis of a full-closed system, the acceleration sensor may not be connected to a free connector of the separate detector interface unit to which a separate position detector is connected.
- 2 Both of the first and third separate detector interface units cannot be used with one axis. Similarly, both of the second and fourth separate detector interface units cannot be used with one axis.
- 3 For the FSSB setting, refer to the parameter manual of the CNC.

(b) Setting for enabling an acceleration sensor or temperature detection circuit <1> Setting for enabling an acceleration sensor

The setting for enabling an acceleration sensor is described below.

An acceleration sensor can detect acceleration in one of three directions.

Select and set one of the three function bits below according to the direction of acceleration to be used.

2. SETTING PARAMETERS OF $\alpha iS/\alpha iF/\beta iS/\beta iF$ SERIES SERVO MOTOR B-65270EN/08 #6 #7 #5 #4 #3 #2 #1 **#**0 ACC10N ACC2ON ACC3ON 2277 (Power-off parameter) ACC1ON(#7) Specify whether acceleration feedback in the first direction is used or not. 0: Not used 1: Used (Power-off parameter) ACC2ON(#6) Specify whether acceleration feedback in the second direction is used or not. 0: Not used 1: Used (Power-off parameter) ACC3ON(#5) Specify whether acceleration feedback in the third direction is used or not. 0: Not used 1: Used 3rd direction (+) 2nd direction (+)

1st direction (+)Fig. 2.1.8 (e) Directions in which an acceleration sensor detects acceleration

- * When the machine is accelerated in the arrow direction, positive acceleration is detected.
- * The output direction of acceleration data can be inverted. (This function is described later.)

NOTE

Acceleration feedback in one direction can be used per axis. Do not set two directions or more per axis.

Set the function bit below according to the ordinal number, counted from the CNC, of the separate detector interface unit to which an acceleration sensor is connected.

	#7	#6	#5	#4	#3	#2	#1	#0	
2278				PM2ACC					
(Power-off parameter)									
PM2ACC(#4)	0: Accele	eration sens	or data is re	ead from th	e first or thi	ird separate	detector in	terface unit	

) 0: Acceleration sensor data is read from the first or third separate detector interface unit counted from the CNC, or no acceleration sensor is used.

1: Acceleration sensor data is read from the second or fourth separate detector interface unit counted from the CNC.

To adjust the sign of acceleration feedback, observe position feedback (POSF) and acceleration feedback (ACC) with SERVO GUIDE at rapid traverse acceleration/deceleration time.

Set the sign bit ACCNEG for acceleration feedback below so that the sign of the second-order differential of position feedback (POSF indicated by Diff2(AT) operation) equals the sign of acceleration feedback (ACC).

Fig. 2.1.8 (f) Acceleration feedback

<2> Setting for enabling a temperature detection circuit

The setting for enabling a temperature detection circuit is described below.

Set the function bits below according to the ordinal number, counted from the CNC, of the separate detector interface unit to which a temperature detection circuit is connected.

	#7	#6	#5	#4	#3	#2	#1	#0
2278							PM2TP	PM1TP
	(Power-off	parameter)						
PM1TP(#0)	With the fir	st or third s	eparate det	tector interf	ace unit, a	temperature	detection c	circuit is:
	0: Not us	sed	*			*		
	1: Used							
	(Power-off	parameter)						
PM2TP(#1)	With the se	cond or fou	urth separat	te detector i	nterface un	nit, a tempe	rature detec	tion circuit
	is:		-			-		
	0: Not us	sed						
	1: Used							

(c) Checking the connection of an acceleration sensor or temperature detection circuit

On diagnosis screen No. 350#2/#1 or No. 351#2/#1, check whether an acceleration sensor or temperature detection circuit is connected correctly.

PM1TMP(#2) With the first or third separate detector interface unit, a temperature detection circuit is:

- 1: Connected
- 0: Not connected

(4) Example of setting an acceleration sensor or temperature detection circuit

An example of adding an acceleration sensor (X-axis, Y-axis, Z-axis) and temperature detection circuit (X-axis) to a system with a semi-closed axis (X-axis) and two full-closed axes (Y-axis, Z-axis) is described below.

<Connection>

CNC⇔X-axis amplifier⇔Y-axis amplifier⇔Z-axis amplifier

- \Leftrightarrow Separate detector interface unit
 - (Separate detector interface units for the Y-axis and Z-axis are connected to the first and second connectors.

A temperature detection circuit for the X-axis is connected to the third connector.)

⇔ Separate detector interface unit (Acceleration sensors for the X-, Y-, and Z-axes are connected to the first, second, and third connectors.)

interface unit

Fig. 2.1.8 (g) Example of connecting a temperature detection circuit and acceleration sensors

Demonstern Ma	Description	Setting			
Parameter No.	Description	X-axis	Y-axis	Z-axis	
Bit 1 of No. 1815	Enables a separate position detector.(*1)	0	1	1	
Bits 7, 6, 5 of No. 2277	Enables an acceleration sensor (including the setting of direction).	100	010	001	
Bit 4 of No. 2278	Sets the ordinal number of the separate detector interface unit to which an acceleration sensor is connected.(*2)	1	1	1	
Bits 1, 2 of No. 2278	Sets the ordinal number of the separate detector interface unit to which a temperature detection circuit is connected.(*3)	01	00	00	

- *1 Bit 1 of No. 1815 =
 - Full-closed 1:
 - Semi-closed 0.
- *2 Bit 4 of No. 2278 =
 - An acceleration sensor is used with the second or fourth separate etector interface unit. 1:
 - An acceleration sensor is used with the first or third separate detector interface unit. 0·
- *3 Bits 1, 0 of No. 2278 =
 - 0,0: A temperature detection circuit is unused.
 - 0,1: A temperature detection circuit is used with the first or third separate detector interface unit.
 - 1,0: A temperature detection circuit is used with the second or fourth separate detector interface unit

(5) Alarms

Alarms related to an acceleration sensor

When an error is detected with an acceleration sensor, the following alarm is issued and the axis with which the alarm is issued is brought to a feed-hold stop:

DS651: Acceleration sensor error

When the CNC software does not support the display of the alarm above, the following alarm is issued and a dynamic brake stop occurs:

SV385: Serial data error (separate) or

SV447: Hardware disconnection alarm (separate)

If a separate detector and acceleration sensor are used at the same time, diagnosis screen No. 350#5 can be used to identify with which detector the alarm has been issued.

	_	#7	#6	#5	#4	#3	#2	#1	#0
Diagnosis No.350				ALMACC					

ALMACC(#5) 0: An alarm is issued with a separate detector.

1: An alarm is issued with an acceleration sensor.

Alarms related to a temperature detection circuit

When an error is detected with a temperature detection circuit, the following alarm is issued and a dynamic brake stop occurs:

SV652: Temperature sensor error

When the CNC software does not support the display of the alarm above, the following alarm is issued and a dynamic brake stop occurs:

SV385: Serial data error (separate) or

SV447: Hardware disconnection alarm (separate)

If a separate detector and temperature detection circuit are used at the same time, diagnosis screen No. 350#6 can be used to identify with which detector the alarm has been issued.

010	System software					
CNC	Series	Edition				
Series 30 <i>i</i> -A	G00C,G01C,G02C	27 and subsequent editions				
	G004,G014,G024	01 and subsequent editions				
Series 31 <i>i</i> -A5	G12,G13C	27 and subsequent editions				
	G124,G134	01 and subsequent editions				
Series 31 <i>i</i> -A	G103,G113	15 and subsequent editions				
	G104,G114	01 and subsequent editions				
Series 32i-A	G203	15 and subsequent editions				
	G204	01 and subsequent editions				
Series 0 <i>i</i> -MD	D4F1	01 and subsequent editions				
Series 0 <i>i</i> -TD	D6F1	01 and subsequent editions				
Series 0 <i>i</i> Mate-MD	D5F1	01 and subsequent editions				
Series 0 <i>i</i> Mate-TD	D7F1	01 and subsequent editions				

oches and callons of system solution support the display of damin

For the Series 30i/31i/32i/35i -B and Power Motion *i*-A, all series and editions support the display of alarms.

2.1.9 Actions for Illegal Servo Parameter Setting Alarms

(1) Overview

When a setting value is beyond an allowable range, or when an overflow occurs during internal calculation, an invalid parameter setting alarm is issued.

This section explains the procedure to output information to identify the location and the cause of an illegal servo parameter setting alarm.

(2) Series and editions of applicable servo software

CNC		Servo software	Demerika		
CNC	Series	Edition	Remarks		
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions			
Power Motion <i>i</i> -A					
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	A(01) and subsequent editions			
	90E1	01.0 and subsequent editions			
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	A(01) and subsequent editions	HRV4		
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions			
	90C8	A(01) and subsequent editions			
	90E5	A(01) and subsequent editions			
	90E8	A(01) and subsequent editions			

(3) Illegal servo parameter setting alarms that can be displayed in parameter error detail display

Illegal servo parameter setting alarms detected by the servo software can be displayed. Alarms detected by the system software cannot be displayed here.

To check whether the servo software detects an alarm, check the following:

2. SETTING PARAMETERS OF αiS/αiF/βiS/βiF SERIES SERVO MOTOR

B-65270EN/08

Whether the servo software detects an alarm can also be determined by checking bit 4 of alarm 4 on the servo tuning screen.

	#7	#6	#5	#4	#3	#2	#1	#0			
Diagnosis No.280		AXS		DIR	PLS	PLC		МОТ			
MOT(#0)	1: As the motor number in parameter No. 2020, a value not within the specifiable range is set.										
	The table given below lists the valid motor ID numbers for each series. If a number beyond the indicated range is set, an illegal servo parameter setting alarm is issued. (In this case, keep PRM = $0.$)										
	S	Moto	or ID No.								
	Series 90G	0 /03.0 and s	subsequent e		1 to 909						
	Series 90D0,90E0/B(02) and subsequent editions1 to 550 (edition 28.0 or earlier),1 to 909 (edition 29.0 or later)										
	Series 90E1 /01.0 and subsequent editions 1 to 550 (edition 04.0 or earlier 1 to 909 (edition 05.0 or later)						arlier), ater)				
	Series 90C5,90E5/A(01) and subsequent editions 1 to 550(edition D or earlier), 1 to 909(edition E or later)							lier), er)			
	Series 90C8,90E8/A(01) and subsequent editions 1 to 909										
PLC(#2)	1: As the 2023	e number o an invalid y	f velocity f	feedback pu	ilses per m	otor revolu	tion in par	ameter No.			

- PLS(#3) 1: As the number of position feedback pulses per motor revolution in parameter No. 2024, an invalid value such as a number equal to or less than 0 is set.
- DIR(#4) 1: As the motor rotation direction in parameter No. 2022, a correct value (111 or -111) is not set.
- AXS(#6) 1: Parameter No. 1023 (servo axis number) is set incorrectly. A duplicate servo axis number is set, or a value exceeding the number of controlled axes of the servo card is set.

(4) Method

When an illegal servo parameter setting alarm detected by the servo software is issued, analyze the cause of the alarm by following the procedure explained below.

When more than one alarm is issued, one of the causes of these alarms is displayed. Analyze the alarms one by one.

Procedure for displaying detail information about an illegal servo parameter setting alarm

On the diagnosis screen, search for No. 352. Check the number written in No. 352.

Analyzing illegal servo parameter setting alarms in detail

The detail alarm data basically consists of two to five digits as shown:

Location where an Cause of the alarm

alarm was caused

Upper four digits:

Indicate the location where an alarm was caused.

Table 2.1.9 lists the displayed numbers and corresponding parameter numbers.

- *1 Basically, the low-order three digits of the 4-digit parameter number indicate the location where an alarm was caused. (When an alarm is due to more than one parameter, these digits and parameter numbers do not sometimes match.)
- *2 When the digits are displayed on the diagnosis screen, 0s in high-order digits are not displayed.

Lowest digit:

Indicates the cause of an alarm.

The displayed numbers and their meanings are explained below:

- 2: The set parameter is invalid. The corresponding function does not operate.
- 3: The parameter value is beyond the setting range. Alternatively, the parameter is not set.
- 4 to 9: An overflow occurred during internal calculation.

Alarm detail No.	Parameter No.	Cause	Action
83	2008	Parameter settings related to learning control are illegal → See Supplementary 1.	Change the parameter settings so that they fall in the applicable range.
92	2009#2	A function which is not supported by the 30 <i>i</i> -B Series is used.	Set bit 2 of parameter No. 2009 to 0.
233	2023	When initialization bit 0 is set to 1, the number of velocity pulses exceeds 13100.	Correct the number of velocity pulses so that it is within 13100.
234	2023	When a DD motor is used, a value smaller than 512 is set as the number of velocity pulses.	Set 512 or a greater number as the number of velocity pulses, or disable the DD motor. No.2300#2=0 \rightarrow See Supplementary 4.
243	2024	When initialization bit 0 is set to 1, the number of position pulses exceeds 13100.	Use the conversion coefficient for the number of position feedback pulses (parameter No. 2185) to correct the number of position pulses (parameter No. 2024) so that it is within 13100. \rightarrow See Supplementary 3.
346	2034	An overflow occurred in the vibration-damping control setting.	Check whether correct values are set for the number of velocity pulses, number of position pulses, and FFG.
434 435	2043	The internal value of the velocity loop integral gain overflowed.	Decrease the value of the velocity loop integral gain parameter.
443 444 445	2044	The internal value of the velocity loop proportional gain overflowed.	Use the function (No.2200#6) for changing the internal format of the velocity loop proportional gain. Alternatively, decrease the parameter setting. \rightarrow See Supplementary 5.
474 475	2047	The internal value of the observer parameter (POA1) overflowed.	Correct the setting to $(-1) \times (\text{desired value})/10.$
523	2052	An attempt was made to use a velocity command or torque command according to the analog voltage input for a pulse input type DSA, but parameter No. 2052 is not set.	Set parameter No. 2052 (parameter for the excess speed alarm).
534 535	2053	The internal value of a parameter related to dead zone compensation overflowed.	Decrease the setting to the extent that the illegal servo parameter setting alarm is not caused.

Table 2.1.9 Detail analysis of illegal servo parameter setting alarms

2. SETTING PARAMETERS OF α*i*S/α*i*F/β*i*S/β*i*F SERIES SERVO MOTOR B-65270EN/08

Alarm detail No.	Parameter No.	Cause	Action	
544 545	2054	The internal value of a parameter related to dead zone compensation overflowed.	Decrease the setting to the extent that the illegal servo parameter setting alarm is not caused.	
686 687 688	2068	The internal value of the feed-forward coefficient overflowed.	Decrease the feed-forward coefficient.	
694 695 696 699	2069	The internal value of the velocity feed-forward coefficient overflowed.	Decrease the velocity feed-forward coefficient.	
754 755	2075	The setting for this parameter has overflowed.	This parameter is not used at present. Set 0.	
764 765	2076	The setting for this parameter has overflowed.	This parameter is not used at present. Set 0.	
843	2084	A positive value is not set as the flexible feed gear numerator. Alternatively, the numerator of the feed gear is greater than the denominator \times 16.	Set a positive value as the flexible feed gear numerator. Alternatively, correct the parameter so that the numerator of the feed gear is less than or equal to the denominator \times 16. (For other than parallel type separate detectors)	
853	2085	A positive value is not set as the flexible feed gear denominator.	Set a positive value as the flexible feed gear denominator.	
883	2088	For an axis with a serial type separate detector, a value exceeding 100 is set as the machine velocity feedback coefficient.	For an axis with a serial type separate detector, the upper limit of the machine velocity feedback coefficient is 100. Correct the coefficient so that it does not exceed 100.	
884 885 886	2088	The internal value of the machine velocity feedback coefficient overflowed.	Decrease the machine velocity feedback coefficient. Alternatively, use the vibration-damping control function that has an equivalent effect.	
926	2092	The internal value of the advanced preview feed-forward coefficient overflowed.	Decrease the advanced preview feed-forward coefficient.	
953	2095 2140 2395	The internally set value of the feed-forward timing adjustment coefficient is ±12800 or over.	If nano interpolation is not used, this alarm can be avoided by the following setting: No.2224#5=1	
994 995 996	2099	The internal value for N pulse suppression overflowed.	Disable the N pulse suppression function. No.2003#4=0 Alternatively, decrease the parameter setting so that no overflow will occur.	
1033	2103	There is a difference in retract distance under unexpected disturbance torque between the position tandem master and slave axes. (if the same-axis retract function is in use).	Set the same value.	
1123	2112	Although a linear motor is used, the AMR conversion coefficient parameter is not input.	Set the AMR conversion coefficient.	
1182	2118 2078 2079	The dual position feedback conversion coefficient has not been specified. Specify the dual position feedback conversion coefficient.		

Alarm detail No.	Parameter No.	Cause	Action
1183	2118	Although an analog SDU is used, the function for monitoring the difference in error between the semi-closed and full-closed modes is disabled.	Set the level on which the difference in error between the semi-closed and full-closed modes becomes too large (parameter No. 2118). If the monitoring function cannot be enabled due to the machine configuration, enable the bit for disabling the function for monitoring the difference in error between the semi-closed and full-closed modes (bit 0 of parameter No. 2565).
1284 1285	2128	When a small value is set as the number of velocity pulses, the internal value of a parameter related to current control overflows.	Decrease the value in this parameter to the extent that the alarm is not caused.
1294 1295	2129	When a large value is set as the number of velocity pulses, the internal value of a parameter related to current control overflows.	When the value set in this parameter is resolved to the form (a) \times 256 + (b), set a smaller value in (a) again.
1393	2139	The AMR offset value of a linear motor exceeds \pm 45.	Keep the setting of this parameter within ± 45 . Alternatively, set bit 0 of parameter No. 2270 to 1 to increase the setting range of the AMR offset, and then specify the parameter anywhere within ± 60 .
1446 1447 1448	2144	Feed-forward coefficient for cutting overflowed.	Decrease the feed-forward coefficient for cutting.
1454 1455 1456 1459	2145	Velocity feed-forward coefficient for cutting overflowed.	Decrease the velocity feed-forward coefficient.
1493	2149	A value greater than 6 is specified in this parameter.	Only 6 or less can be specified in this parameter. Change the setting to 6 or below 6.
1503	2150	A value equal to or greater than 10 is set.	Set a value less than 10.
1786	786 2178 Bit 6 of No. 2212 or bit 6 of No. 2213 is set to 1 and No. 2621=0 is set		Set bit 6 of No. 2212 or bit 6 of No. 2213 to 0.
1793	2179	A negative value or a value greater than the setting of parameter No. 1821 is set. A value of 101 or greater is set.	Set a positive value less than the setting of parameter No. 1821. Set a value of 100 or less. Bit 5 of parameter No. 2299 can be set to 1 so that an invalid parameter alarm is not detected, but a system alarm may be issued when a reference position return is performed. In this case, set bit 5 of parameter No. 2299 to 0.
1853	2185	A negative value or a value greater than the below value is set. No. 2023/4 (No.2000#0=0) or No.2023*10/4(No.2000#0=1)	Eliminate the causes shown at left.

2. SETTING PARAMETERS OF α*i*S/α*i*F/β*i*S/β*i*F SERIES SERVO MOTOR B-65270EN/08

Alarm detail No.	Parameter No.	Cause	Action	
2113	2211#7	 For driving a motor with four windings (when bit 7 of parameter No. 2211 is set to 1) <1> Bit 7 of parameter No. 2211 is not set to 1 for all of the four axes. <2> The motor numbers for the four axes are not the same. <3> HRV3 is set. (bit 0 of No.2013=1) 	<1> Set bit 7 of parameter No. 2211 to 1 for all axes. <2> Use the same motor number and same standard parameters. <3> Disable HRV3.	
2203	2220#0	If pole detection is enabled (bit 7 of No. 2213=1) and a non-binary detector is enabled (bit 0 of No. 2220=1), an illegal servo parameter setting alarm is issued when any of the following is set: - AMR conversion coefficient $1 \le 0$ - AMR conversion coefficient $2 \le 0$ - AMR conversion coefficient $2 > 512$ (The settable range is 1 (2 poles) to 512 (1024 poles).)	Set the AMR conversion coefficients correctly.	
2242	2224#5	This alarm is issued when a setting is made to neglect the invalid setting of the parameter for the feed-forward timing adjustment function (bit 5 of No. 2224=1) and a command for nano interpolation is issued.	Use either one.	
2632	2263	When the lifting function against gravity is enabled (bit 7 of No. 2298=1) or the post-servo-off travel distance monitor function is enabled (bit 5 of No. 2278=1), the function for enabling the CNC software to post the detection unit to the servo software is not supported and the setting of the detection unit (No. 2263) is disabled.	 Take one of the following actions: 1) Set a value in parameter No. 2263. → See Supplementary 7. 2) Disable the lifting function against gravity and the post-servo-off travel distance monitor function. 3) Use CNC software that supports the function for enabling the detection unit to be posted to the servo software. 	
2780	1905#6 2277#5,6,7 2278#0,2,4	 When the first SDU unit is not used, a setting is made to connect a detector (acceleration sensor, temperature detection circuit, or servo check interface unit) to the first SDU unit. Bit 6 of No.1905 (30<i>i</i>-A Series, 0<i>i</i>-D Series) No.24096 (30<i>i</i>-B Series) 	For the first SDU unit, check the FSSB setting (bit 6 of parameter No. 1905 and parameter No. 24096) or the detector setting (bits 0, 2, and 4 of parameter No. 2278).	
2781	1905#7 2277#5,6,7 2278#1,3,4	 When the second SDU unit is not used, a setting is made to connect a detector (acceleration sensor, temperature detection circuit, or servo check interface unit) to the second SDU unit. Bit 7 of No.1905 (30<i>i</i>-A Series, 0<i>i</i>-D Series) No.24097 (30<i>i</i>-B Series) 	For the second SDU unit, check the FSSB setting (bit 7 of parameter No. 1905 and parameter No. 24097) or the detector setting (bits 1, 3, and 4 of parameter No. 2278).	

Alarm detail No.	Parameter No.	Cause	Action	
2782	1905#6 2277#5,6,7 2278#0,4	 Any of the following settings is made: 1 For use with the first SDU unit, both of an acceleration sensor and temperature detection circuit are enabled. 2 Settings are made to use the first SDU unit, disable an acceleration sensor (bits 5, 6, 7 of No. 2277=0,0,0), and read acceleration data from the second unit (bit 1 of No. 2278=1). 	Check the settings of the acceleration sensor and temperature detection circuit.	
2783	1905#7 2277#5,6,7 2278#1,4	 Any of the following settings is made: 1 For use with the second SDU unit, both of an acceleration sensor and temperature detection circuit are enabled. 2 Settings are made to use the second SDU unit, disable an acceleration sensor (bits 5, 6, 7 of No. 2277=0,0,0), and read acceleration data from the second unit (bit 1 of No. 2278=1). 	Check the settings of the acceleration sensor and temperature detection circuit.	
2784	1815#1 2277#5,6,7 2278#0,1,4	At the time of full-closed system setting, a detector other than a separate position detector is connected (with the first/second SDU unit).	Modify the setting of the detector.	
2785	1815#1 2277#5,6,7 2278#0,4	At the time of full-closed system setting, a detector other than a separate position detector is connected (with the first SDU unit).	Modify the setting of the detector.	
2786	1815#1 2277#5,6,7 2278#1,4	At the time of full-closed system setting, a detector other than a separate position detector is connected (with the second SDU unit).	Modify the setting of the detector.	
2787	2278#0,#1	A setting is made to connect two temperature detection circuits.	Only one temperature detection circuit can be connected. Modify the setting so that data is read from one of the first and second SDU units.	
3002	2300#3,#7	The αi CZ detection circuit and linear motor position detection circuit do not support overheat signal connection.	Replace the αiCZ detection circuit and linear motor position detection circuit with those circuits that support overheat signal connection. Alternatively, modify the setting so that the overheat signal is read from a DI signal. Bit 3 of No. 2300=0	
3012	2301#2,#7	 When bit 2 of No. 2301=1 Hardware (PS, SV) that does not support DC link voltage information output is connected, but bit 2 of No. 2301 is set to 1. When bit 7 of No. 2301=1 The CNC software does not support the torque control setting range extension function. 	 When bit 2 of No. 2301=1 Set bit 2 of No. 2301 to 0. When bit 7 of No. 2301=1 Use CNC software that supports the function. (→ See Supplementary 6.) 	

2. SETTING PARAMETERS OF α*i*S/α*i*F/β*i*S/β*i*F SERIES SERVO MOTOR B-65270EN/08

Alarm detail No.	Parameter No.	neter Cause Action	
3553 3603	2355	The value 4 or a smaller number is set.	Set the value 5 or a greater number.
3603	2113 2360 2363 2366	The value 95 or smaller number is set.	Set the value 96 or a greater number. Alternatively, if no resonance elimination filter is used, set all of the center frequency, band width, and dumping value to 0.
3603 3663	2366	The value 4 or a smaller number is set.	Set the value 5 or a greater number.
3722	2372	The EGB exponent setting is made.	Set 0 for the EGB exponent setting (parameter No. 2372).
4024 4025 4029	2402	The internal value of the torsion torque compensation coefficient overflowed.	Decrease the torsion torque compensation coefficient.
4291	2429#1	 An attempt was made to use FSSB high-speed rigid tapping with either of the following functions. Bit 1 of parameter No. 2429 is set to 1. HRV4 (Bit 0 of parameter No. 2014 is set to 1.) Dual position feedback function With series 90G0/13.0 or later edition, the dual position feedback function can be used together. 	FSSB high-speed rigid tapping cannot be used together with these functions. Disable the function (set bit 1 of parameter No. 2429 to 0).
4374	2437#4	 The linear scale supporting the αi interface cannot be used. The possible causes are: In the semi-closed mode, 2.73M communication is not used in the semi-closed side. Alternatively, a linear motor is not used. In the full-closed mode, 2.73M communication is not used in the full-closed side. The 2048-magnification interpolation circuit (bit 0 of parameter No. 2274) is enabled. 	Eliminate the causes shown at left.
4553	2455	A negative value is set.	Set the value 0 or a greater number.
4563	2456	A value not within 0 to 12 is set.	Set a value within 0 to 12.
5573	2557	The value specified for parameter No. 2557 (PS control axis specification) is not within the valid data range.	Correct the value within the valid data range (between 0 and 255). For details of PS control axis setting, refer to the maintenance manual of the relevant servo amplifier.
5720 5721 5722 5723 5724 5725 5726 5727	2572	A setting for a PS control axis is made for a non-PS control axis. (No.2572)	For other than a PS control axis, set this parameter to 0.

Alarm detail No.	Parameter No.	Cause	Action	
5730				
5731				
5732				
5733	0.570	A setting for a PS control axis is made	For other than a PS control axis, set this	
5734	2573	for a non-PS control axis. (No.2573)	parameter to 0.	
5735			·	
5736				
5737				
Γ	2606	A setting for moving axis number of	Set this parameter to	
6063	2292#6	interactive force compensation.	(Axis number of second moving axis) * 100	
	2293#6	(No.2606)	+(Axis number of first moving axis).	
6114		The internal value of the velocity	Decrease the velocity feed-forward	
6115	2611	feed-forward coefficient for FSSB	coefficient for FSSB high-speed rigid	
6116		high-speed rigid tapping overflowed.	tapping.	
6119				
6713	2671			
6723	2672			
6/33	2673			
6/43	2074			
6753	2075			
0/03 6773	20/0	A softing for a DS control axis is made		
6793	2011	A setting for a PS control axis is made	For other than a PS control axis, set this	
6703	2070	101 8 11011-13 CUILIUI AND. (1103.207 1 C	parameter to 0.	
6803	2680	2005)		
6813	2681			
6823	2682			
6833	2683			
6843	2684			
6853	2685			
0040	4004	A positive value is not set in the	Out a maritime value in this perspector	
021J	ΊδΖ Ι	reference counter capacity parameter.	Set a positive value in this parameter.	
8254		A position gain of 0 is set, or the internal	 Set a value other than 0 (when setting = 0). Use the function for automatic format 	
8255 8256	8255 1825 8256 1825 position gain value has overflowed.		 change for position gain or the function for expanding the position gain setting range (when setting ≠ 0). → See Supplementary 5. 	
9053	1815#1 1905#7,#6 2016#4	A separate interface unit is not set when the full-closed mode, analog servo adapter, or servo spindle synchronization setting is set.	Set a separate detector interface unit.	
10010 10016 10019	2200#0	The internal value of the parameter related to feedback mismatch detection has overflowed.	Check whether correct values are set for the flexible feed gear, number of position pulses, and number of velocity pulses and the counting direction of separate detector data is correct. When there is no problem	
			with them, disable "feedback mismatch detection". (bit 0 of No.2200=1) When servo software Series 90B0 is used.	
10024 10025		An overflow occurred in internal calculation on the separate detector serial feedback extrapolation level.	change the software edition to edition D(04) or a later edition. (For series other than 90B0, the software edition need not be changed.)	

2. SETTING PARAMETERS OF α*i*S/α*i*F/β*i*S/β*i*F SERIES SERVO MOTOR B-65270EN/08

Alarm detail No.	Parameter No.	Cause	Action	
10033	2004	Illegal control cycle setting This error occurs if automatic modification is carried out for the control cycle.	Correct this parameter related to interrupt cycle setting.	
10053	2018#0	When a linear motor is used, the scale reverse connection bit is set.	When the linear motor is used, the scale reverse connection bit cannot be used.	
10062	2209#4	The amplifier used does not support the HC alarm prevention function.	When you use the current amplifier continuously, set the function bit shown to the left to 0. When using the HC alarm prevention function, use an appropriate amplifier that supports the function.	
		This alarm is issued when an invalid control cycle is set.	Change the control cycle setting to HRV2, HRV3 or HRV4. → See Supplementary 2.	
	2004	Different control cycles are set within one servo CPU.	Set the same control cycle for axes controlled by one servo CPU. → See Supplementary 2.	
10092 10093	2004 2013#0 2014#0	When HRV4 is enabled, a detector that does not support HRV4 is used. (Series 30 <i>i</i> only)	Replace the detector with a detector supporting HRV4. Alternatively, disable HRV4. → See Supplementary 2	
		When HRV4 is enabled, a servo amplifier that does not support HRV4 is connected. (Series 30 <i>i</i> only)	Replace the servo amplifier with a servo amplifier supporting HRV4. Alternatively, disable HRV4. → See Supplementary 2.	
10103	2004 2013#0	HRV1 is set. Alternatively, although a current control cycle of 250 μ s is set, HRV3 is specified.	The 30 <i>i</i> -A Series and 0 <i>i</i> -D Series or later do not allow HRV1 setting. Set HRV2, HRV3, or HRV4. Alternatively, when a current control cycle of 250 μ s is set, set HRV2 or disable HRV3. \rightarrow See Supplementary 2	
10113	2013#0	Current cycle mismatch alarm. This alarm is issued if the specified current cycle does not match the actual setting.	An axis for which HRV3 is specified exists on the same FSSB cable. Review the placement of the amplifier, or disable HRV3. → See Supplementary 2.	
10123	2013#0	Alarm for indicating the disability of HRV3 setting. This alarm is issued when the axis supports HRV3 but the other axis of the pair does not support HRV3.	Eliminate the cause of the disability in setting the other axis. Alternatively, cancel the HRV3 setting. → See Supplementary 2.	
10123	2013#0 2014#0	 When HRV4 is set, this alarm is issued if any of the following conditions is met. Servo software not supporting HRV4 is used. The same FSSB system includes axes with HRV4 setting and axes with HRV2 or HRV3 setting. The limitation in the number of axes is not observed. (In HRV4 control, one axis/DSP is set.) 	Eliminate the causes listed on the left. Alternatively, cancel the HRV4 setting. \rightarrow See Supplementary 2.	

Alarm detail No.	Parameter No.	Cause	Action
10133	2013#0 2014#0	This alarm is issued when HRV3 or HRV4 is set, but the amplifier does not support these control types.	HRV3 or HRV4 is unusable for the axis on which the alarm was issued. \rightarrow See Supplementary 2.
10202	2277#5,6,7 2278#0,2,4	The ID of the detector connected to the first SDU unit differs from the parameter setting.	Check the detector-related parameter or the state of detector connection.
10212	2277#5,6,7 2278#1,3,4	The ID of the detector connected to the second SDU unit differs from the parameter setting.	Check the detector-related parameter or the state of detector connection.
10221	2292#6,7 2293#6	The interactive force compensation function is used, but the CNC does not support detection unit information.	Set the detection unit. \rightarrow See Supplementary 7.

Supplementary 1: Details of illegal settings of learning control parameters

For alarm detail No. 83, details of the cause can be checked as follows. For the 30*i*-B Series and so on, set parameter No. 2115 to 0 and parameter No. 2151 to 5316. For the 30*i*-A Series and so on, set parameter No. 2115 to 0 and parameter No. 2151 to 6265. Then, check the value of information No. 353 on the Diagnosis screen. Change the value to binary form. If a resulting binary bit is 1, the bit indicates the details cause as listed in the table below.

For part machining learning control A and B, see the alarm details on the dedicated screen.

In addition to alarm detail No. 83, alarm detail Nos. 2206, 4442, 4452, 5162, 5172, and 5272 indicate invalid parameter alarms related to learning control. For details, refer to "Learning Control Operator's Manual (Angle Based Learning Control)".

Bit	Cause
B0	The band stop filter setting (No. 2512) is out of the valid range.
B1	The profile number setting (No. 2511) is out of the valid range.
B2	The command data cycle setting (Nos. 2517, 2519, 2521, 2523, and 2525) is out of the valid range.
B3	The total of the profiles (No.2510) is out of the valid range.
B4	G05 was started during memory clear processing.
B5	The profile number (No. 2511) was 0 when the total of profiles (No. 2510) is nonzero.
B6	An automatically set value for thinning-out shift was out of the valid range because of a long command
	data cycle.

NOTE

If the value of information No. 353 on the Diagnosis screen is 0, a transfer error occurred when learning data was received from the PC to the servo. Set parameter No. 2151 to 6609 (30*i*-B) or 1313 (30*i*-A). You will find that B11 of information No. 353 on the Diagnosis screen is set to 1.

Supplementary 2: Control cycle setting

There are three different types of control cycle setting used with the 30*i*-A Series, 30*i*-B Series, and 0*i*-D Series (HRV2, HRV3, and HRV4). Their settings are explained below. With the 0*i*-D Series, HRV4 cannot be used.

HRV2: No.2004=0X000011, No.2013#0=0, No.2014#0=0 HRV3: No.2004=0X000011, No.2013#0=1, No.2014#0=0

HRV4: No.2004=0X000011, No.2013#0=0, No.2014#0=1

When an invalid value is set in control cycle related parameters, the following alarm messages are indicated on the CNC:

Alarm detail No.	Alarm number	Message
10092	450	
10093	450	Invalid current control cycle setting
10103	457	Invalid High-speed HRV setting
10113	458	Invalid current control cycle setting
10123	459	High-speed HRV setting not allowed
10133	468	High-speed HRV setting not allowed (amplifier)

B-65270EN/08

Supplementary 3: Setting the number of position pulses

If the resolution of the separate detector is high and the number of position pulses becomes greater than 32767, take the following measure.

Use "position pulse conversion coefficient" to make settings.

Number of position pulses = $A \times B$

Select B so that A is within 32767.

A: Number of position pulses set in the parameter (less than or equal to 32767)

B: Conversion coefficient for the number of position pulses

2024	Number of position pulses (PPLS)
2185	Conversion coefficient for the number of position pulses (PSMPYL)
	(Example of setting)
	If the linear scale used has a minimum resolution of 0.1 µm and the distance to move per motor turn is 16 mm
	Assume that A is 10000 and B is 16 because:
	Number of position pulses = distance to move per motor turn (mm)/detector minimum resolution (mm) = $16 \text{ mm}/0.0001 \text{ mm} = 160000 (> 32767) = 10000 \times 16$ Set A as the "number of position pulses" and B as the "conversion coefficient for the number of position pulses".
	NOTE If the detector on the motor is an αi Pulsecoder (number of velocity pulses = 8192), select a value raised to the second power (2, 4, 8,) as the conversion coefficient as much as possible (so the

Supplementary 4: Setting the number of velocity pulses

If the number of velocity pulses becomes greater than 32767, take the following measure.

(i) If the number of velocity pulses is in a range from 32,768 to 131,000

Parameter No. 30 <i>i</i> Series,0 <i>i</i> -D Series, and so on	Method for changing parameters		
2000#0	1		
2023	(Setting target)/10		
2024	(Setting target)/10		

position gain used within the software becomes more accurate).

(ii) If the number of velocity pulses is larger than 131,000 Change the parameters according to the following table. In this table, letter E satisfies: Number of velocity pulses/10/E < 13100

Parameter No. 30 <i>i</i> Series,0 <i>i</i> -D Series, and so on	Method for changing parameters
2000#0	1
2023	(Setting target)/10/E
2024	(Setting target)/10/E
2043	(Setting target)/E
2044	(Setting target)/E
2047	(Setting target)×E
2053	(Setting target)×E
2054	(Setting target)/E
2059	(Setting target)×E

NOTE

When a setting is made using this method, the actual speed multiplied by E is displayed on the servo screen.

Supplementary 5: Function for changing the internal format of the velocity loop proportional gain

An overflow may occur in the velocity loop proportional gain during internal calculation by the servo software. This can be avoided by setting the parameter shown below.

		#7	#6	#5	#4	#3	#2	#1	#0
2200			P2EX						
P2EX (#6) 0: Uses the standard internal format for the velocity loop proportional gain.									
	1:	Chang	es the inte	rnal format	t of the ve	locity loop	proportion	al gain to	prevent an

: Changes the internal format of the velocity loop proportional gain to prevent an overflow.

Supplementary 6: Support for the torque control setting range extension function

To use the torque control setting range extension function (bit 7 of No. 2301), CNC software that supports the function is required. The following series and edition of CNC software support the function (as of June 2012):

010	System software			
CNC	Series	Edition		
Series 30 <i>i</i> -A	G004, G014, G024	11 and subsequent editions		
Series 31 <i>i</i> -A5	G124, G134	11 and subsequent editions		
Series 31 <i>i</i> -A	G104, G114	11 and subsequent editions		
Series 32 <i>i</i> -A	G204	11 and subsequent editions		

* For the 0*i*-D Series, there is no system software that supports the function.

For the Series 30i/31i/32i/35i-B and Power Motion *i*-A, all series and editions support the display of alarms.

Supplementary 7: Setting detection unit information

If you want to use a function which uses information related to the detection unit, but the CNC software does not support the function, you can set the detection unit for the following parameter to use the function.

2263	Detection unit setting

[Setting unit] 1nm

Detection unit	10µm	1µm	0.1µm	0.01µm	0.001µm	0.05µm
Setting value	10000	1000	100	10	1	50

2.1.10 Notes on Using the Control Axis Detach Function

(1) Overview

Servo software automatically identifies the type of detector connected to an axis, when the power to the CNC is turned on. When the control axis detach function is used, however, servo software cannot identify the type of detector in a case where the power to the CNC is turned on with the detector detached from the controlled axis. (An alarm such as a communication alarm is issued.) Such an alarm can be avoided by setting the parameter indicated below.

(2) Series and editions of applicable servo software

 $[\alpha i/\beta i$ Pulsecoder supported]

CNC		Servo software	Demerika	
CNC	Series	Edition	Remarks	
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions		
Power Motion <i>i</i> -A				
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	O(15) and subsequent editions		
	90E1	01.0 and subsequent editions		
Series 30 <i>i/</i> 31 <i>i</i> -A	90D0	O(15) and subsequent editions	HRV4	
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions		
	90C8	A(01) and subsequent editions		
	90E5	A(01) and subsequent editions		
	90E8	A(01) and subsequent editions		

[Separate serial linear supported]

CNC		Servo software	Bomorko	
CNC	Series	Edition	Remarks	
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions		
Power Motion <i>i</i> -A				
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	U(21) and subsequent editions		
	90E1	01.0 and subsequent editions		
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	U(21) and subsequent editions	HRV4	
Series 0 <i>i</i> -D	90C5	-		
	90C8	-		
	90E5	-		
	90E8	-		

(3) Setting parameters

Set the following parameter for such an axis where the detector on the semi-closed side may be disconnected from the servo amplifier:

NOTE

- 1 When this parameter is set, the power must be turned off before operation is continued.
- 2 Do not set this parameter when the control axis detach function is not used.
B-65270EN/08 2. SETTING PARAMETERS OF α*i*S/α*i*F/β*i*S/β*i*F SERIES SERVO MOTOR

not used.

2.1.11 Alarm Detection When an Error Occurs (Function for Monitoring the Difference in Error between the Semi-Closed and Full-Closed Modes and Dynamic Error Monitoring)

2.1.11.1 Function for monitoring the difference in error between the semi-closed and full-closed modes

(1) Overview

This function monitors the difference in detection position between the detector built into the motor and separate detector. If the difference between the Pulsecoder and the separate detector is greater than or equal to the value specified for the parameter, the abnormal status is assumed and alarm "EXCESS ERROR (SEMI-FULL)" is issued. The function is useful for checking normal operation of the separate detector and monitoring any slip between the motor and machine.

(2) Series and editions of applicable servo software

CNC		Servo software	Bemerke	
CNC	Series	Edition	Remarks	
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	13.0 and subsequent editions*		
Power Motion <i>i</i> -A				
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	A(01) and subsequent editions*		
	90E1	01.0 and subsequent editions*		
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	A(01) and subsequent editions	HRV4	
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions		
	90C8	A(01) and subsequent editions		
	90E5	A(01) and subsequent editions		
	90E8	A(01) and subsequent editions		

* The following series and editions of servo software support the setting of the level on which the difference in error between the semi-closed and full-closed modes becomes too large in units of µm: Series 90E0/31.0 and subsequent editions Series 90E1/08.0 and subsequent editions Series 90G0/13.0 and subsequent editions

2. SETTING PARAMETERS OF *aiS/aiF/βiS/βiF* SERIES SERVO MOTOR

(3) Notes

- For a full-closed configuration, the use of this function is recommended.
- With the Series 30*i*/31*i*/32*i*/35*i*-B and Power Motion *i*-A, when an analog input separate detector interface unit is used, the function for monitoring the difference in error between the semi-closed and full-closed modes is automatically enabled. If the level on which the difference in error between the semi-closed and full-closed modes is too large (parameter No. 2118) or a conversion coefficient (parameter No. 2078 or 2079) is not set, invalid parameter alarm SV0417 (detail No. 1183) is issued. Be sure to set these parameters when using an analog input separate detector interface unit. However, the monitoring function cannot be enabled in the following system. In this case, disable

However, the monitoring function cannot be enabled in the following system. In this case, disable the alarm detection (set bit 0 of parameter No. 2565 to 1).

- The gear reduction ratio between the motor and detector greatly changes according to the machine position.
- The belt or another part between the motor and detector can slip.

(4) Setting parameters

To enable the function for monitoring the difference in error between the semi-closed and full-closed modes, set the following parameters:

2118	Level on w	hich the diff	erence in err	or between th	ne semi-close	d and full-clo	sed modes is	too large	
[Setting value]	Level on which the difference in error is too large (μm) /detection unit (μm) or level on which the difference in error is too large (μm)								
[Setting unit]	Detection un	nit or 1 μm	$(\rightarrow \text{See the})$	e explanatio	on of bit 7 c	of parameter	r No. 2420.)	
	If the differe equal to the alarm is issue Set a value t detection is c	ence betwe value spec ed. wo to thre disabled.	een the Puls rified for the ee times as	secoder and e paramete large as the	d the separa r, the abnor e backlash.	ate detector mal status When a va	is greater is assumed lue of 0 is	than or and an set, the	
	#7	#6	#5	#4	#3	#2	#1	#0	
2420	SFUMSET	"0		<i>"</i> +		"-			
	0: Detection 1: 1 μm	on unit	#F		# 2	#0		40	
0505	#/	#6	#5	#4	#3	#2	#1	#0	
SFEROFF(#0) For a machine in a full-closed configuration in which an analog input separate detector interface unit is used, the function for monitoring the difference in error between the semi-closed and full-closed modes is: 0: Enabled. 1: Disabled.							e n		
	For an axis in a full-closed configuration in which an analog input separate detector interface unit is used, the function for monitoring the difference in error between the semi-closed and full-closed modes is automatically enabled. If the level on which the difference in error between the semi-closed and full-closed modes becomes too large (parameter No. 2118) is not set, invalid parameter alarm SV0417 (detail No. 1183) is issued								

When the function for monitoring the difference in error between the semi-closed and full-closed modes cannot be used for a machine due to the configuration, use this function bit to disable the function.

B-65270EN/08 2. SETTING PARAMETERS OF $\alpha i S / \alpha i F / \beta i S / \beta i F$ SERIES SERVO MOTOR 2078 **Conversion coefficient (numerator)** 2079 Conversion coefficient (denominator) Calculate the coefficients using the following formula: [Setting value] Number of position feedback pulses per motor revolution Conversion Numerator (Value multiplied by the feed gear) coefficient Denominator 1 million (Example) When the αi Pulsecoder is used with a tool travel of 10 mm/motor revolution (1 µm/pulse) $\frac{\text{Numerator}}{\text{Denominator}} = \frac{10 \times 1000}{1,000,000} = \frac{1}{100}$ Conversion coefficient

2.1.11.2 Detection of excessive error between the estimated position and actual position (dynamic error monitoring)

(1) Overview

An excessive error alarm is detected by estimating the position of the feed axis based on position commands, position gain, and feed-forward setting and monitoring the difference between the estimated position and actual position. This function has an effect that the alarm level of excessive error automatically drops when the feedrate is low. It can reduce the time to detect an excessive error alarm when an error occurs.

Fig. 2.1.11.2 (a) Outline of the detection of excessive error between the estimated position and actual position

(2) Series and editions of applicable servo software

[Series and editions of applicable servo software]

<u>enc</u>		Servo software	Bomarka	
CNC	Series	Edition	Remarks	
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	05.0 and subsequent editions*		
Power Motion <i>i</i> -A				
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	28.0 and subsequent editions*		
	90E1	03.0 and subsequent editions*		
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	-	HRV4	
Series 0 <i>i</i> -D	90C5	-		
	90C8	-		
	90E5	-		
	90E8	-		

2. SETTING PARAMETERS OF aiS/aiF/βiS/βiF SERIES SERVO MOTOR

* The dual position feedback function is supported by Series 90G0/05.0 and subsequent editions, Series 90E0/30.0 and subsequent editions, and Series 90E1/6.0 and subsequent editions.

CNC	System software				
CNC	Series	Edition			
Series 30 <i>i</i> -A	G00C,G01C,G02C	41 and subsequent editions			
	G004,G014,G024	02 and subsequent editions			
Series 31 <i>i</i> -A5	G12C,G13C	41 and subsequent editions			
	G124,G134	02 and subsequent editions			
Series 31 <i>i</i> -A	G103,G113	41 and subsequent editions			
	G104,G114	02 and subsequent editions			
Series 32 <i>i</i> -A	G203	41 and subsequent editions			
	G204	02 and subsequent editions			
Series 0 <i>i</i> -MD	D4F1	05 and subsequent editions			
Series 0 <i>i</i> -TD	D6F1	05 and subsequent editions			
Series 0 <i>i</i> Mate-MD	D5F1	05 and subsequent editions			
Series 0 <i>i</i> Mate-TD	D7F1	05 and subsequent editions			

[Series and editions of applicable system software]

For the Series 30*i*/31*i*/32*i*/35*i*-B and Power Motion *i*-A, all series and editions support the function.

(3) Notes

- When an alarm is detected, SV0653, "EXCESS ERROR (SV)" is displayed.
- To use this function together with the dual position feedback function, supporting servo software is required.

(4) Setting parameters

	#7	#6	#5	#4	#3	#2	#1	#0	
2419 (FS30 <i>i</i>)							DYNTQL	DYNERR	
DYNERR(#0)	The detecti	he detection of excessive error (SV) is:							
	0: Disabled								
	1: Enabled.	: <u>Enabled.</u>							
DYNTQL(#1)	The detecti	on of exces	sive error in	n the torque	e limit mode	e is:			
	0: Enabled.			_					
	1: Disabled	<u>.</u>							
	#7	#6	#5	#4	#3	#2	#1	#0	
2420 (FS30 <i>i</i>)				DUDYN					
DUDYN(#4)	When the	dual positio	on feedbacl	c function	is enabled,	the detection	ion of exce	essive error	
	(SV) is:								
	0: Disabled	•							
	1: Enabled.								
2458 (FS30 <i>i</i>)		Excessive error detection level							
[Setting unit]	Detection u	Detection unit							
[Valid data range]	0 to 32767	0 to 32767							
[Typical setting]	0.2 times of	f position er	ror in rapic	l traverse					
	Setting val	Setting value= $\frac{\text{Rapid traverse rate [mm/min]}}{60 \times \text{position gain [1/s]} \times \text{detection unit [mm]}} \times 0.2$							

NOTE

- 1 When the dual position feedback function is used together, since the characteristics of dual position feedback are not considered during the estimation of the position, estimation error is generated according to the time constant of dual position feedback and a mechanical torsion. For this reason, the alarm level must be increased by the amount of error.
- 2 If system software does not support this function, setting bit 0 (DYNERR) of parameter No. 2419 to 1 causes invalid parameter alarm SV417 (detail No. 4190).
- 3 With Series 90G0, the dual position feedback function can be used by default. (Bit 4 (DUDYN) of parameter No. 2420 does not need to be set.)

(5) Example of tuning the detection of an excessive error alarm (SV)

In general, the excessive error alarm level is set to 1.2 times of estimated position error in rapid traverse. The level of an excessive error alarm detected by servo software is set based on the value observed as position error. To set the same alarm level, set the detection alarm level 0.2 times of estimated position error in rapid traverse.

Setting value= Rapid traverse rate [mm/min] × 0.2 60 × position gain [1/s] × detection unit [mm]

If a smaller value must be set, observe position error and set the level from the observed value to the above setting value. Note that if the setting value is too small, it becomes easier to detect the alarm even in normal movement.

- (a) Setting the parameter to enable the detection of excessive error Set function bit 0 of parameter No. 2419 to 1 and set parameter No. 2458 (alarm level) to 30000. (To determine the alarm level, first set this level large anough to avoid an alarm.)
- (b) Observing position error

Observe position error using SERVO GUIDE.SERVO GUIDEchannel setting:Axis: Axis for which to enable the detection of excessive errorKind: ERRUnit/Conv. Coef.: Detection unitConv. Base: 1Origin Value: 0

With the above setting, position error can be observed in acceleration and deceleration. Fig. 2.1.11.2 (b) below shows the relationships between the speed and ERR (position error). You can see a difference of about 13 μ m at the maximum feedrate.

2. SETTING PARAMETERS OF *aiS/aiF/βiS/βiF* SERIES SERVO MOTOR

Fig. 2.1.11.2 (b) Relationships between the speed and position error

(c) Setting the alarm level Set the alarm level from the observed value (13 μ m) to the value 0.2 times of position error estimated in rapid traverse.

2.2 SETTING PARAMETERS FOR LARGE SERVO MOTORS

2.2.1 Motor Models and System Configurations

To drive a large servo motor, multiple amplifiers may be used.

A system configuration is determined according to the motor model used and CNC (table below).

			<u> </u>				
Matar madal	Number of	System configuration					
Motor model	amplifiers	30 <i>i</i> -B Series	30 <i>i</i> -A Series	0 <i>i</i> -D Series			
α <i>i</i> S 300/2000 α <i>i</i> S 500/2000	2	Motor with two windings ^{*1}	Torque tandem ^{*4}	Torque tandem ^{*4}			
α <i>i</i> S 1000/2000HV							
α <i>i</i> S 1000/3000HV		Motor with four	Motor with four	PWM distribution			
α <i>i</i> S 2000/2000HV	4	windings ^{*2}	windings ^{*3}	module (PDM ^{*5})			
α <i>i</i> S 3000/2000HV		Windings	Windings				

Table 2.2.1 (a)	Motor models	and s	vstem	confic	urations
	~,			,		,

*1 With the Series 30*i*-B, the motor is driven in the two-winding mode (bit 6 of parameter No. 2211 is set to 1).

*2 With the Series 30*i*-B, the motor is driven in the four-winding mode (bit 7 of parameter No. 2211 is set to 1).

*3 To drive a motor in the four-winding mode (bit 7 of parameter No. 2211 is set to 1) with the Series 30*i*-A, the tandem control option (J733) is required.

*4 The tandem control option (J733) is required.

*5 PDM stands for PWM Distribution Module. For details, refer to "PWM Distribution Module Descriptions (A-72562E-029)".

2.2.2 Parameter Setting for the Four-Winding and Two-Winding Modes

(1) Overview

This subsection describes the parameter setting for the four-winding mode (PLW4) and two-winding mode (PLW2) for the Series 30*i*. Since the current is controlled for each winging, four or two servo controlled axes are required.

		Servo software	Remarks	
CNC	Series	Edition		
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions		
Power Motion <i>i</i> -A				
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	U(21) and subsequent editions		
	90E1	01.0 and subsequent editions		

(3) Setting parameters

After you have set the standard parameters for the servo motor to be used for all axes to be used by the motor with plural windings, set PLW4 or PLW2 according to the number of windings.

	#7	#6	#5	#4	#3	#2	#1	#0
2211	PLW4	PLW2						
	(30 <i>i</i> -B Ser	ries)						

PLW2 (#6) The motor with two windings is:

- 0: Not used.
- 1 : Used.

(30*i* - A, B Series)

PLW4 (#7) The motor with four windings is:

- 0: Not used.
- 1 : Used.

2	Direction of motor rotation (DIRCT)
	* Set the same direction as the direction of motor rotation for a motor with two or four windings.
	+111 When the positive direction is specified, the rotor rotates in the forward direction.
	-111 When the positive direction is specified, the rotor rotates in the reverse direction.
N	DTE
1	Set PLW4 or PLW2 for all axes to be used by the motor with plural windings.
2	When PLW4 or PLW2 is set, the current command and feedback from the Pulsecoder are conied from the main axis to the sub-axis
3	When PLW2 is used, set the servo axis numbers (parameter No. 1023) to $2n+1,2$ ($30i$ -A), $8n+1,2$, $8n+3,4$, or $8n+5,6$ ($30i$ -B).
4	When PLW4 is used, set the servo axis numbers (parameter No. 1023) to

- 4n+1,2,3,4 (30*i*-A) or 8n+1,2,3,4 (30*i*-B).
 5 When PLW4 is used with the Series 30*i*-A, servo HRV3 control cannot be used.
- 6 With the Series 30*i*-A, the tandem control option (J733) is required.
- 7 The motor feedback sharing bit (bit 7 of parameter No. 2018) and separate feedback sharing bit (bit 1 of parameter No. 2200) are not required.

(4) Invalid parameter setting alarm

In the following cases, an invalid parameter alarm is issued. (detail No. DGN352 = 2113) [Four windings]

- The tandem option is not used. (No detail No. is displayed only in this case.) 30*i*-A
- Bit 7 of parameter No. 2211 is not set to 1 for all of the four axes consecutively specified for parameter No. 1023.
- The motor number is not the same for all of the four axes consecutively specified for parameter No. 1023.
- HRV3 is used. (for the Series 30*i*-A CNCs)

[Two windings]

- The tandem option is not used. (No detail No. is displayed only in this case.) 30*i*-A
- Bit 6 of parameter No. 2211 is not set to 1 for all of the two axes consecutively specified for parameter No. 1023.
- The motor number is not the same for all of the two axes consecutively specified for parameter No. 1023.
- HRV4 is used.

(5) Example of parameter setting

• Motor with four windings

Servo motor with four windings (such as αi S1000/3000HV)

Axis name	Axis name No.1020	Second axis name No.1025	Servo axis number No.1023	Four-winding mode No.2211#7
X1	88	1	1	1
X2	88	2	2	1
X3	88	3	3	1
X4	88	4	4	1
Y	89	0	5	0
Z	90	0	6	0

2. SETTING PARAMETERS OF *aiS/aiF/βiS/βiF* SERIES SERVO MOTOR

Servo motor with two windings (such as αi S1000/2000HV)

Axis name	Axis name No.1020	Second axis name No.1025	Servo axis number No.1023	Two-winding mode No.2211#6
X1	88	1	1	1
X2	88	2	2	1
Y	89	0	3	0
Z	90	0	4	0

NOTE

The axis name (parameter No. 1020) or second axis name (parameter No. 1025) must be changed for each axis used for a motor with two or four windings. If the same axis name is used, the actual feedrate becomes lower than the specified speed.

(5) Others

- Position control is performed for the main axis. No position command is required for the sub-axis.
- In general, set the same value for each parameter for the main axis and sub-axis.
- To use the control axis detach function, input the detach signal to all axes.
- To use a resonance elimination filter, set the same value for each filter parameter for the main axis and sub-axis.
- You can measure frequency characteristics on SERVO GUIDE by specifying the main axis as the measurement target.

2.2.3 Setting Parameters in the Torque Tandem Configuration

(1) Overview

To drive a motor with two windings in a torque tandem configuration, it is necessary to make settings for torque tandem control and for enabling the feedback copy function.

NOTE

- 1 Torque tandem control is an optional function.
- 2 When a large motor is used in the torque tandem configuration, two CNC axes are occupied per motor.

(2) Series and editions of applicable servo software

CNC		Servo software	Bomorko	
CNC	Series	Edition	Remarks	
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	A(01) and subsequent editions		
	90E1	01.0 and subsequent editions		
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	A(01) and subsequent editions	HRV4	
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions		
	90C8	A(01) and subsequent editions		
	90E5	A(01) and subsequent editions		
	90E8	A(01) and subsequent editions		

NOTE

Servo HRV4 control exercises control on one axis per CPU, so this configuration cannot be used together with servo HRV4 control.

(3) Setting parameters

<1> Of the two amplifiers connected to a motor, assign one amplifier to the main axis and the other to the sub-axis used for torque tandem control, and enable torque tandem control.

		#7	#6	#5	#4	#3	#2	#1	#0
1817			TANDEM						
TANDEM(#6)	1:	Enable	es torque t	andem cont	rol. (Set	this paramet	er for each	of the ma	in axis and
		sub-ax	is.)						

To make settings related to torque tandem control, see Subsection 5.10.4, "TORQUE TANDEM CONTROL FUNCTION".

<2> Make the parameter setting indicated below for the sub-axis to enable the feedback sharing function. The feedback cable from the motor is connected to the amplifier on the main axis.

		#7	#6	#5	#4	#3	#2	#1	#0
2018	Γ	PFBCPY							
PFBCPY(#7	') 1	: Uses f	eedback to	the main a	xis for the	sub-axis as	well. (Set t	his parame	ter only for
		the sul	o-axis.)						

(4) Example of parameter setting

Servo motor with two windings (such as αi S1000/2000HV)

Axis name	Servo axis number No.1023	Tandem control No.1817#6	Feedback copy No.2018#7
X1	1	1	0
X2	2	1	1
Y	3	0	0
Z	4	0	0

2.2.4 Parameter Setting for a 16-Pole Motors (αi S2000/2000HV, αi S3000/2000HV)

For an axis on which any of the servo motors listed below is used, set the parameters for using a 16-pole servo motor.

	Servo mot	tor name			Motor specification			
	αiS2000/	2000HV				0091		
	αiS3000//	2000HV				0092		
	#7	#6	#5	#4	#3	#2	#1	#0
2220			P16					
P16(#5) 1	: Does	not use a 1	6-pole servo	o motor.				•
	#7	#6	#5	#4	#3	#2	#1	#0

	AMR						Number of motor poles
6	5	4	3	2	1	0	
0	0	0	1	0	0	0	16-pole servo motor
0	0	0	0	0	0	0	Other than 16-pole servo motors (8-pole motor)

3

SETTING PARAMETERS OF LINEAR MOTOR AND SYNCHRONOUS BUILT-IN SERVO MOTOR

Chapter 3, " SETTING PARAMETERS OF LINEAR MOTOR AND SYNCHRONOUS BUILT-IN SERVO MOTOR ", consists of the following sections:

3.1	LINEAR MOTOR PARAMETER SETTING	75
	3.1.1 Procedure for Setting the Initial Parameters of Linear Motors	75
	3.1.2 Smoothing Compensation for Linear Motor	93
3.2	SYNCHRONOUS BUILT-IN SERVO MOTOR PARAMETER SETTING	97
	3.2.1 Procedure for Setting the Initial Parameters of Synchronous Built-in Servo Motors	97
	3.2.2 Smoothing Compensation for Synchronous Built-in Servo Motor	125
3.3	DETECTION OF AN OVERHEAT ALARM BY SERVO SOFTWARE WHEN A LINEAR	
	MOTOR AND A SYNCHRONOUS BUILT-IN SERVO MOTOR ARE USED	129

3.1 LINEAR MOTOR PARAMETER SETTING

3.1.1 Procedure for Setting the Initial Parameters of Linear Motors

(1) Overview

The following describes the procedure for setting the digital servo parameters to enable the use of a FANUC linear motor.

(2) Series and editions of applicable servo software

CNC		Servo software	Bomarka	
CNC	Series Edition		Remarks	
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions		
Power Motion <i>i</i> -A				
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	A(01) and subsequent editions	(*1)	
	90E1	01.0 and subsequent editions		
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	A(01) and subsequent editions	(*1) HRV4	
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions		
	90C8	A(01) and subsequent editions		
	90E5	A(01) and subsequent editions		
	90E8	A(01) and subsequent editions		

(*1) Servo software edition P(16) or later is required to use the linear motor position detection circuit (A860-<u>2033</u>-T201, -T202, -T301, or -T302).

(3) Warning

1 The linear motor can make an unpredictable movement, resulting in a very dangerous situation, if an error is made in linear motor assembly, power line cabling, detector installation direction setting, or basic parameter setting.

- 2 It is recommended to take the following actions until normal operation is confirmed:
 - Lower the excessive error level so that an alarm is issued immediately when an unpredictable movement is made.
 - Lower the torque limit value to disable abrupt acceleration.
 - Ensure that the emergency stop switch can be pressed immediately.

(4) Linear encoders

The position and velocity of the linear motor are detected using a linear encoder. Two types of linear encoders are available: incremental type and absolute type. The parameter setting and connection vary according to the type of encoder.

For incremental type

The linear encoder of incremental type is connected to a servo amplifier via a position detection circuit (A860-<u>0333</u>-T*** or A860-<u>2033</u>-T***) for linear motor manufactured by FANUC. Values to be set in parameters vary depending on the signal pitch of the linear encoder. Therefore, check the signal pitch of the encoder first.

Table 3.1.1 ((a)	lists exampl	es of	usable	incremental	linear	encoders.
---------------	-----	--------------	-------	--------	-------------	--------	-----------

Encoder maker	Signal pitch (µm)	Model
	20	LS487(C), LS187(C), LS388(C), LS688(C), LIDA483,
	20	LIDA485, LIDA487, LIDA489, etc.
	40	LB382(C) , etc.
HEIDENHAIN	2	LIP481R
	4	LF485, LF185, LIP581R, LIP581C, LIF481R, LIF181R,
	4	LIF181C, etc.
	0.512	LIP281R
Mitutoyo	20	AT402E
	20	RG2, TONIC, SIGNUM
Renishaw	40	RG4
	2000	LM10

Table 3.1.1 (a) Examples of usable linear encoders (incremental)

When a linear encoder of incremental type is used, a linear motor pole detector (A860-<u>0331</u>-T001,-T002 or A860-<u>2031</u>-T001,-T002) is also needed.

For absolute type

The linear encoder of absolute type is directly connected to a servo amplifier. Depending on the resolution of an encoder used, the parameter setting varies. First, check the resolution. Table 3.1.1 (b) lists examples of absolute type linear encoders currently usable.

Encoder maker	Resolution (µm)	Model
	0.05 (0.01)* ¹	LC193F, LC493F
HEIDENHAIN	0.05 (0.01)* ^{1,2}	LC195F, LC495F
	0.0125 (0.00125)* ^{3,4}	
	20/4096	AT555
Mitutoyo	0.05	AT353, AT553
	0.1	ST758
Renishaw	0.001, 0.05	RESOLUTE
Magnescale	0.01, 0.05, 0.1, 0.5, 1.0	SR87, SR77
NEWALL	0.5, 1.0, 5, 10	SHG-AF
FAGOR	0.05, 0.1	LAF, GAF, SAF, SVAF

Table 3.1.1 (b) Usable linear encoders (absolute)

- *1 Encoders with resolutions of 0.05 μ m and 0.01 μ m are available.
- *2 Resolution for the α interface (communication via the α interface (two-pair communication) is automatically used for a scale that does not response to the α interface (one-pair communication).)
- *3 Resolution for the αi interface
- *4 The software edition that supports the αi interface is 90G0/19.0 or later.

NOTE

- 1 For details of the linear encoders usable with FANUC linear motors, refer to "FANUC LINEAR MOTOR L*i*S series DESCRIPTIONS (B-65382EN)".
- 2 For details of the linear encoders, contact the manufacturer of each linear encoder.
- 3 To use servo HRV4 control with a linear motor, a detector that supports servo HRV4 control is needed. See "(d) Detector" in "(4) Servo HRV4 control hardware" of Subsection 5.2.2.

(5) Parameter settings

Set the parameters according to the procedure below. Note the points below when setting the parameters.

[Cautions for using incremental linear encoders]

The following parameter setting procedure involves a parameter to be specified according to the resolution of the linear encoder. If an incremental linear encoder is to be used, convert the encoder signal pitch to the resolution for parameter calculation, using the following equation. Resolution $[\mu m] = \text{Encoder signal pitch } [\mu m] / 512$

Parameter setting procedure (1)

Procedure (1) can be used to initialize the parameters (such as current gain) necessary to drive a linear motor. After initialization, parameters depending on the linear encoder resolution (or the value obtained by dividing the signal pitch of the linear encoder by the interpolation magnification of the position detection circuit) must be set. Set these parameters by following parameter setting procedure (2).

Parameters related to initialization For incremental type, For absolute type

- (b) When the magnet plate is movable:
 - +111: When the positive direction is specified, the magnet plate moves in the positive direction.
 - -111: When the positive direction is specified, the magnet plate moves in the reverse direction.

Motor ID number For incremental type, For absolute type

2020

Motor ID number

Standard parameters are prepared for the linear motors listed below as of March, 2013. The servo software shown in Table 3.1.1 (c) is required to automatically load the standard parameters shown in Section 9.4. To automatically load the parameters, set bit 1 of parameter No. 2000 to 0, set the motor number, make the following basic settings, and restart the CNC. Upon completion of automatic loading, bit 1 of parameter No. 2000 is automatically set to 1. When the servo software used does not support automatic loading, set the parameters with reference to the parameter list shown in this manual.

Motor model	Motor specification	Motor ID No.	90G0	90D0 90E0	90E1	90C5 90E5	90C8 90E8
LiS 300A1/4	0441-B200	351	03.0	G	01.0	А	А
LiS 600A1/4	0442-B200	353	03.0	G	01.0	А	А
LiS 900A1/4	0443-B200	355	03.0	G	01.0	А	А
LiS 1500B1/4	0444-B2□0	357	03.0	G	01.0	А	А
LiS 3000B2/2	0445-B1□0	360	03.0	G	01.0	А	А
LiS 3000B2/4	0445-B2□0	362	03.0	G	01.0	А	А
LiS 4500B2/2	0446-B1□0	364	03.0	G	01.0	А	А
LiS 4500B2/4	0446-B2□0	366	07.0	31.0	08.0	F	В
LiS 6000B2/2	0447-B1□0	368	03.0	G	01.0	А	А
LiS 6000B2/4	0447-B2□0	370	03.0	G	01.0	А	А
LiS 7500B2/2	0448-B1□0	372	03.0	G	01.0	А	А
LiS 7500B2/4	0448-B2□0	374	03.0	G	01.0	А	А
LiS 9000B2/2	0449-B1□0	376	03.0	G	01.0	А	А
LiS 9000B2/4	0449-B210	378	03.0	G	01.0	А	А
LiS 3300C1/2	0451-B1□0	380	03.0	G	01.0	А	А
LiS 9000C2/2	0454-B1□0	384	03.0	G	01.0	А	А
LiS 11000C2/2	0455-B1□0	388	03.0	G	01.0	А	А
LiS 11000C2/4	0455-B220	390	07.0	31.0	08.0	F	В
LiS 15000C2/2	0456-B1□0	392	03.0	G	01.0	А	А
LiS 15000C2/3	0456-B2□0	394	03.0	G	01.0	А	А
LiS 10000C3/2	0457-B1□0	396	03.0	G	01.0	А	А
LiS 17000C3/2	0459-B1□0	400	03.0	G	01.0	A	А

Table 3.1.1 (c) Motor ID numbers of linear motors and servo software that can be loaded automatically
[200-V driving]

А

Α

[400-v driving]							
Motor model	Motor specification	Motor ID No.	90G0	90D0 90E0	90E1	90C5 90E5	90C8 90E8
LiS 1500B1/4	0444-B2□0	358	03.0	G	01.0	Α	А
LiS 3000B2/2	0445-B1□0	361	03.0	G	01.0	Α	Α
LiS 4500B2/2HV	0446-B0□0	363	03.0	G	01.0	Α	Α
LiS 4500B2/2	0446-B1□0	365	03.0	G	01.0	Α	А
LiS 6000B2/2HV	0447-B0□0	367	03.0	G	01.0	Α	Α
LiS 6000B2/2	0447-B1□0	369	03.0	G	01.0	Α	А
LiS 7500B2/2HV	0448-B0□0	371	03.0	G	01.0	Α	А
LiS 7500B2/2	0448-B1□0	373	03.0	G	01.0	Α	Α
LiS 9000B2/2	0449-B1□0	377	03.0	G	01.0	Α	А
LiS 3300C1/2	0451-B1□0	381	03.0	G	01.0	Α	А
LiS 9000C2/2HV	0454-B0□0	383	07.0	31.0	08.0	F	В
LiS 9000C2/2	0454-B1□0	385	03.0	G	01.0	Α	А
LiS 11000C2/2HV	0455-B0□0	387	03.0	G	01.0	Α	А
LiS 11000C2/2	0455-B1□0	389	03.0	G	01.0	Α	А
LiS 15000C2/3HV	0456-B0□0	391	03.0	G	01.0	Α	Α
LiS 15000C2/2	0456-B1□0	393	18.0	-	-	-	D
LiS 10000C3/2HV	0457-B0□0	395	03.0	29.0	05.0	F	Α
LiS 10000C3/2	0457-B1□0	397	03.0	G	01.0	Α	А
LiS 17000C3/2HV	0459-B0□0	399	03.0	28.0	04.0	D	Α

[400-V driving]

LiS 17000C3/2

B-65270EN/08

The motor ID numbers are for SERVO HRV2. Loading is possible with the servo software of the series and edition listed above or subsequent editions.

401

03.0

G

01.0

0459-B1□0

After parameter initialization, check that the function bit for linear motor control is set to 1 (linear motor control is enabled).

When using position detection circuit or position detection circuit C for linear motor

For incremental type

When a position detection circuit (-T201, -T202, -T301, or -T302) having an interpolation magnification of 2048 is used with an incremental type linear encoder, the parameter shown below must be set to maintain both the maximum feedrate and high resolution. Set the parameter before proceeding to procedure (2).

		#7	#6	#5	#4	#3	#2	#1	#0	
2274									HP2048	
HP2048(#0	HP2048(#0) A circuit having an interpolation magnification of 2048 (position detection circuit or									
	position detection circuit C for linear motor) is:									
	0:	Not us	sed							
	1:	Used								

N	OTE									
1	Setting this parameter(No.2274(FS30 <i>i</i> ,16 <i>i</i>) or No.2687(FS15 <i>i</i>)) to "enable" lets									
	you make the basic parameter settings as explained in Procedure (2).									
2	Changing this parameter results	s in a power-off alarm be	ing raised.							
3	When this parameter is set, the detection unit in the case of FFG=1/1 is (signal pitch/512 [um]).									
	If a minimum detection unit (sig FFG = 4/1	nal pitch/2048 [µm]) is ne	ecessary, specify:							
4	If nano interpolation is applied, a applied as decimal-part feedbac	a resolution as high as (s ck.	signal pitch/2048 [μm]) is							
5	When a linear encoder of increr is needed.	nental type is used, a lin	ear motor pole detector							
6	With position detection circuit for	or linear motor, the interp	olation magnification can							
	be changed using setting pin S Setting B.)	N3. (The setting at the ti	me of shipment is							
	Setting A: The interpolation ma Setting B: The interpolation ma	agnification is 512. agnification is 2048.								
	Setting A enables up to high-sp	eed operation, and Setti	ng B enables high							
	resolution feedback acquisition.		ig - chance high							
		Setting A	Setting B							
	HP2048	1	1							
	Resolution [µm] (*1)	λ[μm]/128 (*2)	λ [μm]/ 512 (*2)							
	Maximum velocity [mm/min]	λ [μm]×122880 (*2)	λ [μm] ×30720 (*2)							
	(*1)The resolution values in the table above are used for calculation of various									
	parameters.									
	(*2) λ [mm] represents a linear scale signal pitch.									
7	When the position detection circ	cuit C for linear motor is a	used, no function is							
	available which can change an	interpolation magnification	on according to a set-up							
	pin. (Fixed at a magnification of	2048)								
	Linear motor position detection circuit C is connected to the scale with an									

absolute address origin.

Parameter setting procedure (2)

For incremental type, For absolute type

Procedure (2) makes parameter settings that depend on the resolution of the linear encoder (hereafter simply called "the resolution"). Set the parameters according to Table 3.1.1 (e), (f).

When using an incremental type linear encoder, calculate as follows: Resolution $[\mu m] =$ encoder signal pitch $[\mu m] / 512$

	#7	#6	#5	#4	#3	#2	#1	#0	
2000								PLC0	
PLC0(#0	PLC0(#0) The number of velocity pulses and the number of position pulses are:								
	0: Used without being modified.								
	1: Used after being multiplied by 10								
	If the number of velocity pulses is lager than 32767, set the parameter to 1.								
If the number of position pulses exceeds 32767, use the following position pulse									
	conversion	coefficient	•				0 1	*	

2023	Number of velocity pulses (PULCO)							
	(Parameter calculation expression)							
	Number of velocity pulses = $3125 / 16 / (resolution [\mu m])$							
	If the calculation result is greater than 32767 , set up PLC0 = 1, and set the parameter							
	(PULCO) with a value of 1/10.							
2024	Number of position pulses (PPLS)							
	(Parameter calculation expression)							
	Number of position pulses = $625 / (resolution [\mu m])$							
	If the calculation result is greater than 32767, determine the parameter setting (PPLS),							
	using the following position pulse conversion coefficient (PSMPYL).							
2185	Position pulses conversion coefficient (PSMPYL)							
	This parameter is used if the calculated number of position pulses is greater than 32767.							
	(Parameter calculation expression)							
	$PLC0 = 0 \rightarrow$ The parameter is set so that the following equation holds: (the number of							
	position pulses) × (position pulses conversion coefficient) = 625 /resolution [µm].							
	$PLC0 = 1 \rightarrow$ The parameter is set so that the following equation holds: $10 \times$ (the number of position pulses) \times (position pulses conversion coefficient) = 625/resolution [um]							
	of position pulses) \times (position pulses conversion coefficient) – 025/resolution [µm].							
	(⁷ See Supplementary 5 of Subsection 2.1.9.)							
	#7 #6 #5 #4 #3 #2 #1 #0							
2013	APTG							
APTG(#7)	α pulse coder software disconnection is:							
	0: Not neglected.							
	Set this parameter to 1 when using an absolute type linear encoder.							
2112	AMR conversion coefficient 1							
2429	AMD conversion coefficient 2							
2150	Setting AMR conversion coefficients							
	Calculate the number of feedback pulses per pole-to-pole span of the linear motor, and							
	find AMR conversion coefficients 1 and 2 expressed by the equation shown below.							
	Number of pulses per pole-to-pole span							
	= pole-to-pole span [mm] \times 1000/resolution [µm]							
	= (AMR conversion coefficient 1) $\times 2^{(AMR \text{ conversion coefficient 2})}$							
	Supplementary							
	If AMR conversion coefficient $1 = (\text{pole-to-pole span [mm]/ resolution [um]})$ is an							
	integer and a multiple of 1024, setting of only AMR conversion coefficient 1 is							
	needed. In this case, the following are assumed:							
	AMR conversion coefficient 1							
	= (pole-to-pole span [mm]/resolution [μ m])							
	AMR conversion coefficient $2 = 0$							
	i ne pole-to-pole span depends on the motor model as indicated in the table below.							
	Table 3.1.1 (d) List of pole-to-pole spans							

B-65270EN/08

Classification	Pole-to-pole span (D)	Motor model		
Small motors	30mm	LiS300A, LiS600A, LiS900A		
Medium-size and large motors	60mm	Model other than the above		

2084		Flexible feed gear numerator						
	_							
2085		Flexible feed gear denominator						

 Flexible feed gear denominator

 Use a unified detection unit for the flexible feed gear (FFG) parameters according to Tables3.1.1 (e) and 3.1.1 (f).

 (Parameter calculation expression)

 FFG = (resolution [µm]) / (detection unit [µm])

Table 3.1.1 (e) Parameter setting when an incremental type linear encoder is used

אפטועוווי-גובי מווע ומושפ וווטנטו גן (אטופ-נט-אטופ גאמוו. טעווווו)								
Cignal nitab		Number of velocity pulses /	AMR conversion	FFG(No.2084/No.2085)				
[μm]	(2000#0)	Conversion coefficient (No.2023 / No.2024, 2185)	coefficient 1 or 2 (No.2112, 2138)	1-μm detection	0.1-μm detection			
20	0	5000 / 16000, 0	3000, 9	5 / 128	50 / 128			
40	0	2500 / 8000, 0	1500, 9	5 / 64	50 / 64			
2	1	5000 / 8000, 2	30000, 9	1 / 256	10 / 256			
4	1	2500 / 8000, 0	15000, 9	1 / 128	10 / 128			
40.513167	0	2468 / 7899, 0	1481, 9	301 / 3804	3010 / 3804			

[Small motors] (pole-to-pole span: 30mm)

Signal nitch DI CO		Number of velocity pulses /	AMR conversion	FFG(No.2084/No.2085)			
[μm]	(2000#0)	Conversion coefficient (No.2023 / No.2024, 2185)	coefficient 1 or 2 (No.2112, 2138)	1-μm detection	0.1-μm detection		
20	0	5000 / 16000, 0	1500, 9	5 / 128	50 / 128		
40	0	2500 / 8000, 0	750, 9	5 / 64	50 / 64		
2	1	5000 / 8000, 2	15000, 9	1 / 256	10 / 256		
4	1	2500 / 8000, 0	7500, 9	1 / 128	10 / 128		
40.513167	0	2468 / 7899, 0	1481, 8	301 / 3804	3010 / 3804		

Table 3.1.1 (f) Parameter setting when an absolute type linear encoder is used [Medium-size and large motors] (pole-to-pole span: 60mm)

Pacalution #		Number of velocity pulses /	AMR conversion	FFG(No.2084/No.2085)		
[μm]	(2000#0)	Conversion coefficient (No.2023 / No.2024, 2185)	coefficient 1 or 2 (No.2112, 2138)	1-μm detection	0.1-μm detection	
0.1	0	1953 / 6250, 0	9375, 6	1/10	1/1	
0.05	0	3906 / 12500, 0	9375, 7	1/20	1/2	
0.01	0	19531 / 6250, 10	23438, 8	1/100	1/10	
0.005	1	3906 / 12500, 0	23438, 9	1/200	1/20	
20/4096	1	4000 / 12800, 0	24000, 9	20/4096	200/4096	

[Small motors] (pole-to-pole span: 30mm)

Decolution		Number of velocity pulses /	AMR conversion	FFG(No.2084/No.2085)		
μm]	(2000#0)	Conversion coefficient (No.2023 / No.2024, 2185)	coefficient 1 or 2 (No.2112, 2138)	1-μm detection	0.1-μm detection	
0.1	0	1953 / 6250, 0	9375, 5	1/10	1/1	
0.05	0	3906 / 12500, 0	9375, 6	1/20	1/2	
0.01	0	19531 / 6250, 10	23438, 7	1/100	1/10	
0.005	1	3906 / 12500, 0	23438, 8	1/200	1/20	
20/4096	1	4000 / 12800, 0	24000, 8	20/4096	200/4096	

B-65270EN/08

(Cautions)

If the encoder signal pitch is larger than 200 μ m, various coefficients used in the servo software may overflow to raise an alarm on invalid parameters, because the setting for the number of velocity pulses becomes very small.

In this case, change the corresponding parameter by referencing Subsection 2.1.9, "Measures for Alarms on Illegal Servo Parameter Settings."

Parameter setting procedure (3)

When a linear motor is used, the linear encoder must be installed so that the Z phase of the linear encoder matches the origin of the activating phase. Otherwise, the specified motor characteristics cannot be obtained. (For details of installation positions, refer to "FANUC LINEAR MOTOR LiS series DESCRIPTIONS (B-65382EN)".)

Procedure (3) describes the method of adjusting the activating phase origin (AMR offset adjustment) when it is difficult to install a linear encoder at a specified position with a specified precision.

Setting the AMR offset For incremental type, For absolute type

- When the learning control function is used, see "Learning Function Operator's Manual".
- When the learning control function is not used, set the AMR offset as follows:

2139	AMR offset
[Unit of data] [Valid data range]	Specifies an activating phase (AMR offset) for phase Z. Degrees -45 to +45 (*)
	(*) Extended AMR offset setting range (-60 degrees to +60 degrees) can be specified by setting the parameter below. So, if the AMR offset value does not lie within the

(*) Extended AMR offset setting range (-60 degrees to +60 degrees) can be specified by setting the parameter below. So, if the AMR offset value does not lie within the range -45 degrees to +45 degrees in adjustment processing, set the bit below. (Usually, set the bit below to 0.)

	#7	#6	#5	#4	#3	#2	#1	#0
2270								AMR60
AMR60 (#0)	Changes the	e AMR offs	set setting r	ange.				

- 0: -45 degrees to +45 degrees (standard setting range)
- 1: -60 degrees to +60 degrees (extended setting range)

The procedure for AMR offset adjustment is described below. The procedure varies according to whether an incremental type linear encoder or absolute type linear enable is used. Before starting an adjustment, check the type of linear encoder used.

Note that if an incorrect AMR offset value is input, the thrust of the motor can decrease or the motor can make an unpredictable motion. After setting a correct AMR offset value, never rewrite the set value manually.

Incremental type

The procedure for AMR offset adjustment when an incremental type linear encoder is used is described below. When using an absolute type linear encoder, see the item of <u>Absolute type</u> described later. Make a fine activating phase adjustment according to the procedure below.

Measuring the activating phase

(1) Connect SERVO GUIDE to the CNC, and set channel data as shown below. Select the target axis for measurement, and set the data type to "ROTOR".

Channel	X
СН1 СН2 СН3 СН4 СН5 СН6	1
Axis Kind Unit	Extended address(E) 0 = Shift(S) 0 =
Conv. Coef. 360 (Physical Val.)	Explanation Rotor position [theta] of the servo motor
Conv. Base 256 (Raw data Val.)	
Origin Value 0	
ОК	Cancel

- * For a linear motor, a value from 0 to 360 degrees is read each time a motion is made over the distance of a pair of the N pole and S pole of the magnet (pole-to-pole span).
- (2) Run the linear motor using a JOG operation for example, and observe the behavior of the activating phase (AMR) before, at the moment, and after phase Z is captured. (See Figs. 3.1.1 (a) and (b).) The activating phase changes to 0 (or 360) degrees at the moment phase Z is captured. Measure the value just before it changes, and let this value be A.

(*) The figures above provide examples where AMR60=0. When AMR60=1, the values should read 60° or lower and 60° or higher.

If a linear scale with absolute addressing reference marks is used, the activating phase is determined when three reference marks are detected. Set the amount of change in the activating phase at this time as the AMR offset value. The determination timing can be found because the resolution of activation phase data changes after the determination of the activation phase. The values before and after the determination of the activation phase depend on the scale position, but the mount of change is constant.

Fig. 3.1.1 (d) If the offset is set with a negative number (with absolute addressing reference marks, before adjustment of the AMR offset)

- (3) Set the AMR offset parameter with A (or A 360).
 * The parameter setting range is:
 -45 degrees to +45 degrees (when AMR60 = 0)
 -60 degrees to +60 degrees (when AMR60 = 1)
 When the value of A does not lie within the setting range, the installation position of the linear encoder needs to be readjusted.
- (4) Switch the power off and on again. Now parameter setting is completed.
- (5) Observe the activating phase (AMR) again according to step (2) above, and check that the activating phase changes continuously in the phase Z rising portion.
- (6) Switch the power off and on again. This completes parameter setting.

Fig. 3.1.1(d) If the offset is set with a negative number (after AMR offset adjustment)

(*) The figures above provide examples where AMR60=0. When AMR60=1, the values should read 60° or lower and 300° or higher.

Absolute type

The procedure for AMR offset adjustment when an absolute type linear encoder is used is described below. When using an incremental type linear encoder, see the item of Incremental type described earlier.

Make a fine activating phase adjustment according to the procedure below.

In this adjustment, the linear motor is driven by current fed from the DC power supply. So, the CNC does not exercise position control. For safety, move the coil slider of the linear motor to near the stroke center and make an adjustment. (Activation by the DC power supply moves a medium-size or large linear motor for up to about 60 mm, and moves a small linear motor for up to about 30 mm.)

(1) Displaying of phase data

Phase data is displayed on the diagnosis screen (No. 762). A display data (phase data) value of 256 is equivalent to an activating phase of 360 degrees. This means that a displayed phase data value is converted to an activating phase [degrees] according to the following expression: Activating phase [degrees] = Displayed phase data value \times 360/256

- (2) Turn off the power to the CNC and servo amplifier.
- (3) Detach the linear motor power line from the servo amplifier, then connect the power line to the DC power supply.

Connect the + terminal of the DC power supply to phase U of the power line, and connect the - terminal of the DC power supply to phase V and phase W of the power line.

Fig. 3.1.1(g) Connection of DC power supply

- (4) In the emergency stop state, turn on the power to the CNC and servo amplifier.
- (5) Display phase data on the diagnosis screen of the CNC then turn on the DC power supply. Next, increase the current gradually (DC activation).

When the force of the linear motor produced by current supplied from the DC power supply exceeds static friction, the linear motor starts moving, and the linear motor automatically stops at a position where activation phase = 0.

A position where activating phase = 0 is present at intervals of 60 mm with medium-size and large linear motors, or at intervals of 30 mm with small linear motors.

If a large current flows abruptly, the motor produces a large force, resulting in a very dangerous situation. When making this adjustment, be sure to increase the current value gradually starting from current value = 0 [Ap].

- (6) Read the value of phase data on the CNC screen in the state where the linear motor rests. Immediately after reading the value, turn off the DC power supply.
 - * Change the DC excitation start position within one pole (60 mm for the medium-sized/large type or 30 mm for the small type) then make measurements of (5) or (6). Repeat this procedure several times to determine average phase data.

(7) Based on activating phase data measured with up to step 6) above, set the AMR offset parameter as described below.

Measured phase data value	AMR offset setting
0 to 32 (42)	$-1 \times$ (measured phase data value) \times 360/256
224 (214) to 255 (255)	360 – (measured phase data value) $ imes$ 360/256
33 (44) to 223 (213)	In this case, a soft phase alarm is issued when phase Z is passed. Adjust the linear encoder installation position according to "FANUC LINEAR MOTOR LiS series DESCRIPTIONS (B-65382EN)". After adjustment, make an AMR offset adjustment again from step (1).

(*) A value enclosed by parentheses assumes that ARM60 is set to 1.

- (8) Turn off then turn on the power to the CNC.
- (9) Perform steps (5) and (6) again, and check that the activating phase data at a stop position is about 0 or 255.
- (10) Turn off the power to the CNC and servo amplifier. Next, connect the power line of the linear motor to the servo amplifier. Then, turn on the power to the CNC and servo amplifier again.
- (11) Decrease the torque limit and excessive error alarm level and use jog feed to check that feed operation is normal. If feed operation is normal, return the torque limit and excessive error alarm level to their original values. This completes the setting.

The activating phase can also be observed by connecting SERVO GUIDE to the CNC and selecting "Monitor" from the "Communication" menu of the graph window. (Set "ROTOR" as the data type in channel setting.)

	0,		
Monitor		×	
H1: Val =	ROTOR	X1 1 213.750000	D
CH2.	None		
Val =			
CH3:	None		
Val =			
CH4:	None		
Val =			
CH5:	None		
Val =			
CH6:	None		
Val =			

Parameter setting procedure (4)

Procedure (4) explains how to set up parameters for using a linear scale with a distance-coded reference marks in linear motor position detection circuit C (A860-<u>0333</u>-T301, -T302 or A860-<u>2033</u>-T301, -T302).

- This function is optional.
- For details of parameter setting, refer to the relevant CNC manual or specifications.

Setting procedure

(1) Enable the linear scale with a distance-coded reference marks.

- (2) Turn the CNC power off and on again.
- (3) Follow this procedure to establish a reference position at an appropriate point. Select the JOG mode, and set the manual reference position return signal ZRN to "1". Set a feed axis direction selection signal (+J1, -J1, +J2, -J2,...) for an axis for which a reference position is to be established to "1" and issue the signal. When an absolute position on the linear scale is detected, the axis stops, causing the reference position-established signal (ZRF1, ZRF2,...) to be set to "1". If an overtravel alarm is issued in establishing a reference position, try to establish a reference position by disabling a stored stroke check.
- (4) In the JOG or handle feed mode, place the machine accurately on the reference position.
- (5) Using the following steps, perform the automatic setting of parameter No. 1883.

	#7	#6	#5	#4	#3	#2	#1	#0		
1819						DAT				
DAT (#2)	DAT (#2) At a manual reference position return, the automatic setting of parameter No. 1883 is:									
	0: Not pe	erformed								
	1	1 7	•							

1: Performed \leftarrow To be set

After setting this parameter to "1", perform a manual reference position return. When the manual reference position return is completed, parameter No. 1883 is specified, and this parameter is automatically reset to "0".

(6) If you want to disable a stored stroke check in establishing a reference position, re-set the necessary parameters to the original setting.

(7) Specify parameter No. 1240 as required.

(8) This is the end of setting.

Parameter setting procedure (5)

Procedure (5) can be used to set parameters according to the cooling method used for linear motors. Change the following parameters as listed in Table 3.1.1 (g). For self-cooling linear motors, the parameters need not be set here, because they are set up at initialization in procedure (1).

CAUTION If the correct values corresponding to the cooling method are not set in the parameters above, expected thermal protection cannot be provided. Use care.

200-V drivin	<u>g]</u>							
Model	Motor specification	Cooling method	Continuous force (N)	POVC1 No.2062	POVC2 No.2063	POVCLMT No.2065	RTCURR No.2086	OVCSTP No.2161
1:020041/4	0441 8200	No cooling	50	32720	596	589	564	0
L13300A1/4	0441-6200	Water cooling	100	32578	2380	2357	1129	0
1/560041/4	0442 8200	No cooling	100	32720	596	589	564	0
L/3000A1/4	0442-6200	Water cooling	200	32578	2380	2357	1129	0
1:000041/4	0442 8200	No cooling	150	32721	583	1326	847	0
L/3900A1/4	0443-8200	Water cooling	300	32582	2328	5303	1694	0
L:S1500D1/4		No cooling	300	32698	873	2590	1184	0
L/S 1500B 1/4	0444-В2Ш0	Water cooling	600	32490	3481	10358	2368	0
1:0200002/2	0445-B1□0	No cooling	600	32711	719	2131	1074	0
L153000B2/2		Water cooling	1200	32539	2867	8523	2148	0
L:02000D2/4		No cooling	600	32698	873	2590	1184	0
L153000B2/4	0445-В2Ш0	Water cooling	1200	32490	3481	10358	2368	0
1:0450002/2		No cooling	900	32707	758	1199	805	0
L154500B2/2	0446-B1L10	Water cooling	1800	32526	3023	4794	1611	0
L:04500D2/4		No cooling	900	32707	768	1214	810	0
L154500B2/4	0446-В2Ш0	Water cooling	1800	32527	3018	4787	1610	0
LiS6000B2/2	0447-B100	No cooling	1200	32711	719	2131	1074	0
L:0000002/2	0	Water cooling	2400	32539	2867	8523	2148	0
L <i>i</i> S6000B2/4	0447-B200	No cooling	1200	32708	753	2233	1184	0
L:0000002/4	0447-B2L10	Water cooling	2400	32528	3003	8932	2368	140

B-65270EN/08

Model	Motor	Cooling	Continuous	POVC1	POVC2	POVCLMT	RTCURR	OVCSTP
Woder	specification	method	force (N)	No.2062	No.2063	No.2065	No.2086	No.2161
L <i>i</i> S7500B2/2 0448-B1□0		No cooling	1500	32707	765	832	671	0
	0440-ВТШО	Water cooling	3000	32524	3053	3329	1342	0
L:07500D2/4		No cooling	1500	32687	1010	799	658	0
L/37500B2/4	0448-В2Ш0	Water cooling	3000	32446	4026	3197	1316	0
L:0000002/2	0440 04 00	No cooling	1800	32707	758	1199	805	0
L139000B2/2	0449-8100	Water cooling	3600	32526	3023	4794	1611	0
L:S0000B2/4	0440 0040	No cooling	1800	32696	895	1151	789	0
L/39000B2/4	0449-8210	Water cooling	3600	32482	3570	4604	1579	0
1:6220001/2		No cooling	660	32708	749	1184	801	0
L183300C1/2	0451-8100	Water cooling	1320	32529	2987	4738	1602	0
1.:000002/2	0454-B1□0	No cooling	1800	32729	489	1112	776	0
L139000C212		Water cooling	3600	32612	1953	4448	1552	0
1:61100002/2		No cooling	2200	32723	560	1661	948	0
LIST1000C2/2	0455-ВТШ0	Water cooling	4400	32589	2236	6644	1897	0
1;51100002/4	0455-B220	No cooling	2200	32729	492	1311	842	0
E/311000C2/4	0433-0220	Water cooling	4400	32598	2119	5246	1685	0
1:01500002/2		No cooling	3000	32729	483	621	579	0
E/315000C2/2	0430-8100	Water cooling	7000	32558	2623	3378	1352	0
1:01500000/2		No cooling	3000	32732	452	1340	852	0
LiS15000C2/3	0450-В2Ш0	Water cooling	7000	32572	2455	7296	1988	140
1.81000002/2		No cooling	2000	32722	582	1719	964	0
L1310000C3/2	0437-8100	Water cooling	4000	32583	2314	6875	1929	0
1:61700000/0		No cooling	3400	32711	709	981	729	0
LIST/000C3/2	0439-0100	Water cooling	6800	32542	2829	3925	1458	0

[400-V driving]

Madal	Motor	Cooling	Continuous	POVC1	POVC2	POVCLMT	RTCURR	OVCSTP
woder	specification	method	force (N)	No.2062	No.2063	No.2065	No.2086	No.2161
L:S1500P1/4		No cooling	300	32698	873	2590	1184	0
L/S1500B1/4	0444-B2L10	Water cooling	600	32490	3481	10358	2368	0
L:02000D2/2		No cooling	600	32711	719	2131	1074	0
L153000B2/2	0445-B1L10	Water cooling	1200	32539	2867	8523	2148	0
		No cooling	900	32714	681	1549	915	0
L134000B2/2HV	0446-В0Ш0	Water cooling	1800	32551	2718	6194	1831	0
1:04500002/2		No cooling	900	32707	758	1199	805	0
L154500B2/2	0446-8100	Water cooling	1800	32526	3023	4794	1611	0
	0447-B0□0	No cooling	1200	32706	774	688	610	0
L130000B2/2HV		Water cooling	2400	32521	3085	2753	1221	0
L:000002/2		No cooling	1200	32711	719	2131	1074	0
L156000B2/2	0447-B1L10	Water cooling	2400	32539	2867	8523	2148	0
		No cooling	1500	32714	680	1075	763	0
L137500B2/2HV	0448- 8000	Water cooling	3000	32551	2713	4301	1526	0
1:07500002/2		No cooling	1500	32709	739	658	596	0
L1S7500B2/2	0448- 8100	Water cooling	3000	32532	2949	2631	1193	0
L:0000002/2	0440 0450	No cooling	1800	32709	737	947	716	0
L129000B2/2	0449- В1⊔0	Water cooling	3600	32533	2940	3788	1432	140

Madal	Motor	Cooling	Continuous	POVC1	POVC2	POVCLMT	RTCURR	OVCSTP
wodei	specification	method	force (N)	No.2062	No.2063	No.2065	No.2086	No.2161
1/8220001/2	300C1/2 0451 B100	No cooling	660	32708	749	1184	801	0
LiS3300C1/2	0451- 8100	Water cooling	1320	32529	2987	4738	1602	0
		No cooling	1800	32729	489	1112	776	0
L/39000C2/2HV	0454- 6000	Water cooling	3600	32614	1925	4383	1540	0
1.:0000002/2		No cooling	1800	32728	494	879	689	0
L159000C2/2	0454- 8100	Water cooling	3600	32610	1972	3514	1379	0
1 :0 4 4 0 0 0 0 0 /0 1 1 /		No cooling	2200	32723	560	1661	948	0
LiS11000C2/2HV	0455- В0Ц0	Water cooling	4400	32589	2236	6644	1897	0
1:04400000/0	0455- B1⊡0	No cooling	2200	32730	474	1312	843	0
LIST1000C2/2		Water cooling	4400	32616	1894	5250	1686	140
1:04500000/01/01		No cooling	3000	32730	471	1396	869	0
L1S15000C2/3HV	0456-В0Ш0	Water cooling	7000	32563	2557	7601	2029	140
L:S15000C2/2		No cooling	3000	32729	483	621	578	0
L/315000C2/2	0456- ВТЦО	Water cooling	7000		1	1	-	—
		No cooling	2000	32722	576	1707	961	0
E/310000C3/211V	0457- 8000	Water cooling	4000	32584	2298	6828	1923	0
1/8100002/2		No cooling	2000	32720	597	1358	857	0
L/310000C3/2	0457- 6100	Water cooling	4000	32577	2384	5432	1715	140
		No cooling	3400	32711	709	981	729	0
L/S17000C3/2HV	0459- ВОШО	Water cooling	6800	32542	2829	3925	1458	0
1;51700002/2		No cooling	3400	32711	709	981	729	0
LIST/000C3/2	0459- BILLO	Water cooling	6800	32542	2829	3925	1458	0

[Conventional linear motors]

Model	Motor specification	Cooling method	Continuous force (N)	POVC1	POVC2	POVCLMT	RTCURR
		No cooling	300	32698	873	2590	1184
1500A/4	0410	Air cooling	360	32667	1257	3729	1421
		Water cooling	600	32490	3481	10358	2369
		No cooling	600	32698	873	2590	1184
3000B/2	0411	Air cooling	720	32667	1257	3729	1421
		Water cooling	1200	32490	3481	10358	2369
		No cooling	600	32698	873	2590	1184
3000B/4	0411-B811	Air cooling	720	32667	1257	3729	1421
		Water cooling	1200	32490	3481	10358	2368
		No cooling	1200	32698	873	2590	1184
6000B/2	0412	Air cooling	1440	32667	1257	3729	1421
		Water cooling	2400	32490	3481	10358	2369
00000		No cooling	1200	32706	777	2304	1117
6000B/4 (160 A driving)	0412-B811	Air cooling	1440	32679	1118	3317	1340
(100-A driving)		Water cooling	2400	32520	3098	9215	2234
		No cooling	1800	32729	491	1457	888
9000B/2 (160-A driving)	0413	Air cooling	2160	32711	707	2098	1065
		Water cooling	3600	32611	1962	5827	1776
000000//		No cooling	1800	32737	388	1151	789
9000B/4 (360 A driving)	0413-B811	Air cooling	2160	32723	559	1657	947
(360-A ariving)		Water cooling	3600	32644	1551	4604	1579

B-65270EN/08

Model	Motor specification	Cooling method	Continuous force (N)	POVC1	POVC2	POVCLMT	RTCURR
450000/0		No cooling	3000	32751	209	621	579
15000C/2 (360-A driving)	0414	Air cooling	3600	32744	301	894	695
		Water cooling	7000	32677	1139	3378	1352
		No cooling	3000	32732	452	1340	852
15000C/3	0414-B811	Air cooling	3600	32716	651	1930	1022
		Water cooling	7000	32572	2455	7296	1988

(6) Illegal servo parameter setting alarms when linear motors are used

The following illegal servo parameter setting alarms are checked additionally when linear motors are used (they are not issued for rotary motors).

Parameter error alarm detail No.	Description				
10043	No separate detector can be used for linear motors. Full-closed loop setting results in an alarm being issued.				
1123	If no AMR conversion coefficient is set, an alarm is issued. Even when the linear encoder is not relocated after the motor is replaced, the AMR conversion coefficients must be re-set, because initialization accompanying motor replacement causes the AMR coefficients to be erased.				
1393	The valid AMR offset data range is below : -45 (degrees) and +45 (degrees) : (AMR60=0) -60 (degrees) and +60 (degrees) : (AMR60=1) If a value out of this range is specified in the parameter, an invalid-parameter alarm is issued.				

Table 3.1.1 (d) Parameter error alarm detail numbers during use of the linear motor

When an AMR conversion coefficient is not set, an alarm is issued. If it is set, but incorrect, no alarm is issued. In this case, the linear motor fails to drive correctly immediately after it passes phase Z. It may move within one pole-to-pole span (60 mm or 30 mm) in the worst case.

(7) Notes on using high-speed HRV current control or the cutting /rapid velocity loop gain switching function

In general, a higher velocity loop gain (load inertia ratio) is set for a linear motor than for a rotary motor. So, if high-speed HRV current control and the cutting /rapid velocity loop gain switching function are used at the same time to achieve an even higher velocity loop gain, an overflow can occur in the internal value of the post-override velocity load proportional (PK2V: parameter No. 2044). (The parameter error detail number is 443). In this case, set the parameter indicated below. Whether an overflow occurs or not can be checked using Fig. 3.1.1 (h).

B-65270EN/08

3.SETTING PARAMETERS OF LINEAR MOTOR AND SYNCHRONOUS BUILT-IN SERVO MOTOR

Fig. 3.1.1 (h) PK2V overflow check

*1 In the flowchart above, the velocity loop gain override is represented by one of the following parameters:

Velocity gain magnification when high-speed HRV current control is enabled \rightarrow (No. 2335)

Velocity gain override when the cutting feed/rapid traverse switchable velocity loop gain function is enabled \rightarrow (No. 2107)

3.1.2 Smoothing Compensation for Linear Motor

(1) Overview

Smoothing compensation for linear motors improves the smoothness in feed of a linear motor by producing a sinusoidal compensation torque with a cycle of 1/2, 1/4, or 1/6 of the pole-to-pole span produced by servo software and by applying such a torque to the current command. Compensation torque can be generated for each motor by setting gain and phase for each component.

Fig. 3.1.2 (a) Diagrammatic drawing showing smoothing compensation

(2) Series and editions of applicable servo software

CNC	Servo software		Demerika
CNC	Series	Edition	Remarks
Series 30 <i>i/</i> 31 <i>i/</i> 32 <i>i/</i> 35 <i>i</i> -B	90G0	03.0 and subsequent editions	
Power Motion <i>i</i> -A			
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	A(01) and subsequent editions	
	90E1	01.0 and subsequent editions	
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	A(01) and subsequent editions	HRV4
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions	
	90C8	A(01) and subsequent editions	
	90E5	A(01) and subsequent editions	
	90E8	A(01) and subsequent editions	

(3) Setting parameters

Setting of the smoothing compensation in the positive direction

2130	Smoothing compensation performed twice per pole pair				
	Correction gain (high-order 8 bits)	Correction phase (low-order 8 bits)			
2131	Smoothing compensation per	formed four times per pole pair			
	Correction gain (high-order 8 bits)	Correction phase (low-order 8 bits)			
2132	Smoothing compensation per	rformed six times per pole pair			
, <u> </u>	Correction gain (high-order 8 bits)	Correction phase (low-order 8 bits)			

Setting of the smoothing compensation in the negative direction

If the correction gain of the following parameters is set to a non-zero value, it is possible to set a value different value in the negative direction that is different from a value in the positive direction. To set the same value between the negative direction and the positive direction, set the correction gain of the following parameters to 0.

2369	Smoothing compensation performed twice per pole pair (negative direction)			
	Correction gain (high-order 8 bits)	Correction phase (low-order 8 bits)		
2370	Smoothing compensation performed for	ur times per pole pair (negative direction)		
	Correction gain (high-order 8 bits)	Correction phase (low-order 8 bits)		
2371	Smoothing compensation performed si	x times per pole pair (negative direction)		
<u> </u>	Correction gain (high-order 8 bits)	Correction phase (low-order 8 bits)		

Since the compensation parameters differ from motor to motor (depending on the motor rather than the model), these parameters must be determined for each motor assembled.

In principle, variation in torque command that is generated when the motor is fed at a low speed depends on the position. The application of smoothing compensation cancels this position-dependent characteristic, allowing the motor to move smoothly.

By using SERVO GUIDE, these parameters can be determined easily. Follow the procedure below to measure the activating phase and torque command, which are required to determine the compensation parameters.

<1> Set channels as follows:

Channel 1: Activating phase

Select the target axis for measurement, and set "ROTOR" as the data type.

Channel	x
СН1 СН2 СН3 СН4 СН5 СН6	1
Axis Kind Unit Conv. Coef. 360 (Physical Val.) Conv. Base 256 (Raw data Val.)	Extended address(E) 0 = Shift(S) 0 = Explanation Rotor position [theta] of the servo motor
Origin Value 0	
ОК	Cancel

Channel 2: Torque command

Select the target axis for measurement, and set "TCMD" as the data type.

As the conversion coefficient, set the maximum current of the amplifier used for the target axis.

Channel	×
СН1 СН2 СН3 СН4 СН5 СН6	1
Axis Kind Unit	Extended address(E) 0 = Shift(S) 0 =
Conv. Coef. 100 (Physical Val.) Conv. Base 7282 (Raw data Val.) Origin Value 0	Explanation Torque command(TCMD) Physical value is need to set max, current (Ap) of amplifier. Default value is 100 in convention which convert measured data to percent by max, torque.
ОК	Cancel

- <2> Create a program that performs back and forth motion at a feedrate of F1200 (mm/min). If the distance of movement is shorter than the pole-to-pole span, it is impossible to automatically calculate smoothing compensation parameters. Therefore, it is recommended that the distance of movement be at least 200 mm for large linear motors or at least 100 mm for small linear motors. For the number of measurement points, provide an enough time to obtain data during one back and forth motion of the motor. (About 15000 to 20000 points in 1-ms sampling)
- <3> When making measurements, lower the velocity gain to such an extent that hunting does not occur.
- <4> From the "Tools" menu, select "Smoothness compensation calc.".
- (The shortcut is [Ctrl] + [L].)
- <5> In the displayed dialog box, press the [Add] button. Then waveform data is analyzed, and candidates of the compensation parameters are registered.

B-65270EN/08

LinearMotor Smoothnes:	s Compensation	inearMotor Smoothness Compensation					
Display target waveforms press [Add] button to cale Add(<u>A)</u>	and then Parameter che	ange(P) Clear param. Set param.					
Normal direction	Del Calc(N)	-27478 7128 2988					
data 2/span	4/span	6/span					
1 (148:170)	(27: 216)	(11: 173)					
2 (148:170)	(27: 216)	(11: 173)					
♥ 3 (148:170) □ 4 □ 5	(27: 216)	(10: 170)					
Reverse direction	Del Calc <u>R</u>	-30040 6116 2438					
data 2/span	4/span	6/span					
✓ 1 (138: 168)	(23: 227)	(9: 135)					
2 (138:168)	(24: 228)	(9: 134)					
♥ 3 (139:168) □ 4 □ 5	(23: 228)	(9:134)					
4-power compensatio	n						

<6> The compensation parameters slightly vary depending on the measurement situation. So, repeat a data measurement and a press of the [Add] button several times in a similar manner while keeping the dialog box open. (Up to five candidates can be registered.)

If the displayed values include an extremely different value, check the corresponding check box on the leftmost side of the list so that the value is not taken into account in the final compensation calculation.

- <7> Finally, press the [Calc] button for each of the forward and backward directions. Then, smoothing compensation parameters are displayed.
- <8> When the target axis for parameter transfer is selected in "Parameter change", and the [Set param.] button is pressed, the presented parameters are set in the CNC.
- <9> Measure TCMD again to confirm the effect of smoothing compensation.

(*) For details on the use of SERVO GUIDE, refer to the help of SERVO GUIDE.

3.2 SYNCHRONOUS BUILT-IN SERVO MOTOR PARAMETER SETTING

3.2.1 Procedure for Setting the Initial Parameters of Synchronous Built-in Servo Motors

(1) Overview

The following describes the procedure for setting the digital servo parameters to enable the use of a FANUC synchronous built-in servo motor.

To drive a synchronous built-in servo motor, the optional pole detection function is required.

(2) Series and editions of applicable servo software

CNC		Servo software	Demerke
CNC	Series	Edition	Remarks
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions	
Power Motion <i>i</i> -A			
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	A(01) and subsequent editions	
	90E1	01.0	
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	A(01) and subsequent editions	HRV4
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions	
	90C8	A(01) and subsequent editions	
	90E5	A(01) and subsequent editions	
	90E8	A(01) and subsequent editions	

(3) Warning

- 1 A synchronous built-in servo motor can make an unpredictable movement or vibration if the basic parameters for pole detection and so forth are not set correctly.
- 2 Take the following actions until the synchronous built-in servo motor is confirmed to operate normally:
 - Lower the excessive error level so that an alarm is issued immediately when an unpredictable movement is made.
 - Lower the torque limit value to disable abrupt acceleration.
 - Ensure that the emergency stop switch can be pressed immediately.

(4) Rotary encoder

A rotary encoder is used to detect the position and speed of a synchronous built-in servo motor. Table 3.2.1 (a) lists examples of usable rotary encoders.

Rotary encoder	Number of pulses for parameter setting ^(*1)	Remarks
α <i>i</i> CZ 512A	500,000 p/rev	Manufactured by FANUC
α <i>i</i> CZ 768Α ^(*2)	750,000 p/rev	Manufactured by FANUC
α <i>i</i> CZ 1024A	1,000,000 p/rev	Manufactured by FANUC
RCN223F, RCN723F, RCN727F ^(*3)	8,000,000 p/rev	Manufactured by HEIDENHAIN
Analog encoder (binary type) and synchronous built-in	a v 512p/rov	λ : Number of sine waves per
servo motor position detection circuit ^(*4)	λ×512p/lev	detector revolution

Table 3.2.1 (a) Examples of usable rotary encoders

Rotary encoder	Number of pulses for parameter setting ^(*1)	Remarks
Analog encoder (non-binary type) and synchronous built-in servo motor position detection circuit ^{(*2) (*4)}	$\lambda \times 512 \text{p/rev}$	λ: Number of sine waves per detector revolution

(*1) Number of pulses for parameter setting, which differs from an actual resolution.

(*2) The following servo software is required to use the α CZ 768A analog encoder (non-binary type) and the synchronous built-in servo motor position detection circuit as a rotary encoder for the synchronous built-in servo motor in the 30i-A Series.

Series 90D0, 90E0/J(10) and subsequent editions

The following servo software is required to use the synchronous built-in servo motor position detection circuit (A860-2033-T601) in the 30i-A Series.

Series 90D0, 90E0/P(16) and subsequent editions

(*3) The following servo software is required to use the RCN727F as a rotary encoder for the synchronous built-in servo motor in the 30i-A Series.

Series 90D0, 90E0/J(10) and subsequent editions

(*4) Analog encoder (binary type) :

Encoder that outputs an analog signal (sine wave, 1Vp-p) and represents number λ per revolution as a binary number (power of 2)

Analog encoder (non-binary type) :

Encoder that outputs an analog signal (sine wave, 1Vp-p) and represents number λ per revolution as a binary number (which is not a power of 2)

NOTE

- 1 For details of rotary encoders usable with FANUC synchronous built-in servo motors, refer to "FANUC SYNCHRONOUS BUILT-IN SERVO MOTOR D*i*S series Descriptions (B-65332EN)".
- 2 For detailed specifications of a rotary encoder supplied by a vendor other than FANUC, contact the manufacturer of the rotary encoder.

Keep the following in mind when the synchronous built-in servo motor is combined with the structure including the analog encoder (non-binary type) and the synchronous built-in servo motor position detection circuit.

- 1 Absolute setting is disabled.
- 2 The movable range is within ± 1 detector revolution.
- (Use assuming infinite revolution is disabled.)
- 3 Each time the power to the NC is turned on, pole position detection must be performed without fail.

3.2.1.1 Parameter Setting Procedure (1) (Initialization)

In parameter setting procedure (1), parameters for the current gain etc. required to drive the synchronous built-in servo motor are initialized. After setting DGPR to 0, set the motor ID number. For the connection and setting method for the overheat signal (thermostat signal), see Section 3.3, "DETECTION OF AN OVERHEAT ALARM BY SERVO SOFTWARE WHEN A LINEAR MOTOR AND A SYNCHRONOUS BUILT-IN SERVO MOTOR ARE USED".
	#1	#6	#5	#4	#3	#2	#1	#0
2000							DGPR	
	automatica	ally set to 1.)						

Table 3.2.1 (b) indicates the synchronous built-in servo motors for which the standard parameters are available as of March, 2013. The servo software shown in Table 3.2.1(b) is required to automatically load the standard parameters described in Section 9.4. To perform automatic loading, set bit 1 of parameter No. 2000 to 0, set the motor ID number, make the following basic settings, and restart the CNC. Upon completion of automatic loading, bit 1 of parameter No. 2000 is automatically set to 1. When the servo software used does not support automatic loading, set the parameters manually with reference to the parameter list shown in this manual. The parameters to be loaded automatically are those for non-cooling. For liquid cooling, set the OVC parameters manually with reference to Subsection 3.2.1.3 after detecting the magnetic pole.

Table 3.2.1 (b) Motor ID numbers of the synchronous built-in servo motors and servo software that can be
loaded automatically

			1		1		
Motor model	Motor specification	Motor ID No.	90G0	90D0 90E0	90E1	90C5 90E5	90C8 90E8
DiS 400/250	0485-B20□	419	05.0	30.0	07.0	F	В
DiS 22/600	0482-B10□	421	03.0	Р	01.0	А	А
DiS 85/400	0483-B20□	423	03.0	Ν	01.0	А	А
DiS 110/300	0484-B10□	425	03.0	Ν	01.0	А	А
DiS 260/300	0484-B30□	427	03.0	Ν	01.0	А	А
DiS 260/600	0484-B31□	429	03.0	Р	01.0	А	А
DiS 370/300	0484-B40□	431	03.0	Ν	01.0	А	А
DiS 800/250	0485-B40□	433	05.0	30.0	07.0	F	В
DiS 1200/250	0485-B50□	435	03.0	Р	01.0	Α	Α
DiS 1500/200	0486-B30□	437	03.0	Ν	01.0	А	А
DiS 2100/150	0487-B30□	439	03.0	Ν	01.0	А	А
DiS 3000/150	0487-B40□	441	03.0	Ν	01.0	А	А
DiS 85/1000	0483-B22□	443	03.0	Р	01.0	А	А
D <i>i</i> S 110/1000	0484-B12□	445	03.0	Р	01.0	А	А
DiS 260/1000	0484-B32□	447	03.0	Р	01.0	А	А
DiS 22/1500	0482-B12□	449	03.0	Q	01.0	А	А
D <i>i</i> S 15/1000	0492-B100	551	05.0	30.0	07.0	F	В
D <i>i</i> S 60/400	0493-B200	553	05.0	30.0	07.0	F	В
DiS 70/300	0494-B100	555	05.0	30.0	07.0	F	В
DiS 150/300	0494-B300	557	05.0	30.0	07.0	F	В
DiS 200/300	0494-B400	559	05.0	30.0	07.0	F	В
DiS 250/250	0495-B200	561	05.0	30.0	07.0	F	В
DiS 500/250	0495-B400	563	05.0	30.0	07.0	F	В
DiS 1000/200	0496-B300	565	12.0	33.0	10.0	F	С
D <i>i</i> S 1500/100	0497-B300	567	12.0	33.0	10.0	F	С
DiS 2000/100	0497-B400	569	12.0	33.0	10.0	F	С
DiS 2000/150	0497-B490	571	12.0	33.0	10.0	F	С
D <i>i</i> S 60/2000	0493-B220	577	19.0	-	-	-	-
DiS 70/1500	0494-B120	579	19.0	-	-	-	-
DiS 150/1500	0494-B320	581	19.0	-	-	-	_
DiS 500/1000	0495-B420	583	19.0	-	-	-	-

[400-V driving]	00-V driving]								
Motor model	Motor specification	Motor ID No.	90G0	90D0 90E0	90E1	90C5 90E5	90C8 90E8		
DiS 400/250	0485-B20□	420	05.0	30.0	07.0	F	В		
DiS 22/600	0482-B10□	422	03.0	Р	01.0	Α	Α		
D <i>i</i> S 85/400	0483-B20□	424	03.0	Ν	01.0	Α	Α		
DiS 110/300	0484-B10□	426	03.0	Ν	01.0	А	А		
DiS 260/300	0484-B30□	428	03.0	Ν	01.0	А	Α		
DiS 260/600	0484-B31□	430	03.0	Р	01.0	Α	Α		
DiS 370/300	0484-B40□	432	03.0	Ν	01.0	Α	Α		
DiS 800/250	0485-B40□	434	05.0	30.0	07.0	F	В		
DiS 1200/250	0485-B50□	436	03.0	Р	01.0	Α	Α		
DiS 1500/200	0486-B30□	438	03.0	Ν	01.0	Α	Α		
DiS 2100/150	0487-B30□	440	03.0	Ν	01.0	Α	Α		
DiS 3000/150	0487-B40□	442	03.0	N	01.0	Α	Α		
DiS 15/1000	0492-B100	552	05.0	30.0	07.0	F	В		
D <i>i</i> S 60/400	0493-B200	554	05.0	30.0	07.0	F	В		
DiS 70/300	0494-B100	556	05.0	30.0	07.0	F	В		
DiS 150/300	0494-B300	558	05.0	30.0	07.0	F	В		
DiS 200/300	0494-B400	560	05.0	30.0	07.0	F	В		
DiS 250/250	0495-B200	562	05.0	30.0	07.0	F	В		
DiS 500/250	0495-B400	564	05.0	30.0	07.0	F	В		
DiS 1000/200	0496-B300	566	05.0	30.0	07.0	F	В		
DiS 1500/100	0497-B300	568	12.0	33.0	10.0	F	С		
DiS 2000/100	0497-B400	570	12.0	33.0	10.0	F	С		
DiS 2000/150	0497-B490	572	05.0	30.0	07.0	F	В		
DiS 5000/50	0488-B400	573	12.0	33.0	10.0	F	С		
DiS 60/2000	0493-B220	578	19.0	-	-	-	-		
DiS 70/1500	0494-B120	580	19.0	-	-	-	-		
DiS 150/1500	0494-B320	582	19.0	-	-	-	-		
DiS 500/1000	0495-B420	584	19.0	-	-	-	-		

The motor ID numbers are for SERVO HRV2. Automatic loading is possible with the servo software of the series and edition listed above or subsequent editions.

After the parameters are loaded automatically, make sure that the function bit for synchronous built-in servo motor control is enabled.

1: Enabled

(2) Setting the rotation direction

2022	Movement direction					
+111	When the positive direction of the table matches the positive direction of the rotary					
	encoder, specification of the positive direction turns the table in the positive direction.					
-111	When the positive direction of the table matches the positive direction of the rotary					

encoder, specification of the positive direction turns the table in the reverse direction.

Fig. 3.2.1 (a) Relationship between the table and the rotary encoder

(3) Setting of parameters related to feedback

The necessary parameters are set depending on the type of a rotary encoder to be used.

(Parameter calculation expression)

When PLC0=0

 \rightarrow Set so that Number of position pulses = PPLS \times PSMPYL.

When PLC0=1

 \rightarrow Set so that Number of position pulses = $10 \times PPLS \times PSMPYL$

Table 3.2.1 (c) Setting the number of	or velocity purses and number or position purses					
Rotary encoder	PLC0 (No.2000#0)	PULCO (No.2023)	PPLS (No.2024)	PSMPYL (No.2185)		
α <i>i</i> CZ 512A	0	4096	6250	0		
α <i>i</i> CZ 768A	0	6144	9375	0		
α <i>i</i> CZ 1024A	0	8192	12500	0		
RCN223F, RCN723F, RCN727F	1	6554	10000	0		
Analog encoder (binary type) and synchronous built-in servo motor position detection circuit		(*1)			
Analog encoder (non-binary type) and synchronous built-in servo motor position detection circuit	(*2)					

Table 3.2.1 (c) Setting the number of velocity pulses and number of position pulses

(*1) When a set of an analog encoder (binary type) and synchronous built-in servo motor position detection circuit is used, the number of velocity pulses and the number of position pulses are calculated according to the following expressions:

Number of velocity pulses $= 2 \times \lambda$ Number of position pulses $= 3125 \times \lambda/1024$

- (λ : Number of sine waves per detector revolution)
- (*2) When a set of an analog encoder (non-binary type) and synchronous built-in servo motor position detection circuit is used, the number of velocity pulses and the number of position pulses are calculated according to the following expressions:

Number of velocity pulses = $2 \times \lambda$ Number of position pulses = $32 \times \lambda/5$

(λ : Number of sine waves per detector revolution)

2084	Flexible feed gear numerator							
2085			Fle	exible feed ge	ar denominat	tor		
	(Parameter	calculation	expression)				
		o.2084 _	Number of	[;] pulses per r	notor revolut	ion (detectio	n unit)	
	N ⁻ N	o.2085 [–]	Numbe	er of pulses p	er rotary end	oder revolut	ion	
	For the number of pulses per rotary encoder revolution, see Table 3.2.1 (a).							
4004								
1821	Reference counter capacity							
	Set the nu	mber of p	ulses per n	notor revol	ution (dete	ction unit)	or the sar	ne number
	divided by	an integer.		(11 - 1	C 1		4.1.0	,
	with $\alpha i CZ$	2 /68A, h	owever, set	t the num	per of puls	ses per on	e-third of	one motor
	revolution (detection u	init) or the s	same numbe	er alvided b	y an intege	r.	
	#7	#6	#5	#4	#3	#2	#1	#0
2275							RCNCLR	800PLS
800PLS (#0)	A rotary en	coder with	eight millio	n pulses pe	r revolutior	ı is [.]		
	0: Not to	be used.	•	in pailors pe				
	1: To be	used. (To u	use the RCN	223F. 723I	F. or 727F. s	set the bit t	o 1.)	
		X X		,	, ,)	
RCNCLR (#1)	The number	r of revolut	ion is:					
	0: Not to	be cleared						
	1: To be	cleared. (T	o use the R	CN223F, 72	23F, or 727	F, set the bi	it to 1.)	
	This functi	on bit is t	to be set in	n combinat	tion with the	he number	of data m	nask digits,
	described b	elow.						C /
2394			Numb	per of data ma	nsk digits (DN	IASK)		
[Settings]	8. (To use t	he RCN22	3F, 723F, oi	r 727F)				
	This param	eter need n	ot be set fo	r an α <i>i</i> CZ s	sensor. (Wh	en using a	n α <i>i</i> CZ sens	sor, set this
	parameter t	o 0.)						
	Set this par	ameter toge	ether with R	CNCLR at	ove.			
~								
Setting of an A	MR convers	ion coeffic	ient			"0		
2004	#/	#6	#5	#4	#3	#2	#1	#U
2001	U Sat the relu	AWIR6	AWIK5	AWIK4	AMR3	ANIK2	AWIK1	

Table 3.2.1 (d) Setting AMR

Rotary encoder	AMR6-AMR0
α <i>i</i> CZ 512A	Set the number of motor poles/2 in binary.
α <i>i</i> CZ 768A	Set the number of motor poles/2 in binary.
α <i>i</i> CZ 1024A	Set the number of motor poles/2 in binary.

Rotary encoder	AMR6-AMR0
RCN223F, RCN723F, RCN727F	Set the number of motor poles/2 in binary.
Analog encoder (binary type)	
and synchronous built-in servo motor position	Set the number of motor poles/2 in binary.
detection circuit	
Analog encoder (non-binary type)	
and synchronous built-in servo motor position	Set 0.
detection circuit	

NOTE

In PARAMETER MANUAL B-65270EN/07 or earlier, parameter No. 2001 was set to the number of poles when some rotary encoders are used. Although the number of motor poles may be set as before except high speed models, this version of PARAMETER MANUAL or later recommends that parameter No. 2001 be set to the number of motor poles divided by two for consistency of the setting. If the number of motor poles divided by two is set when the following two conditions are satisfied, smoothing compensation may not function correctly. In this case, use the conventional setting (set the number of motor poles).

• The α*i*CZ 512A is used.

 The servo software 90G0/03.0 to 17.0 is used. The settings of parameter No. 2001 and parameter No. 2138 need to be changed together. (Only one of these parameters cannot be set to a conventional value.)

		#7	#6	#5	#4	#3	#2	#1	#0
2220	Ī								DECAMR

Set the value that matches the type of a rotary encoder used, according to Table 3.2.1 (e).

Table 2.2.4 (a) Catting DECAMD

Rotary encoder	Setting DECAMR					
α <i>i</i> CZ 512A	Set 0.					
α <i>i</i> CZ 768A	Set 1.					
α <i>i</i> CZ 1024A	Set 0.					
RCN223F, RCN723F, RCN727F	Set 0.					
Analog encoder (binary type)	Set 0.					
Analog encoder (non-binary type)						
and synchronous built-in servo motor position detection circuit	Set 1.					

2112

AMR conversion coefficient 1 (AMRDL)

2138

AMR conversion coefficient 2 (AMR2) Set the value that matches the type of a rotary encoder used, according to Table 3.2.1 (f).

Table 3.2.1 (f) Setting AMRDL and AMR2						
Rotary encoder	AMR conversion coefficient 1 (AMRDL : No.2112)	AMR conversion coefficient 2 (AMR2 : No.2138)				
α <i>i</i> CZ 512A	Set 0.	Set 1. (*1)				
α <i>i</i> CZ 768A	Set 768.	Set the number of motor poles/2.				

Rotary encoder	AMR conversion coefficient 1 (AMRDL : No.2112)	AMR conversion coefficient 2 (AMR2 : No.2138)
α <i>i</i> CZ 1024A	Set 0.	Set 0.
RCN223F, RCN723F, RCN727F	Set 0.	Set -3. (*2)
Analog encoder (binary type) and synchronous built-in servo motor position detection circuit	Set 0.	0 (4096 λ/revolution) (*3) -1 (8192 λ/ revolution) -2 (16384 λ/ revolution)
Analog encoder (non-binary type) and synchronous built-in servo motor position detection circuit	Set λ. (*4)(*5)	Set the number of motor poles/2.

(*1) When parameter No. 2001 is set to the number or motor poles, set parameter No. 2138 to 0.

- (*2) When parameter No. 2001 is set to the number or motor poles, set parameter No. 2138 to -4.
- (*3) Set AMR conversion coefficient 2 using 4096λ as reference (0). For example, AMR conversion coefficient 2 is set to 1 in the case of 2048λ or -1 in the case of 8192λ.
- (*4) When λ exceeds 32767, find an AMR conversion coefficient 1 value less than 32767 by dividing AMR conversion coefficient 1 and AMR conversion coefficient 2 by a common divisor and set the found value in the parameter.
- (*5) If "support for the input frequency 750 kHz" is specified when a set of an analog encoder (non-binary type) and synchronous built-in servo motor position detection circuit is used (SW3 = A and bit 0 of parameter No. 2274 = 1), set the value $\lambda/4$ as AMR conversion coefficient 1.

Setting for using only a set of an analog encoder (non-binary type) and synchronous built-in servo motor position detection circuit (This parameter need not be set for any other configurations.)

	#7	#6	#5	#4	#3	#2	#1	#0
2010						LINEAR		
	When using	g a set of a	n analog en	coder (non-	-binary typ	e) and sync	hronous bu	ilt-in servo

motor position detection circuit, set LINEAR to 1.

Setting only for the structure including analog encoder (binary type) and synchronous built-in servo motor position detection circuit or analog encoder (non-binary type) and synchronous built-in servo motor position detection circuit

		#7	#6	#5	#4	#3	#2		#1	#0
2274			DD2048							HP2048
HP2048(#0	0)	A 2048-tim	ne interpola	tion circuit	t (synchron	ous built	t-in servo	motor	position	detection
		circuit) is :								

- 0: Not used.
- 1: Used.
- l' Used.

DD2048(#6) In the Dis motor, bit HP2048 is:

- 0: Disabled.
- 1: Enabled.
- * Supported in 90E0, D0/21.0 and subsequent editions and 90G0/03.0 and subsequent editions.

Generally, set bits 0 and 6 of parameter No. 2274 to 1.

(4) Examples of setting parameters for each rotary encoder type

Tables 3.2.1 (g), (h), (i), (j), (k), (l), and (m) provide summarized examples of parameter setting according to the type of rotary encoder. Set parameters according to the types of a rotary encoder and synchronous built-in servo motor used.

For the number of poles of each motor model, see Table 3.2.1 (n).

		Parameter setting			
Symbol name	Parameter number	Detection unit 1/1000deg	Detection unit 1/10000deg		
AMRDL	2112	0	0		
AMR2	2138 ^(*1)	1	1		
PLC0	2000#0	0	0		
AMR	2001	Number of poles/2 (binary)	Number of poles/2 (binary)		
PULCO	2023	4096	4096		
PPLS	2024	6250	6250		
REFCOUNT	1821	360000	3600000		
FFG	2084	36	36		
FFG	2085	50	5		
PSMPYL	2185	0	0		
DECAMR	2220#0	0	0		

Table 3.2.1 (g) For α*i*CZ 512A

(*1) When parameter No. 2001 is set to the number or motor poles, set parameter No. 2138 to 0.

Table 3.2.1 (h) For α*i*CZ 768A

		Parameter setting		
Symbol name	Parameter number	Detection unit 1/1000deg	Detection unit 1/10000deg	
AMRDL	2112	768	768	
AMR2	2138	Number of poles/2	Number of poles/2	
PLC0	2000#0	0	0	
AMR	2001	Number of poles/2 (binary)	Number of poles/2 (binary)	
PULCO	2023	6144	6144	
PPLS	2024	9375	9375	
REFCOUNT	1821	120000	1200000	
FFG	2084	36	360	
FFG	2085	75	75	
PSMPYL	2185	0	0	
DECAMR	2220#0	1	1	

Table 3.2.1 (i) For α*i*CZ 1024A

		Parameter setting		
Symbol name	Parameter number	Detection unit 1/1000deg	Detection unit 1/10000deg	
AMRDL	2112	0	0	
AMR2	2138	0	0	
PLC0	2000#0	0	0	
AMR	2001	Number of poles/2 (binary)	Number of poles/2 (binary)	
PULCO	2023	8192	8192	
PPLS	2024	12500	12500	
REFCOUNT	1821	360000	3600000	
FFG	2084	36	36	
FFG	2085	100	10	
PSMPYL	2185	0	0	
DECAMR	2220#0	0	0	

Table 3.2.1 (j) For RCN223F,RCN723F,RCN727F						
		Parameter setting				
Symbol name	Parameter number	Detection unit 1/1000deg	Detection unit 1/10000deg			
AMRDL	2112	0	0			
AMR2	2138 ^(*1)	-3	-3			
PLC0	2000#0	1	1			
AMR	2001	Number of poles/2 (binary)	Number of poles/2 (binary)			
PULCO	2023	6554	6554			
PPLS	2024	10000	10000			
REFCOUNT	1821	360000	3600000			
FFG	2084	9	9			
FFG	2085	200	20			
PSMPYL	2185	0	0			
DECAMR	2220#0	0	0			
800PLS#0	2275#0	1	1			
800PLS#1	2275#1	1	1			
DMASK	2394	8	8			

Table 3.2.1 (j) For RCN223F,RCN723F,RCN727F

(*1) When parameter No. 2001 is set to the number or motor poles, set parameter No. 2138 to -4.

Table 3.2.1 (k) For analog encoder (binary type) and synchronous built-in servo motor position detection circuit (1)

		Parameter setting					
Symbol	Parameter	4096 λ/r	evolution	8192 λ/revolution			
name	number	Detection unit 1/1000deg	Detection unit 1/10000deg	Detection unit 1/1000deg	Detection unit 1/10000deg		
AMRDL	2112	0	0	0	0		
AMR2	2138	0	0	-1	-1		
PLC0	2000#0	0	0	0	0		
AMR	2001	Number of poles/2 (binary)	Number of poles/2 (binary)	Number of poles/2 (binary)	Number of poles/2 (binary)		
PULCO	2023	8192	8192	16384	16384		
PPLS	2024	12500	12500	25000	25000		
REFCOUNT	1821	360000	3600000	180000	1800000		
FFG	2084	9	90	9	90		
FFG	2085	25	25	50	50		
PSMPYL	2185	0	0	0	0		
DECAMR	2220#0	0	0	0	0		
800PLS#0	2275#0	0	0	0	0		
LINEAR	2010#2	0	0	0	0		
HP2048	2274#0	1	1	1	1		
DD2048	2274#6	1	1	1	1		

		Parameter setting						
Symbol	Parameter	16384 λ/	revolution	32768 λ/revolution				
name	number	Detection unit	Detection unit	Detection unit	Detection unit			
		1/1000deg	1/10000deg	1/1000deg	1/10000deg			
AMRDL	2112	0	0	0	0			
AMR2	2138	-2	-2	-3	-3			
PLC0	2000#0	1	1	1	1			
	2001	Number of poles/2	Number of poles/2	Number of poles/2	Number of poles/2			
AMR 2001	2001	(binary)	(binary)	(binary)	(binary)			
PULCO	2023	3277	3277	6554	6554			
PPLS	2024	5000	5000	10000	10000			
REFCOUNT	1821	90000	900000	360000	3600000			
FFG	2084	9	90	9	90			
FFG	2085	100	100	200	200			
PSMPYL	2185	0	0	0	0			
DECAMR	2220#0	0	0	0	0			
800PLS#0	2275#0	0	0	1	1			
LINEAR	2010#2	0	0	0	0			
HP2048	2274#0	1	1	1	1			
DD2048	2274#6	1	1	1	1			

Table 3.2.1 (I) For analog encoder (binary type) and synchronous built-in servo motor position detection circuit (2)

Table 3.2.1 (m) For analog encoder (non-binary type) and synchronous built-in servo motor position detection circuit

		Parameter setting		
Symbol name	Parameter number	Detection unit 1/1000deg	Detection unit 1/10000deg	
AMRDL	2112	λ	λ	
AMR2	2138	Number of poles/2	Number of poles/2	
PLC0	2000#0	0	0	
AMR	2001	0000000	0000000	
PULCO	2023	2λ	2λ	
PPLS	2024	32 λ /5	32 λ /5	
REFCOUNT	1821	360000	3600000	
FFG	2084	360000 Deduction of	3600000	
FFG	2085	$\frac{1}{\lambda \times 512}$	$\lambda \times 512$	
PSMPYL	2185	0	0	
DECAMR	2220#0	1	1	
LINEAR	2010#2	1	1	
HP2048	2274#0	1	1	
DD2048	2274#6	1	1	

B-65270EN/08

Motor model	Motor specification	Number of poles	Number of pole pairs (number of poles/2)		
D <i>i</i> S 15/1000	0492-B100	16	8 (00001000)		
DiS 22/600	0482-B10□				
DiS 22/1500	0482-B12□	24	12 (00001100)		
D <i>i</i> S 60/400	0493-B200	24	12 (00001100)		
DiS 60/2000	0493-B220				
D <i>i</i> S 70/300	0494-B100				
DiS 70/1500	0494-B120				
DiS 85/400	0483-B20□				
DiS 85/1000	0483-B22□	32	16 (00010000)		
DiS 150/300	0494-B300				
DiS 150/1500	0494-B320				
DiS 200/300	0494-B400				
D <i>i</i> S 110/300	0484-B10□				
D <i>i</i> S 110/1000	0484-B12□				
DiS 260/300	0484-B30□	40	30 (00010100)		
DiS 260/600	0484-B31□	40	20 (00010100)		
DiS 260/1000	0484-B32□				
DiS 370/300	0484-B40□				
DiS 250/250	0495-B200				
DiS 500/250	0495-B400	48	24 (00011000)		
D <i>i</i> S 500/1000	0495-B420				
DiS 400/250	0485-B20□				
DiS 800/250	0485-B40□	56	28 (00011100)		
DiS 1200/250	0485-B50□				
D <i>i</i> S 1000/200	0496-B300	64	32 (00100000)		
DiS 1500/200	0486-B30□	72	36 (00100100)		
D <i>i</i> S 1500/100	0497-B300				
DiS 2000/100	0497-B400				
DiS 2000/150	0497-B490	88	44 (00101100)		
DiS 2100/150	0487-B30				
DiS 3000/150	0487-B40□				
DiS 5000/50	0488-B400	128	64 (0100000)		

Table 3.2.1 (n) Number of poles and number of pole pairs of each motor model	
--	--

3.2.1.2 Parameter setting procedure 2 (pole position detection) (optional function)

To drive a synchronous built-in servo motor, the pole detection function (option) is required. This subsection describes the pole detection function.

(1) Overview

The pole detection function detects the pole position of a motor to be driven when the relationship between the pole position of the motor and the phase of the detector is unknown.

WARNING When the correct pole position cannot be detected in some detection conditions, 1 the motor can make an unpredictable movement. To avoid this dangerous situation, the following conditions must be satisfied until completion of detection: <1> The torque limit parameter (parameter No. 2060) must be set to a value equal to or less than 150% of the continuous current. <2> The setting of excessive error at stop time must be 100 μ m or 0.1 deg or less. Moreover, the setting of excessive error at move time must be 120% of the logical positional deviation or less. <3> While pole position detection is in progress and a subsequent move operation is specified, the protection doors must be closed. If these conditions are not satisfied and pole detection operation is not terminated normally, the motor can make an unpredictable movement with the maximum torgue until the NC detects an excessive error alarm. For safety, create the following sequence with the PMC by using the pole detection state signal: <1> When the protection doors are open, pole detection is not started. <2> If a protection door is opened during pole detection (Fn158=1), a reset is made. <3> When pole detection is uncompleted (Fn159=0), no command is issued to relevant axes. <4> When pole detection is uncompleted (Fn159=0), the brake for the vertical axis is not released. (For brake operation, monitor not only the SA signal but also the pole detection completion signal (Fn159).) In general, this function cannot be applied to the following motors and conditions: <1> Linear motor <2> Axis for which the control axis detach function (detach function) is used (See Item (8) in this section.) <3> When the joint rigidity between the motor and detector is low <4> State where the axes are locked completely However, if this function needs to be unavoidably applied to the linear motor in some conditions, the application is allowed only when the absolute detector is used with sufficient consideration given to safety. 2 After replacing the detector, be sure to set the AMR offset (parameter No. 2139) to 0 to perform pole detection again.

- 1 When each of two axes for which tandem control or feed axis synchronous control is made has a detector (encoder), perform pole detection one by one by setting the axis for which no pole detection is made in the servo-off state. For tandem control, turn off the servo alarm 2-axis simultaneous monitor function during detection (bit 0 of parameter No. 2007 is set to 0).
- 2 When using the motor feedback sharing function (No. 2018#7) under tandem control, start pole detection simultaneously for the two axes to avoid incorrect detection.
- 3 For a detector to be applied, note the following:
 - 1) Use an absolute detector whenever possible.
 - 2) If the use of an incremental detector is unavoidable, an incremental detector with a one-rotation signal is recommended.

CNC		Servo software	Bomorko	
CNC	Series	Edition	Remarks	
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions		
Power Motion <i>i</i> -A				
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	J(10) and subsequent editions		
	90E1	01.0		
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	J(10) and subsequent editions	HRV4	
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions		
	90C8	A(01) and subsequent editions		
	90E5	A(01) and subsequent editions		
	90E8	A(01) and subsequent editions		

(2) Series and editions of applicable servo software

(3) Pole detection procedure

Flow

Remarks

- Enable the parameter (No. 2213#7) for a target axis. Pole detection is performed only for an enabled axis. For an axis not enabled, the pole detection request signal (Gn135) is ignored.
- Set the servo-on state. Note that releasing the brake before the pole detection completion signal (Fn159) is set to 1 causes the tool to drop vertically.
- Do not perform a pole detection operation in the servo-off state. Moreover, do not set the servo-off state during pole detection operation.
- When the pole detection request signal (Gn135) is set to 1, pole detection is started, and the pole detection in-progress signal (Fn158) is set to 1.
- Once a pole detection operation is started, the detection operation is continued even when the pole detection request signal is set to 0.
- Motor operation during pole detection is not under control of the CNC. During this period, the CNC performs a follow-up operation.

- If pole detection is terminated abnormally due to a mechanical cause, detection error alarm SV0454 is issued.
- Detection error alarm SV0454 cannot be released by a reset. Turn off the power then turn on the power again.
- When a reset is made during pole detection, the pole detection is stopped. To restart pole detection, set the pole detection request signal (Gn135) to 0 then set the same signal to 1 again.
- Once a pole detection operation is completed, no additional pole detection operation can be performed until the power is turned off except using the control axis detachment.
- Be sure to set bit 0 of parameter No. 2229 to 1. When pole detection is completed and the motor one-rotation signal is received, the result of detection is saved in parameter No. 2139. When an absolute detector is used, pole detection does not need to be performed each time the power is turned on.
- In the MDI, MEM, or EDIT mode, the result of detection is reflected on the screen immediately. In the REF or JOG mode, the result of detection is reflected on the screen when the reset key is pressed or the mode is switched to the MDI mode.
- To perform pole detection again, set parameter No. 2139 to 0 and then turn off the power and back it on again.

NOTE

- 1 When an absolute detector is used and the parameter (No. 2229#0) is set to 1, the pole detection completion signal (Fn159) is set to 1 immediately after power-on if the parameter (No. 2139) is not set to 0.
- 2 Create logic for confirming the pole detection completion signal (Fn159) before specifying a move command immediately after power-on.
- 3 If an alarm such as a count error alarm is issued for a detector fault, the pole detection completion signal (Fn159) is returned to 0. In this case, perform another pole detection operation.

(4) Parameters for pole position detection function

When this parameter has been modified, the power to the CNC must be turned off before operation is continued.

	. 4	#7	#6	#5	#4	#3	#2	#1	#0
2213	0	СМ							
OCM(#7)	0: 7	The po	le detection	n function	is disabled.				
	1: 7	The po	le detection	n function	is enabled.				
	#	#7	#6	#5	#4	#3	#2	#1	#0
2229					FORME	WATRA			ABSEN
ABSEN(#0)	0:	AMR	offset (No.	2139) is n	ot used.				
	1:	AMR	offset (No.	2139) is u	sed.				
	Be su	ire to se	et this bit to	<u>o 1.</u>					
	When	1 an at	osolute det	ector is us	ed, the resu	ult of detect	tion is sav	ed to the	AMR offset
	(parai	meter 1	No. 2139).	Therefore,	, pole detect	tion does no	ot need to b	be perform	ed when the
	powe	r is tur	ned on the	second and	d subsequen	t times.			
	If an	incren	nental dete	ector is use	ed, the resu	lt of detect	ion is save	ed to the	AMR offset
	(No.2	2139) v	when the or	ne-rotation	signal is d	etected. In 1	this case, p	ole detecti	ion needs to
	be pe	rforme	d each tim	e the powe	er is turned	on. After th	ie one-rota	tion signal	is detected.
	howe	ver th	e value say	ved to the	AMR offset	(No 2139)	is used so	that an in	fluence due
	to pol	le dete	ction variat	ion can be	eliminated.	(=)			
WATRA(#3)	Ô٠	A ftor n	ole detecti	on an abri	ormal move	ment is mor	vitored		
$WAIRA(\pi 3)$	U. 1	Anter p		on, an aon		ment is mor	moreu.		

1: After pole detection, no abnormal movement is monitored.

If a detection error occurs, protection against an abnormal operation is provided. Operation is monitored until a command after detection is issued. If an abnormal operation is detected, detection error alarm SV0454 is issued. Generally, set this bit to 0.

FORME(#4) 0: Automatic selection mode 1: Minute operation mode Be sure to set this bit to 1.

2139	AMR offset (AMROFS)
[Unit of data]	Degrees
[Valid data range]	1 to 360
[Initial setting]	0
	When bit 0 (ABSEN) of parameter No. 2229 is set to 1, the result of detection is saved to
	this parameter upon completion of detection.
	Only when detection is performed again, manually set this parameter to 0 and turn off the
	power and back it on again.
	After pole determination, never rewrite the value of this parameter
	manually.
	Current A for pole detection (DTCCRT_A)
[Unit of data]	/282 is the maximum amplifier current value.
[valid data range]	0 to /282
[Standard setting]	U
	Set a current value for pole detection. If this parameter is set to 0 , pole detection is performed according to the value of the rated current peremeter (No. 2006). If the friction
	of the machine is large, and the nole detection error elerm SV0454 is issued during
	detection increase current A for note detection. The maximum value of this parameter is
	limited by the torque limit (No. 2060)
	minica by the torque mint (140. 2000).
2268	Allowable travel distance magnification (MFMPMD)
[Unit of data]	% unit
[Valid data range]	-1000 to 1000
[Standard setting]	0 (100% internally)
	During pole detection, the motion of the rotor is limited to within an allowable travel
	distance of 5 degrees. If the value of this parameter is positive, set an allowable travel
	distance by specifying a percentage relative to the default 5 degrees (100%). If the
	detection error alarm SV0454 is issued during pole detection, and no improvement is
	made by changing the current value A (No.2182) for pole detection, set a value greater
	than 100% in this parameter. For example, to set an allowable travel distance of 10
	degrees, set 200%.
	On the other hand, if the value of this parameter is negative, change the speed evaluation
	criteria that determine the detection sensitivity. The speed evaluation criteria represent the
	percentage to the default value 3.7 min ⁻¹ (100%). If detection error alarm SV0454 occurs
	in a detector with a coarse resolution, increase the speed evaluation criteria (to
	approximately -200 to -500). On the other hand, if detection error alarm SV0454 occurs
	in a detector with a fine resolution, reduce the speed evaluation criteria (to approximately
	-10 to -20).

(5) Signals for pole position detection function

Pole detection request signal RPREQ1 to RPREQ8

[Classification] Input signal

- [Function] Requests pole detection. This signal is available for each controlled axis, and the suffix at the end of each signal name indicates a controlled axis number.
- [Operation] Pole detection is started by setting this signal to 1. Once a pole detection operation is started, the operation is continued even when this signal is set to 0.

Pole detection in-progress signal RPDET1 to RPDET8

[Classification] Output signal

[Function] Posts that pole detection is being performed. This signal is available for each controlled axis, and the suffix at the end of each signal name indicates a controlled axis number.

[Output condition] This signal is set to 1 in the following case:

When pole detection is being performed

- This signal is set to 0 in one of the following cases:
- When pole detection is completed
- When pole detection is terminated abnormally
- When pole detection is stopped by a reset

Pole position detection completion signal RPFIN1 to RPFIN8

[Classification] Output signal

[Function] Posts that pole detection is completed. This signal is available for each controlled axis, and the suffix at the end of each signal name indicates each controlled axis number.

[Output condition] This signal is set to 1 in the following case:

- When pole detection is completed after pole detection is started by setting the pole detection request signal to 1

NOTE

- 1 If an absolute detector is used, this signal remains set to 1 even when the power is turned off then back on after completion of pole detection performed by setting the parameter (No. 2229#0) to 1. When the power is turned off then back on after setting the parameter (No. 2139) to 0, this signal is set to 0.
- 2 If an incremental detector is used, the pole detection completion signal is set to 0 when the power is turned off.

Signal add	Iress							
•	#7	#6	#5	#4	#3	#2	#1	#0
Gn135	RPREQ8	RPREQ7	RPREQ6	RPREQ5	RPREQ4	RPREQ3	RPREQ2	RPREQ1
	#7	#6	#5	#4	#3	#2	#1	#0
Fn158	#7 RPDET8	#6 RPDET7	#5 RPDET6	#4 RPDET5	#3 RPDET4	#2 RPDET3	#1 RPDET2	#0 RPDET1
Fn158	#7 RPDET8	#6 RPDET7	#5 RPDET6	#4 RPDET5	#3 RPDET4	#2 RPDET3	#1 RPDET2	#0 RPDET1

(6) Action for trouble for pole position detection function

Table 3.2.1.2 (a) Action against trouble for pole position detection

Symptom	State	Detection request (Gn135)	During detection (Fn158)	Detection completion (Fn159)	Cause	Action
[Before deter	ction completion]					
Detection is	The motor does	OFF	OFF	OFF	The pole detection request signal is turned off.	Turn on the pole detection request signal.
not started.	not operate at all.	ON	OFF	OFF	The pole detection function is disabled.	Check bit 7 of No. 2213 or the option.
<u></u>		ļ			Servo-off	Set the servo-on state.
					The detector resolution is low: 100 million/rev or lower	Set the stop speed decision value (No. 2268) to a value from -200 to -500.
	The motor operates slightly,				Velocity feedback noise	Take action for noise protection.
Detection is not completed.	but detection is not completed and no alarm occurs. not completed.	ON	ON	OFF	The friction is very small, so that activation causes a vibration to disable stop decision initiation.	Decrease detection current A (No. 2182) to find an optimal value.
	During detection, an abnormally large motion is made and detection is not completed.				The resolution of the detector is too fine.	Set the stop speed decision value (No. 2268) to a value from -10 to -20.
Excessive error at stop time	During detection, the excessive error alarm at stop time is issued.	ON	ON →OFF	OFF	The friction is small.	Increase the setting of excessive error at stop time or set detection current A (No. 2182) to the rated current or lower.
Detection error alarm	The pole detection error alarm is	ON	ON	OFF	The friction is large.	Set detection current A (No. 2182) to the rated current or higher.
(SV0454)	issued.		→UFF		The current gain is small.	Set a proper current gain.

B-65270EN/08

		Detection	During	Detection		
Symptom	State	request	detection	completion	Cause	Action
		(Gn135)	(Fn158)	(Fn159)		
[After detecti	on completion]			-		
					The phase order of the power line does not match the direction of the detector.	Change the phase order of the power line.
Vibration		-	OFF	ON	Detector setting error	Set the parameters of the detector correctly.
					The number of poles is not set correctly.	Set the correct number of motor poles.
					The velocity gain is high.	Adjust the velocity gain to a proper value.
Excessive	An unpredictable movement is				The phase order of the power line does not match the direction of the detector.	Change the phase order of the power line.
error at stop time	made, or no movement is made in response to an issued command, so that an excessive error alarm is issued.	-	OFF	ON	Detector setting error	Set the parameters of the detector correctly.
or excessive error at					The number of poles is not set correctly.	Set the correct number of motor poles.
move time					Synchronous built-in servo motor position detection circuit C with a referenced mark	Use the 90D0, 90E0/10 or later
					No.2229#0=0	Set bit 0 of No. 2229 to 1.
The AMR	completion, the	_	OFF	ON	The mode is not the MDI mode.	The display is updated in the MDI mode.
not change.	is not written to the AMR offset.		011	ÖN	Incremental detector,α <i>i</i> CZ sensor	The motor needs to make one or more revolutions.
Detection error alarm (SV0454)	After detection completion, the pole detection error alarm is issued.	_	OFF	ON →OFF	The velocity mode is used for operation.	Set bit 3 of parameter No. 2229 to 1 to avoid detection error.
[After restart]						
No motion	The AMR offset is not 0, but no movement is made	-	-	-	Incremental detector	Pole detection needs to be performed each time a start-up operation is performed.
	issued command.				Detector alarm	Pole detection needs to be performed again.

Symptom	State	Detection request (Gn135)	During detection (Fn158)	Detection completion (Fn159)	Cause	Action
					The friction is large.	Set detection current A (No. 2182) to the rated current or higher.
Detection result variation	Detection result variation	-	-	-	The phase order of the power line does not match the direction of the detector.	Change the phase order of the power line.
					The detector is not set correctly.	Set the detector correctly.
					The number of poles is not set correctly.	Set the number of poles correctly.

(7) Detection of the pole position detection request alarm

No torque occurs on an axis on which pole position detection is not completed (servo-off state). For this reason, conventionally, the customer's ladder needs to monitor the pole position detection completion signal (Fn159) to determine whether to release the brake of an axis or to specify a move command for an axis.

The servo software and CNC software indicated below execute the following processing when pole position detection is not completed [pole position detection enabled (bit 7 of No. 2213=1) and the pole position detection completion signal is off (Fn159=0)]:

- 1) The interlock state is set. (Interlock is applied onto each axis. "INTER/START LOCK ON" on the diagnosis screen No. 0000 displays 1.)
- 2) The servo ready signal SA is turned off (the SA signal for all axes is turned off.)
- 3) Alarm DS0650 is displayed (cleared by a reset).

Safety is thus ensured even if the user's ladder processing is not performed.

[Series and editions of applicable servo software]

CNC		Servo software	Bomorko	
CNC	Series	Edition	Remarks	
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions		
Power Motion <i>i</i> -A				
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	M(13) and subsequent editions		
	90E1	01.0 and subsequent editions		
Series 30 <i>i/</i> 31 <i>i</i> -A	90D0	M(13) and subsequent editions	HRV4	
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions		
	90C8	A(01) and subsequent editions		
	90E5	A(01) and subsequent editions		
	90E8	A(01) and subsequent editions		

CNC	System software					
CNC	Series	Edition				
Series 30 <i>i</i> -A	G00C,G01C,G02C	27 and subsequent editions				
	G004,G014,G024	01 and subsequent editions				
Series 31 <i>i</i> -A5	G12C,G13C	27 and subsequent editions				
	G124,G134	01 and subsequent editions				
Series 31 <i>i</i> -A	G103,G113	04 and subsequent editions				
	G104,G114	01 and subsequent editions				
Series 32 <i>i</i> -A	G203	04 and subsequent editions				
	G204	01 and subsequent editions				
Series 0 <i>i</i> -MD	D4F1	01 and subsequent editions				
Series 0 <i>i</i> -TD	D6F1	01 and subsequent editions				
Series 0 <i>i</i> Mate-MD	D5F1	01 and subsequent editions				
Series 0 <i>i</i> Mate-TD	D7F1	01 and subsequent editions				

[Series and editions of applicable system software]

For the series 30*i*/31*i*/32*i*/35*i*-B and Power Motion *i*-A, all series and editions support this function.

The alarm number and message are indicated below.

Number	Message	Description
DS0650	POLE DETECTION REQUEST	With an absolute detection axis (bit 5 of No. 1815=1), pole
		With a non-absolute detection axis (bit 5 of No. 1815=0), pole detection is once completed then the state is changed to the pole
		detection uncompleted state (Fn159=0).

With the parameters below, operation to be performed when pole position detection is not completed can be changed.

	#7	#6	#5	#4	#3	#2	#1	#0
1809							PAO	SAN

[Input type] Parameter input

[Data type] Bit path

- SAN (#0) When the pole position detection function is used, pole position detection is enabled (bit 7 of No. 2213=1), and pole position detection is not completed (Fn159=0) with an axis, the servo ready signal SA <Fn000.6> of the path to which the axis belongs and the servo ready signals SA8 to SA1 <Fn186.7 to Fn186.0> for all axes that belong to the path are:
 - 0: Not set to 0.
 - 1: Set to 0.

When applying pole position detection to a gravity axis, basically release the brake after confirming pole position detection completion (Fn159=1) and the servo ready signal. When releasing the brake by checking the servo ready signal alone for an avoidable reason, set this parameter to 1.

- PAO(#1) When the pole position detection function is used, pole position detection is enabled (bit 7 of No. 2213=1), and pole position detection is not completed (Fn159=0) with an axis:
 - 0: Alarm DS0650 (POLE DETECTION REQUEST) is issued.
 - 1: Alarm DS0650 (POLE DETECTION REQUEST) is not issued.

NOTE

- 1 The issue condition of alarm DS0650 varies, depending on whether the axis in question is an absolute detection axis, as described below.
 - The alarm is issued with an absolute detection axis (bit 5 of No. 1815=1) when pole detection is not completed (Fn159=0).
 - The alarm is issued with a non-absolute detection axis (bit 5 of No. 1815=0) when pole detection is once completed then the state is changed to the pole detection uncompleted state (Fn159=0).
- 2 If this alarm is issued, detect a pole position again. After a pole position is detected again, this alarm is cleared by a reset.

(8) Using the pole detection function and control axis detach function (detach function) together

When the pole detection function is used with an axis of a synchronous built-in servo motor, motor switching using the control axis detach function is conventionally impossible. However, the servo software and CNC software of the series and editions indicated below enable the pole detection function and control axis detach function to be used at the same time.

CNC		Servo software	Bomorko
CNC	Series	Edition	Remarks
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions	
Power Motion <i>i</i> -A			
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	M(13) and subsequent editions	
	90E1	01.0 and subsequent editions	
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	M(13) and subsequent editions	HRV4
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions	
	90C8	A(01) and subsequent editions	
	90E5	A(01) and subsequent editions	
	90E8	A(01) and subsequent editions	

[Series and editions of applicable servo software]

[Series and editions of applicable system software]

CNC	System softwa	re
CNC	Series	Edition
Series 30 <i>i</i> -A	G00C,G01C,G02C	27 and subsequent editions
	G004,G014,G024	01 and subsequent editions
Series 31 <i>i</i> -A5	G12C,G13C	27 and subsequent editions
	G124,G134	01 and subsequent editions
Series 31 <i>i</i> -A	G103,G113	04 and subsequent editions
	G104,G114	01 and subsequent editions
Series 32 <i>i</i> -A	G203	04 and subsequent editions
	G204	01 and subsequent editions
Series 0 <i>i</i> -MD	D4F1	01 and subsequent editions
Series 0 <i>i</i> -TD	D6F1	01 and subsequent editions

For the series 30*i*/31*i*/32*i*/35*i*-B and Power Motion *i*-A, all series and editions support this function.

- 1 When switching is made by using the detach function among those motors that need the pole detection function, the motors and detectors need to be of the same type.
- 2 The control axis detach function is supported only by a combination of the CNC software and servo software indicated above. When CNC software and servo software not listed above are used, the pole detection function and control axis detach function cannot be used at the same time.

When the control axis detach function is used, the relationship of the Z phase of the detector with the pole position of the motor may vary. So, pole position detection needs to be performed again or the AMR offset (No. 2139) needs to be rewritten to a proper value. To perform pole position detection again and rewrite the AMR offset, however, the conventional specification requires that the power to the CNC be turned off then back on. With the servo software and CNC software listed above, the power to the CNC need not be turned off then back on to perform pole position detection again and rewrite the AMR offset.

When detaching a control axis to which pole position detection is applied, use the procedure below.

- Start detaching a control axis (detach) with Gn124 or bit 7 of parameter No. 12. (Pole position detection completion signal Fn159=0)
- Rewrite the AMR offset (No. 2139) to a proper value manually or by using G10(*1)
- Release the detachment of the control axis.
- Pole detection request alarm DS0650 is issued(*2).
- If an absolute detector is used and the AMR offset value is other than 0, the alarm can be canceled by a reset to enable operation (pole detection completion signal Fn159=1).
- If an absolute detector is used and the AMR offset value is 0, the alarm can be canceled by a reset after executing pole detection to enable operation (pole detection completion signal Fn159=0 changed to Fn159=1 after pole detection completion).
- If an incremental detector is used, the alarm can be canceled after pole detection to enable operation (pole detection completion signal Fn159=0 changed to Fn159=1 after pole detection completion).
- *1: By setting bit 0 of No. 1809 to 1, the servo ready signal SA can be turned off when pole position detection is not completed.
- *2 : By setting bit 1 of No. 1809 to 1, alarm display can be disabled even when pole position detection is not completed.

If the AMR offset is rewritten not during control axis detach operation, a power-off request is issued. When performing pole detection with an absolute detector after cancellation of control axis detach operation, set the AMR offset value to 0.

3.2.1.3 Parameter setting procedure 3 (OVC alarm parameters)

This subsection can be used to set parameters according to the cooling method used for synchronous built-in servo motors.

In the case of no cooling, the parameters are set by initialization according to Subsection 3.2.1.1, so that the parameters need not be modified.

In the case of liquid cooling only, modify the parameters according to Table 3.2.1 (a) and Table 3.2.1 (b).

2062	First OVC alarm parameter (POVC1)
2063	First OVC alarm parameter (POVC2)
2065	First OVC alarm parameter (POVCLMT)

B-6527	'0EN/08
--------	---------

 2086
 Current rating parameter (RTCURR)

 2161
 OVC magnification in stop state (OVCSTP)

 2162
 Second OVC alarm parameter (POVC21)

 2163
 Second OVC alarm parameter (POVC22)

2164

If the correct values corresponding to the cooling method are not set in the parameters above, expected thermal protection cannot be provided. Use care.

Second OVC alarm parameter (POVCLMT2)

Table 3.2.1.3 (a) Setting OVC and current rating parameters by cooling method [200-V driving]

Motor n	nodel	DiS 40	00/250	DiS 2	2/600	DiS 8	5/400	DiS 1	10/300	DiS 26	60/300
Motor specification		0485-	0485-B20□		B10□	0483-	0483-B20□		B10□	0484-B30□	
Cooling	method	No	Liquid	No	Liquid	No	Liquid	No	Liquid	No	Liquid
		cooling	cooling	cooling	cooling	cooling	cooling	cooling	cooling	cooling	cooling
Continuou [Nm	s torque	65	140	6	10	17	35 1	25	1 1 45	55	105
POVC1	No.2062	32743	32646	32689	32523	32683	32427	32682	32427	32682	32427
POVC2	No.2063	308	1528	988	3069	1069	4258	1069	4260	1069	4260
POVCLMT	No.2065	903	4290	2826	8170	3172	12689	3173	12694	3173	12694
RTCURR	No.2086	753	1641	1237	2104	1310	2621	1310	2621	1310	2621
OVCSTP	No.2161	120	120	0	0	0	0	0	0	0	0
POVC21	No.2162	0	0	0	0	0	0	0	0	0	0
POVC22	No.2163	0	0	0	0	0	0	0	0	0	0
POVCLMT2	No.2164	0	0	0	0	0	0	0	0	0	0

Motor r	nodel	DiS 20	3 0/600	DiS 3	70/300	DiS 8	00/250	D <i>i</i> S 12	200/250	DiS 15	500/200
Motor spec	cification	0484-	B310	0484-	B40□	0485-	-B40□	0485-	B50□	0486-	B300
Cooling	mathod	No	Liquid	No	Liquid	No	Liquid	No	Liquid	No	Liquid
Cooling	methou	cooling	cooling	cooling	cooling	cooling	cooling	cooling	cooling	cooling	cooling
Continuou: [Nrr	s torque	55	105	75	150	160	320	240	480	300	600
POVC1	No.2062	32679	32360	32705	32518	32713	32529	32677	32352	32682	32427
POVC2	No.2063	1111	5100	782	3121	690	2989	1113	5196	1069	4259
POVCLMT	No.2065	1710	6848	2322	9287	1200	4801	1940	7743	3173	12692
RTCURR	No.2086	963	1926	1121	2242	868	1737	1028	2033	1310	2621
OVCSTP	No.2161	0	102	0	0	0	107	0	107	0	162
POVC21	No.2162	0	0	0	0	0	0	0	0	0	0
POVC22	No.2163	0	0	0	0	0	0	0	0	0	0
POVCLMT2	No.2164	0	0	0	0	0	0	0	0	0	0

Motor model		D <i>i</i> S 21	00/150	DiS 3000/150		D <i>i</i> S 85/1000		DiS 110/1000		DiS 260/1000	
Motor specification		0487-B30□		0487-B40□		0483-B22□		0484-B12□		0484-B32□	
Cooling	mathod	No	Liquid	No	Liquid	No	Liquid	No	Liquid	No	Liquid
Cooling	Cooling method		cooling	cooling	cooling	cooling	cooling	cooling	cooling	cooling	cooling
Continuou [Nm	s torque	375	750	500	1000	-	40	-	53	-	95
POVC1	No.2062	32682	32427	32682	32427	-	32346	-	32434	-	32580
POVC2	No.2063	1069	4259	1069	4259	-	5276	-	4174	-	2354
POVCLMT	No.2065	3173	12693	3173	12693	_	15735	_	12437	_	6423
RTCURR	No.2086	1310	2621	1310	2621	_	2919	-	2595	-	1865

DiS 2100/150 DiS 3000/150 DiS 85/1000 DiS 110/1000 DiS 260/1000 Motor model 0487-B40□ 0483-B22□ 0484-B12ロ 0484-B32□ Motor specification 0487-B30□ No Liquid No Liquid No Liquid No Liquid Liquid No **Cooling method** cooling cooling cooling cooling cooling cooling cooling cooling cooling **Continuous torque** 500 ¦ 1000 _ 375 750 40 53 _ 95 _ [Nm] OVCSTP No.2161 ١0 162 ٥١ 162 -I 0 -Т 0 -. 0 0 0 POVC21 No.2162 0 0 0 0 0 ---POVC22 No.2163 0 0 0 0 0 0 0 _ --POVCLMT2 No.2164 0 0 0 0 0 0 0 ---

÷

B-65270EN/08

Motor n	nodel	DiS 22	2/1500	D <i>i</i> S 15	5/1000	DiS 6	0/400	DiS 7	0/300	D <i>i</i> S 1	50/300
Motor spec	ification	0482-	B12□	0492-	-B100	0493-	-B200	0494	-B100	0494-B300	
Cooling	mothod	No	Liquid	No	Liquid	No	Liquid	No	Liquid	No	Liquid
Cooling	nethou	cooling	cooling	cooling	cooling	cooling	cooling	cooling	cooling	cooling	cooling
Continuou [Nm	s torque	-	9	8.7	16	24	65	35	75	73	170
POVC1	No.2062	-	32439	32675	32401	32675	32275	32684	32449	32714	32391
POVC2	No.2063	-	4109	1160	4589	1160	6169	1056	3986	679	4717
POVCLMT	No.2065	-	10559	3300	11603	1856	8321	2178	7432	1419	8580
RTCURR	No.2086	-	2576	1440	2700	845	2294	1005	2159	944	2201
OVCSTP	No.2161	-	ı 0	0	125	0	127	0	120	0	120
POVC21	No.2162	-	0	0	32601	0	32581	0	32629	0	32599
POVC22	No.2163	-	0	0	2091	0	2337	0	1735	0	2118
POVCLMT2	No.2164	-	0	0	8308	0	5958	0	5321	0	6143

Motor m	nodel	D <i>i</i> S 20	00/300	DiS 2	D <i>i</i> S 250/250		00/250	D <i>i</i> S 10	00/200	DiS 1500/100	
Motor spec	ification	0494-	0494-B400		0495-B200		0495-B400		-B300	0497-B300	
Cooling method		No	Liquid	No	Liquid	No	Liquid	No	Liquid	No	Liquid
Cooling method		cooling	cooling	cooling	cooling	cooling	cooling	cooling	cooling	cooling	cooling
Continuou: [Nm	s torque	98	240	120	225	210	520	470	840	750	1400
POVC1	No.2062	32721	32368	32707	32487	32723	32454 (32465)	32677	32344 (32465)	32682	32384 (32453)
POVC2	No.2063	590	5004	761	3513	567	3923 (3783)	1135	5300 (3782)	1078	4796 (3942)
POVCLMT	No.2065	1237	9014	2196	9212	1646	10144 (9830)	3231	13083 (9827)	3076	12041 (10187)
RTCURR	No.2086	881	2201	1175	2201	1062	2606 (2259)	1421	2606 (2259)	1390	2606 (2259)
OVCSTP	No.2161	0	123	0	110	0	110	0	110	0	112
POVC21	No.2162	0	32594	0	32623	0	32596 (32600)	0	32686 (32700)	0	32686 (32700)
POVC22	No.2163	0	2172	0	1813	0	2156 (2103)	0	1027 (852)	0	1024 (853)
POVCLMT2	No.2164	0	6454	0	6595	0	7263 (7038)	0	9367 (7036)	0	8621 (7294)

Motor model	D <i>i</i> S 20	00/100	D <i>i</i> S 20	00/150	D <i>i</i> S 60	0/2000	DiS 70	0/1500	D <i>i</i> S 15	0/1500
Motor specification	otor specification 0497-B400		0497-B490		0493-B220		0494-B120		0494-B320	
Cooling method	No cooling	Liquid cooling	No cooling	Liquid cooling	No cooling	Liquid cooling	No cooling	Liquid cooling	No cooling	Liquid cooling
Continuous torque [Nm]	940	2080	920	2200	-	60	-	70	-	170

B-65270EN/08

3.SETTING PARAMETERS OF LINEAR MOTOR AND SYNCHRONOUS BUILT-IN SERVO MOTOR

Motor n	Motor model		00/100	D <i>i</i> S 20	00/150	DiS 60/2000		DiS 70/1500		DiS 150/1500		
Motor spec	ification	0497-	0497-B400		0497-B490		0493-B220		0494-B120		0494-B320	
Cooling method		No	Liquid	No	Liquid	No	Liquid	No	Liquid	No	Liquid	
		cooling	cooling	cooling	cooling	cooling	cooling	cooling	cooling	cooling	cooling	
Continuou [Nm	s torque	940	2080	920	2200	-	60	-	70	-	170	
POVC1	No.2062	32709	32366 (32465)	32707	32369	-	32517	-	32467	-	32438	
POVC2	No.2063	740	5019 (3782)	763	4992	-	3235	-	3761	-	4128	
POVCLMT	No.2065	2136	12508 (9827)	1739	9838	-	4529	-	5409	-	5864	
RTCURR	No.2086	1176	2606 (2259)	1045	2492	-	2293	-	2506	-	2610	
OVCSTP	No.2161	0	110	0	110	-	106	-	106	-	0	
POVC21	No.2162	0	32713 (32705)	0	32705	-	32633	-	32678	-	32643	
POVC22	No.2163	0	687 (789)	0	792	-	1683	-	1130	-	1558	
POVCLMT2	No.2164	0	8955 (7036)	0	7044	-	1389	-	1024	-	515	

Motor n	nodel	D <i>i</i> S 50	0/1000		
Motor spec	ification	0495-B420			
Cooling	mathod	No	Liquid		
Cooling	nethou	cooling	cooling		
Continuou [Nm	s torque	-	450		
POVC1	No.2062	-	32567		
POVC2	No.2063	-	2517		
POVCLMT	No.2065	-	3427		
RTCURR	No.2086	-	1995		
OVCSTP	No.2161	-	0		
POVC21	No.2162	_	32630		
POVC22	No.2163	_	1719		
POVCLMT2	No.2164	-	323		

(*) When 2-axis amplifier αi SV80/160 or αi SV160/160 is used, set values enclosed in parentheses.

Table 3.2.1.3 (b) Set	tting OVC and current rating	parameters by cooling	g method [400-V driving]

	· · · · · · · · · · · · · · · · · · ·	A		<i></i>		<i></i>				4	
Motor m	nodel	DiS 40)0/250	DiS 2	2/600	DiS 8	5/400	D <i>i</i> S 11	10/300	DiS 26	ô0/300
Motor spec	Motor specification		B200	0482-	B100	0483-	B200	0484-	B100	0484-	B300
Cooling mothod		No	Liquid	No	Liquid	No	Liquid	No	Liquid	No	Liquid
Cooling	netnoa	cooling	cooling	cooling	cooling						
Continuous torque [Nm]		65	140	6	10	17	35	25	45	55	105
POVC1	No.2062	32743	32646	32689	32523	32683	32427	32682	32427	32682	32427
POVC2	No.2063	308	1528	988	3069	1069	4258	1069	4260	1069	4260
POVCLMT	No.2065	903	4290	2826	8170	3172	12689	3173	12694	3173	12694
RTCURR	No.2086	753	1641	1237	2104	1310	2621	1310	2621	1310	2621
OVCSTP	No.2161	120	120	0	0	0	0	0	0	0	0
POVC21	No.2162	0	0	0	0	0	0	0	0	0	0
POVC22	No.2163	0	0	0	0	0	0	0	0	0	0
POVCLMT2	No.2164	0	0	0	0	0	0	0	0	0'	0

B-65270EN/08

Motor m	odel	DiS 26	60/600	DiS 37	DiS 370/300		00/250	D <i>i</i> S 12	00/250	DiS 1500/200		
Motor specification		0484-B31□		0484-	0484-B40□		0485-B40□		0485-B50□		0486-B30□	
Cooling mothod		No	Liquid	No	Liquid	No	Liquid	No	Liquid	No	Liquid	
Cooling I	nethoù	cooling	cooling	cooling	cooling	cooling	cooling	cooling	cooling	cooling	cooling	
Continuous [Nm	s torque	55	105	75	150	160	320	240	480	300	600	
POVC1	No.2062	32679	32360	32705	32518	32713	32529	32678	32352	32700	32498	
POVC2	No.2063	1111	5095	782	3121	690	2989	1130	5196	845	3369	
POVCLMT	No.2065	1351	5406	2322	9287	948	3793	1529	6118	2507	10029	
RTCURR	No.2086	856	1712	1121	2242	772	1544	914	1807	1165	2330	
OVCSTP	No.2161	0	0	0	0	0	0	0	0	0	109	
POVC21	No.2162	0	0	0	0	0	0	0	0	0	0	
POVC22	No.2163	0	0	0	0	0	0	0	0	0	0	
POVCLMT2	No.2164	0	0	0	0	0	0	0	0	0	0	

Motor m	odel	D <i>i</i> S 21	00/150	D <i>i</i> S 30	00/150	D <i>i</i> S 1	5/1000	DiS 6	0/400	DiS 7	0/300
Motor spec	ification	0487-B30□		0487-B40□		0492-B100		0493-B200		0494-B100	
Cooling method		No	Liquid	No	Liquid	No	Liquid	No	Liquid	No	Liquid
Cooling	nethoù	cooling	cooling	cooling	cooling	cooling	cooling	cooling	cooling	cooling	cooling
Continuous torque [Nm]		420	840	600	1200	8.7	15	24	60	35	73
POVC1	No.2062	32682	32427	32682	32427	32675	32401	32675	32275	32684	32449
POVC2	No.2063	1069	4259	1069	4259	1160	4589	1160	6169	1056	3986
POVCLMT	No.2065	3173	12693	3173	12693	3300	11603	1856	8321	2178	7432
RTCURR	No.2086	1310	2621	1310	2621	1440	2595	845	2108	1005	2108
OVCSTP	No.2161	0	122	0	122	0	125	0	127	0	120
POVC21	No.2162	0	0	0	0	0	32601	0	32581	0	32629
POVC22	No.2163	0	0	0	0	0	2091	0	2337	0	1735
POVCLMT2	No.2164	0	0	0	0	0	8308	0	5958	0	5321

Motor m	odel	DiS 15	60/300	D <i>i</i> S 20	00/300	DiS 25	50/250	D <i>i</i> S 50	00/250	DiS 1000/200		
Motor spec	ification	0494-B300		0494-	0494-B400		0495-B200		0495-B400		0496-B300	
Cooling mothod		No	Liquid	No	Liquid	No	Liquid	No	Liquid	No	Liquid	
Cooling I	nethoù	cooling	cooling	cooling	cooling	cooling	cooling	cooling	cooling	cooling	cooling	
Continuous torque [Nm]		73	160	98	230	120	215	210	520	470	1000	
POVC1	No.2062	32714	32391	32721	32368	32707	32487	32723	32454	32677	32286	
POVC2	No.2063	679	4717	590	5004	761	3513	567	3923	1135	6024	
POVCLMT	No.2065	1419	8580	1237	9014	2196	9212	1301	8015	2553	11469	
RTCURR	No.2086	944	2108	881	2108	1175	2109	944	2317	1266	2760	
OVCSTP	No.2161	0	120	0	123	0	110	0	110	0	110	
POVC21	No.2162	0	32599	0	32594	0	32623	0	32596	0	32686	
POVC22	No.2163	0	2118	0	2172	0	1813	0	2156	0	1029	
POVCLMT2	No.2164	0	6143	0	6454	0	6595	0	5738	0	8212	

Motor m	odel	D <i>i</i> S 15	00/100	D <i>i</i> S 20	DiS 2000/100		DiS 2000/150		000/50	DiS 60/2000	
Motor spec	Motor specification		0497-B300		0497-B400		0497-B490		-B400	0493-B220	
Cooling mothod		No	Liquid	No	Liquid	No	Liquid	No	Liquid	No	Liquid
Cooling I	nethoù	cooling	cooling	cooling	cooling	cooling	cooling	cooling	cooling	cooling	cooling
Continuous torque [Nm]		750	1500	940	2200	920	2200	2000	4500	-	60
POVC1	No.2062	32682	32384	32709	32366	32707	32369	32731	32559	-	32517
POVC2	No.2063	1078	4796	740	5019	763	4992	459	2617	-	3235
POVCLMT	No.2065	2430	9514	1688	9883	1739	9838	1337	7076	_	4529
RTCURR	No.2086	1235	2445	1045	2497	1045	2492	916	2097	_	2293

B-65270EN/08

3.SETTING PARAMETERS OF LINEAR MOTOR AND SYNCHRONOUS BUILT-IN SERVO MOTOR

Motor m	odel	D <i>i</i> S 15	00/100	D <i>i</i> S 20	DiS 2000/100		00/150	D <i>i</i> S 50	000/50	D <i>i</i> S 60)/2000
Motor spec	ification	0497-B300		0497-B400		0497-B490		0488-B400		0493-B220	
O a allia a an ath a d		No	Liquid	No	Liquid	No	Liquid	No	Liquid	No	Liquid
Cooling I	nethoù	cooling	cooling	cooling	cooling	cooling	cooling	cooling	cooling	cooling	cooling
Continuous torque [Nm]		750	1500	940	2200	920	2200	2000	4500	-	60
OVCSTP	No.2161	0	112	0	110	0	110	0	110	-	106
POVC21	No.2162	0	32686	0	32713	0	32705	0	32722	-	32633
POVC22	No.2163	0	1024	0	687	0	792	0	569	-	1683
POVCLMT2	No.2164	0	6812	0	7076	0	7044	0	5066	_	1389

Motor m	odel	D <i>i</i> S 70)/1500	D <i>i</i> S 15	0/1500	D <i>i</i> S 50	0/1000
Motor spec	ification	0494-B120		0494-	B320	0495-B420	
Cooling mothod		No	Liquid	No	Liquid	No	Liquid
Cooling	nethoù	cooling	cooling	cooling	cooling	cooling	cooling
Continuous [Nm	s torque	-	70	-	170	-	450
POVC1	No.2062	-	32467	-	32438	-	32567
POVC2	No.2063	-	3761	-	4128	-	2517
POVCLMT	No.2065	-	5409	-	4633	-	3427
RTCURR	No.2086	-	2506	-	2320	-	1995
OVCSTP	No.2161	-	106	-	0	-	0
POVC21	No.2162	-	32678	-	32643	-	32630
POVC22	No.2163	_	1130	_	1558	_	1719
POVCLMT2	No.2164	-	455	-	181	-	116

3.2.2 Smoothing Compensation for Synchronous Built-in Servo Motor

(1) Overview

Smoothing compensation for synchronous built-in servo motor is a function to improve the feed smoothness of a synchronous built-in servo motor by applying, to the torque command, a sine wave compensation torque 1.5 times and 3 times per pole pair. By setting a compensation gain and phase with parameters for each component, a compensation torque matching each motor can be obtained. A value to be set in a parameter for compensation is automatically calculated using SERVO GUIDE.

Fig. 3.2.2 (a) Diagrammatic drawing showing smoothing compensation

NOTE

This function is supported only when using the structure including an encoder that uses 8,000,000 pulses/rev. or below for parameter setting (such as the RCN223 or RCN727 manufactured by HEIDENHAIN) or an analog encoder (binary type or non-binary type) and the synchronous built-in servo motor position detection circuit.

(2) Series and editions of applicable servo software

CNC		Servo software	Bemerke
CNC	Series	Edition	Remarks
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions	
Power Motion <i>i</i> -A			
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	L(12) and subsequent editions	
	90E1	01.0 and subsequent editions	
Series 30 <i>i/</i> 31 <i>i</i> -A	90D0	L(12) and subsequent editions	HRV4
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions	
	90C8	A(01) and subsequent editions	
	90E5	A(01) and subsequent editions	
	90E8	A(01) and subsequent editions	

(3) Setting parameters

	#7	#6	#5	#4	#3	#2	#1	#0
2300						DD		

DD(#2) Synchronous built-in servo motor control is:

0: Disabled.

1: Enabled. (Smoothing compensation for synchronous built-in servo motor is also enabled.)

Setting of the smoothing compensation in the positive direction

2377	Smoothing compensation per	formed 1.5 times per pole pair
	 Correction gain (high-order 8 bits)	Correction phase (low-order 8 bits)
2380	Smoothing compensation perfe	ormed three times per pole pair
	 Correction gain (high-order 8 bits)	Correction phase (low-order 8 bits)

Setting of the smoothing compensation in the negative direction

If the correction gain of the following parameters is set to a non-zero value, it is possible to set a value different value in the negative direction that is different from a value in the positive direction. To set the same value between the negative direction and the positive direction, set the correction gain of the following parameters to 0.

2378	Smoothing compensation performed 1.5 times per pole pair (negative direction)
	Correction gain (high-order 8 bits) Correction phase (low-order 8 bits)
2381	Smoothing compensation performed three times per pole pair (negative direction)
	Correction gain (high-order 8 bits) Correction phase (low-order 8 bits)
	An optimal value varies from one motor to another (not from one motor model to
	another). So, compensation parameters need to be determined for each assembled motor
	A torque command variation generated when the motor is fed at low speed is dependen
	on the position. The application of smoothing compensation cancels this
	position-dependent characteristic, allowing the motor to move smoothly.

The measuring instruments that can be used to determine these parameters include "SERVO GUIDE" (Ver. 3.20 or later).

By using SERVO GUIDE (Ver. 3.20 or later), these parameters can be determined easily. Follow the procedure below to measure the activating phase and torque command, which are required to determine the compensation parameters.

(4) Adjustment procedure

<1> Set channels.

Channel 1: Counter for smoothing compensation for synchronous built-in servo motor Select the target axis for measurement, and set "ROTDD" as the data type.

Channel		<u>?×</u>
СН1 СН2	СНЗ СН4 СН5 СН6 СН7	СН8
Axis Kind Unit	X (1) P51: X (1) ROTDD	Extended address(E) 0 Shift(S) 0
Conv. Coef. Conv. Base Origin Value	(Physical Val.) (Raw data Val.) 0	Explanation Smooth compensation counter for Synchronous built-in servo motor
		OK Cancel Help

Channel 2: Torque command

Select the target axis for measurement, and set "TCMD" as the data type.

As the conversion coefficient, set the maximum current of the amplifier used for the target axis.

Channel	<u>? ×</u>
СН1 СН2 СН3 СН4 СН5 СН6 СН7	СНВ
Axis X (1) P5 ??; Kind TCMD	Extended address(E)
Conv. Coef. 100 (Physical Val.) Conv. Base 7282 (Raw data Val.) Origin Value 0	Explanation Torque command(TCMD) Physical value is need to set max. current (Ap) of amplifier. Default value is 100 in convention which convert measured data to percent by max. current of amplifier (Nominal current limit).
	OK Cancel Help

<2> With this setting, make bidirectional movements by about ±90 deg at about F (14400/number of poles) deg/min for data measurement. At the time of data measurement, ensure that all smoothing compensation values are set to 0. Smoothing compensation for linear motors may be used. Check this point as well.

Parameters for synchronous built-in servo motor:

No.2377, No.2378, No.2380, No.2381

Parameters for linear motor:

No.2130, No.2131, No.2132, No.2369, No.2370, No.2371

When making measurements, lower the velocity gain to such an extent that hunting does not occur.

<3> From the "Tools" menu, select "Smoothness compensation calc.". (The shortcut is [Ctrl] + [L].)

<4> Pressing the [ADD] button on the displayed dialog box analyzes waveform data and registers compensation parameter candidates. The "1.5/pole pair" item and "3.0/pole pair" item correspond to smoothing compensation performed 1.5 times per pole and smoothing compensation performed 3 times per pole, respectively.

- <5> The compensation parameters slightly vary depending on the measurement situation. So, repeat a data measurement and a press of the [Add] button several times in a similar manner while keeping the dialog box open. (Up to five candidates can be registered.) If the displayed values include an extremely different value, check the corresponding check box on the leftmost side of the list so that the value is not taken into account in the final compensation calculation.
- <6> Finally, press the [Calc] button for each of the forward and backward directions. Then, smoothing compensation parameters are displayed.
- <7> By pressing the [Set param] button, the smoothing compensation parameters are set in the CNC.

<8> Measure TCMD again to confirm the effect of smoothing compensation.

(*) For details on the use of SERVO GUIDE, refer to the help of SERVO GUIDE.

3.3

DETECTION OF AN OVERHEAT ALARM BY SERVO SOFTWARE WHEN A LINEAR MOTOR AND A SYNCHRONOUS BUILT-IN SERVO MOTOR ARE USED

(1) Overview

When a linear motor or synchronous built-in servo motor is used, the overheat signal (thermostat signal) of the motor can be connected in one of three ways:

Configuration 1 : Connected to the PMC signal

Configuration 2 : Connected to the αiCZ detection circuit (A860-2162-T***)

Connected to the linear motor or the synchronous built-in servo motor position detection circuit (A860-2033-T***)

Configuration 3 : Connected to the temperature detection circuit (A860-2091-T301)

For details on the hardware components, refer to the following specifications.

FANUC SYNCHRONOUS BUILT-IN SERVO MOTOR D*i*S series DESCRIPTIONS (B-65332EN) FANUC LINEAR MOTOR L*i*S series DESCRIPTIONS (B-65382EN)

This section describes these methods of connection and setting.

If the overheat signal is connected using a method described in this subsection and an overheat alarm is issued, quick stop processing (quick stop function based on a command specifying a velocity of 0) is also usable. (For details, see Subsection 5.8.8, "Quick Stop Function at OVC and OVL Alarm".)

In configuration 2 and configuration 3, temperature information can be observed on the CNC screen by using the temperature information signal (thermistor signal) built into a linear motor or synchronous built-in servo motor.

Fig. 3.3 (a) Overheat signal connection configuration

When using a linear motor or synchronous built-in servo motor, be sure to monitor the overheat signal by using any of the methods mentioned above. Otherwise, the motor cannot be properly protected against overheating.

(2) Series and editions of applicable servo software

CNC		Servo software	Remarks	
CNC	Series	Edition		
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions		
Power Motion <i>i</i> -A				
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	A(01) and subsequent editions	(*1)	
	90E1	01.0 and subsequent editions		
Series 30 <i>i/</i> 31 <i>i</i> -A	90D0	A(01) and subsequent editions	(*1) HRV4	
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions		
	90C8	A(01) and subsequent editions		
	90E5	A(01) and subsequent editions		
	90E8	A(01) and subsequent editions		

(*1) Configuration 1 is supported in J(10) and subsequent editions

(3) Setting parameters

			#7	#6	#5	#4	#3	#2	#1	#0
	2300		CKLNOH				THRMO			
THRMO(#3) When bit 7 of parameter No. 2300 is 1 an overheat alarm is										

THRMO(#3) When bit 7 of parameter No. 2300 is 1, an overheat alarm is:

- 0: Obtained from the DI signal via the PMC
- 1: Obtained from the αiCZ detection circuit or the linear motor or synchronous built-in servo motor position detection circuit, or the temperature detection circuit
- * When this parameter has been set, the power must be turned off before operation is continued.
- CLKNOH(#7) An overheat alarm for the linear motor or synchronous built-in servo motor position detection circuit is:
 - 1: Obtained from the DI signal via the PMC, the αiCZ detection circuit, the position detection circuit, or the temperature detection circuit
 - * When this parameter has been set, the power must be turned off before operation is continued.

Set these parameters according to the overheat signal connection mode (configuration) as indicated in the table below.

CKLNOH	THRMO	Description
1	0	Detects an overheat alarm with a DI signal via the PMC. (Configuration 1)
1	1	Detects an overheat alarm via the αiCZ detection circuit or linear motor or synchronous built-in servo motor position detection circuit. (Configuration 2)
-		Detects an overheat alarm via the temperature detection circuit. (Configuration 3)(*1)

(*1) Before an overheat alarm can be detected via the temperature detection circuit (configuration 3), the temperature detection circuit must be set (with a parameter such as No. 2278). (See Subsection 2.1.8.)

NOTE

If bits 3, 7 of No. 2300 are set to 1, 1 (to enable overheat alarm detection with the built-in temperature detection circuit) when an αiCZ sensor of old type (A860-2142-Txxx) not supporting the temperature detection circuit is used, an illegal parameter setting alarm (detail number 3002) is issued.

- 1 This function bit is automatically set during automatic loading of the standard parameters. However, if the setting differs from the configuration, set it manually.
- 2 In the CNC that cannot use interface G326 of the PMC, if this function bit is set to 1, a servo alarm SV0430 (motor overheat) is issued. If this occurs, set the function bit to 0.

(4) Signals (only in configuration 1)

When using configuration 1, connect the overheat signal from the motor to the following G signal with ladder circuitry:

Overheat state signals via the PMC: SVDI61 to SVDI68 <gn326></gn326>								
	#7	#6	#5	#4	#3	#2	#1	#0
Gn326	SVDI68	SVDI67	SVDI66	SVDI65	SVDI64	SVDI63	SVDI62	SVDI61
[Classification]	Input signal							

[Function] Thermostat signals are input via the PMC. An independent signal is provided for each axis, and the last digit of each name indicates the number of a controlled axis.

- [Status] 0: A signal for issuing an overheat alarm or detecting an overheat is not connected.
 - 1: No overheat alarm is issued.

(5) Connection and usage

<1> Parameter setting

Set parameter No. 2300 according the overheat signal connection mode.

By default, bit 7 (CKLNOH) of No.2300=1 and bit 3 (THRMO) of No.2300=0 are set for a linear motor and synchronous built-in servo motor (to obtain the overheat signal via the PMC). If the setting of a parameter does not match the actual overheat signal connection, the motor overheat alarm SV0430 is issued.

<2> Overheat signal connection

Connect the overheat signal to a proper point according to each configuration. When configuration 1 (connection via the PMC) is used, a ladder program for connecting the overheat signal (external signal) to the G signal needs to be created. (No ladder program is needed for configuration 2 and configuration 3.)

<3> Checking of an overheat alarm on the diagnosis screen

An overheat alarm via the pulse coder can be distinguished from an overheat alarm via the PMC DI signal based on diagnosis data

Alarm	Bit (OVL) of diagnosis No.200	Bit 7(ALD) of diagnosis No.201	Bit 4(EXP) of diagnosis No.201			
Overheat alarm via Pulsecoder	1	1	0			
Overheat alarm via PMC DI signal	1	1	1			

[Alarm detail indication on the diagnosis screen]

4

α*i*S/α*i*F/β*i*S/β*i*F/L*i*S/D*i*S SERIES PARAMETER ADJUSTMENT

This chapter describes parameter tuning for the FANUC AC SERVO MOTOR αiS , αiF , βiS , βiF , LiS, and DiS series. A servo tuning tool, SERVO GUIDE, is available which lets you perform parameter tuning smoothly. See Chapter 7 for the summary of SERVO GUIDE.

Chapter 4, " $\alpha iS/\alpha iF/\beta iS/\beta iF/LiS/DiS$ SERIES PARAMETER ADJUSTMENT", consists of the following sections:

4.1	SERVO TUNING SCREEN	.132
4.2	ACTIONS FOR ALARMS	.138

4.3 ADJUSTING PARAMETERS FOR HIGH-SPEED AND HIGH-PRECISION MACHINING......148

4.1 SERVO TUNING SCREEN AND DIAGNOSIS INFORMATION

4.1.1 Servo Tuning Screen

Display the servo tuning screen, and check the position error, actual current, and actual speed on the screen.

Using the keys on the CNC, enter values according to the procedure explained below.

$$\overbrace{\text{SYSTEM}} \rightarrow [\text{SYSTEM}] \rightarrow [\rhd] \rightarrow [\text{SV-PRM}] \rightarrow [\text{SV-TUN}]$$

If the servo setting/tuning screen does not appear, set the following parameter, then switch the CNC off and on again.

	SERVO MOTOR TUNING								
	X AXIS								
	(PARAMETER)	CMONITO	R)						
<1>	FUNC. BIT 00001000	ALARM 1 Ø	00000000	<9>					
<2>	LOOP GAIN 3000	alarm 2 Ø	0101010	<10>					
<3>	TUNING ST. 0	ALARM 3 1	10100100	<11>					
<4>	SET PERIOD	Alarm 4 Ø	0000000	<12>					
<5>	INT GOIN 106	ALARM 5 Ø	00000000	<13>					
<6>		LOOP GAIN	0	<14>					
<7>	FROF. OHIN -955	POS ERROR	0	<15>					
<8>	FILIER 0	CURRENT (%)	0	<16>					
-	VELOC. GAIN 200	CURRENT (A)	Ø	<17>					
		SPEED(RPM)	Ø	<18>					

Fig. 4.1.1 (a) Tuning screen

The items on the servo tuning screen correspond to the following parameter numbers:

Table 4.1.1 Correspondence bet	Table 4.1.1 Correspondence between the serve taning serven and diagnosis esteen, and parameters				
ltem	Description				
<1> Function bit	No. 2003				
<2> Loop gain	No. 1825				
<3> Tuning start bit	Not used at present				
<4> Setting period	Not used at present				
<5> Velocity loop integral gain	No. 2043				
<6> Velocity loop proportional gain	No. 2044				
<7> TCMD filter	No. 2067				
	Related to No. 2021				
<8> Velocity loop gain	The relationship with the load inertia ratio (LDINT= No.2021) is as follows:				
	Velocity gain = (1 + LDINT/256) × 100 [%]				
<9> Alarm 1 diagnosis	Diagnosis No. 200				
<10> Alarm 2	Diagnosis No. 201				
<11> Alarm 3	Diagnosis No. 202				
<12> Alarm 4	Diagnosis No. 203				
<13> Alarm 5	Diagnosis No. 204				
<19> Alarm 6	Diagnosis No. 205				
<20> Alarm 7	Diagnosis No. 206				
<14> Loop gain or actual loop gain	The actual servo loop gain is displayed.				
	Diagnosis No. 300				
<15> Position error diagnosis	Position error =				
	(feedrate) [mm/min] / (least input increment × 60 × loop gain × 0.01) [mm]				
<16> Actual current [%]	Indicates the percentage [%] of the current value to the continuous rated				
	current.				
<17> Actual current [Ap]	Indicates the current value (peak value).				
<18> Actual speed [min ⁻¹] or [mm/min]	Indicates the actual speed or feedrate.				

Table 111	Correspondence	botwoon the convo	tuning coroon a	nd diagnosis scroon	and naramotore
1 apre 4.1.1	Correspondence	Delween line Servo	i luiilliu scieeli a	illu ulaullusis scieell	. and parameters

4.1.2 Diagnosis Information List

The table below provides a list of servo-related data items displayed on the diagnosis screen.

Diagnosis No. (DGN)	Unit of data	Data description	Remarks
200	-	Alarm 1	\rightarrow See Section 4.2
201	-	Alarm 2	\rightarrow See Section 4.2
202	-	Alarm 3	\rightarrow See Section 4.2
203	-	Alarm 4	\rightarrow See Section 4.2
204	-	Alarm 5	\rightarrow See Section 4.2
205	-	Alarm 7	\rightarrow See Section 4.2
206	-	Alarm 1	\rightarrow See Section 4.2
280	-	Invalid parameter details (CNC)	\rightarrow See Subsection 2.1.9
300	Detection unit	Positional deviation	
308	°C	Servo motor temperature	(Note 1)
309	°C	Pulse coder temperature	
350	-	Servo state flag 1	(Note 2)
351	-	Servo state flag 2	(Note 3)
352	-	Invalid parameter details (SV)	\rightarrow See Subsection 2.1.9
353	-	Adjustment data #1	
		Adjustment data #2	
354	-	Acceleration data	\rightarrow See Subsection 4.1.4
255	Number of	Separately installed in serial	
300	times	Communication alarm neglect counter	
356	Number of	Built-in pulse coder	
	times	Feedback extrapolation counter	
357	Number of	Separately installed in serial	
	times	Feedback extrapolation counter	
358	-	V-READY OFF information	
359	Number of	Built-in pulse coder	
	times	Communication alarm neglect counter	
360	Detection unit	Command pulse accumulation (NC)	
361	Detection unit	Compensation pulse (NC)	
362	Detection unit	Command pulse accumulation (SV)	
363	Detection unit	Feedback accumulation (SV)	
550	Detection unit	Dual position Error on the full-closed side	
551	Detection unit	Dual position Error on the semi-closed side	
552	Detection unit	Dual position Error on the semi-/full-closed side	
553	Detection unit	Dual position Compensation value	
700	-	Servo state flag 3	(Note 4)
750	%	OVC data	Alarm with 100%
752	V	Voltage information	(Note 5)
760	I _{max} [Ap]/6554	R phase current value	I _{max} =Maximum amplifier current
761	I _{max} [Ap]/8027	Effective current value	I _{max} =Maximum amplifier current
762	360[deg]/256	Excitation phase data	

Table 4.1.2	(a)	Diagnosis	number list	
	(4)	Diagnosis	mannber not	
Note 1:

When a linear motor or synchronous built-in servo motor is used and temperature information (thermistor signal) is connected to a temperature detection circuit, αiCZ detection circuit, linear motor position detection circuit, or synchronous built-in servo motor position detection circuit, the temperature of the motor can be displayed on diagnosis No. 308.

 \Rightarrow See the following subsection or section:

- 2.1.8Setting Parameters When an Acceleration Sensor or Temperature Detection Circuit Is Used
- 3.3 Detection of an Overheat Alarm by Servo Software when a Linear Motor and a Synchronous Built-in Servo Motor are Used

Note 2:

Diagnosis No. 350 displays the following state signals:

		#7	#6	#5	#4	#3	#2	#1	#0
Diagnosis No.350			ALMTMP	ALMACC	A_PHAL	РМ1СНК	PM1TMP	PM1ACC	PM1POS
PM1POS(#0)	PM1POS(#0) 1: A position detector is connected to the first SDU unit.								
PM1ACC(#1)	1) 1: An acceleration sensor is connected to the first SDU unit.								
PM1TMP(#2)	1:	A temp	A temperature detection circuit is connected to the first SDU unit.						
PM1CHK(#3)	1:	A serv	o check int	erface unit	is connecte	d to the firs	t SDU unit		
A_PHAL(#4)	1:	An err	An error has occurred in the EEPROM of the αi pulse coder. (This is not an alarm.)						
ALMACC(#5)	1:	An alarm is issued from an acceleration sensor.							
ALMTMP(#6)	1:	An ala	rm is issue	d from a ter	nperature d	etection cir	cuit.		

Note 3:

Diagnosis No. 351 displays the following state signals:

		#7	#6	#5	#4	#3	#2	#1	#0
Diagnosis No.351						PM2CHK	PM2TMP	PM2ACC	PM2POS
PM2POS(#0)	1:	A posi	tion detector	or is connec	ted to the s	econd SDU	unit.		
PM2ACC(#1)	1:	An acc	celeration s	ensor is cor	nnected to th	he second S	DU unit.		
PM2TMP(#2)	MP(#2) 1: A temperature detection circuit is connected to the second SDU unit.								
PM2CHK(#3)	1:	A serv	o check int	erface unit	is connecte	d to the sec	ond SDU u	nit.	

Note 4:

Diagnosis No. 700 displays the following state signals:

	#7	#6	#5	#4	#3	#2	#1	#0
Diagnosis No.700	L2048	O2048	1VPP	FSFMB	PSFMB	DCLNK	HRV3OK	HRV3ON
HRV3ON(#0) 1	: The hi	gh-speed H	RV current	t control mo	de is ON (HRV3, HR	V4).	
HRV3OK(#1) 1	: The co used.	onfigured h	ardware en	ables high-	speed HRV	V current c	ontrol and	PDM to be
DCLNK(#2) 1	: DC lir	nk voltage i	nformation	can be used	1.			
PSFMB(#3) 1	: On th conne	e semi-clo cted.	sed side, a	a high res	olution rot	ary scale ((such as R	CN727) is
FSFMB(#4) 1	: On the connect	On the full-closed side, a high resolution rotary scale (such as RCN727) is connected.				CN727) is		
1VPP(#5) 1	: A dete	ector is con	nected via a	in analog Sl	DU unit.			
O2048(#6) 1	: The c setting	letector on g.	the full-o	closed side	enables	2048-magn	ification ir	nterpolation
L2048(#7) 1	: The d	letector on ry. (Linear	the semi- motor)	closed side	e enables	2048-magn	ification ir	nterpolation

Note 5:

To use diagnosis data about voltage information, the following software and hardware are required:

CNC software Series 30*i*-A : Series G00C, G01C. G02C / 27 and subsequent editions : Series G004, G014, G024 / 01 and subsequent editions Series 31*i*-A5 : Series G12C, G13C / 27 and subsequent editions : Series G124, G134 / 01 and subsequent editions Series 31*i*-A : Series G103, G113 / 07 and subsequent editions : Series G104, G114 / 01 and subsequent editions Series 32*i*-A : Series G203 / 07 and subsequent editions : Series G204 / 01 and subsequent editions Series 0*i*-MD : Series D4F1 / 01 and subsequent editions Series 0*i*-TD : Series D6F1 / 01 and subsequent editions Series 0i Mate-MD: Series D5F1 / 01 and subsequent editions Series 0i Mate-TD: Series D7F1 / 01 and subsequent editions For the Series 30i/31i/32i/35i-B and Power Motion i-A, all series and editions support the use of diagnosis data about voltage information. Servo software : Series 90G0 / first edition and subsequent editions : Series 90E1 / first edition and subsequent editions : Series 90E0 / O(15) and subsequent editions : Series 90D0 / O(15) and subsequent editions : Series 90C5,C8 / first edition and subsequent editions : Series 90E5,E8 / first edition and subsequent editions α*i* PS (Power Supply) : A06B-6140-Hxxx (200-V Power Supply for 30*i*-A) : A06B-6150-Hxxx (400-V Power Supply for 30*i*-A) All models of Power Supplies for the Series 30*i*-B support the use of diagnosis data about voltage information. α*i* SV (Servo Amplifier) : A06B-6117-Hxxx (200-V Servo Amplifier for 30*i*-A) : A06B-6127-Hxxx (400-V Servo Amplifier for 30*i*-A) All models of servo amplifiers for the Series 30i-B support the use of diagnosis data about voltage information. β*i* SV (Servo Amplifier) : A06B-6130-Hxxx : A06B-6131-Hxxx : A06B-6160-Hxxx : A06B-6161-Hxxx : A06B-6166-Hxxx All models of servo amplifiers for the Series 30*i*-B support the use of diagnosis data about voltage information. βi SVSP : A06B-6164-Hxxx#H580 : A06B-6165-Hxxx#H560 : A06B-6167-Hxxx#H560 All models of servo amplifiers for the Series 30*i*-B support the use of diagnosis data about voltage information. Note 6:

For the Series 30i-B and Power Motion i-A, the unit of data and valid data range of the voltage information displayed for diagnosis No. 752 are changed.

Diagnosis No.	Description	Value displayed for the FS30 <i>i</i> -A and 0i-D	Value displayed for the FS30 <i>i</i> -B	Remarks
No.752	DC link voltage information	Unit of data: Vrms Valid data range: 0 to 452 (200-V amplifier) 0 to 905 (400-V amplifier)	Unit of data: V Valid data range: 0 to 1023	(*1)

(*1) For example, when the power supply voltage is 200 Vrms, the value displayed on the diagnosis screen changes from 200 (FS30*i*-A and 0*i*-D) to 283 (FS30*i*-B).

4.1.3 Actual Current Peak Hold Display

(1) Overview

The servo tuning screen displays an actual current value (Ap) and a ratio (%) to the rated current value. However, if current abruptly changes during acceleration, for example, its value cannot be checked. By setting the parameter indicated below, a peak current value is displayed for about 3 seconds, so that a maximum current value during acceleration can be read.

(2) Series and editions of applicable servo software

CNC		Servo software	Domorko
CNC	Series	Edition	Remarks
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions	
Power Motion <i>i</i> -A			
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	A(01) and subsequent editions	
	90E1	01.0	
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	A(01) and subsequent editions	HRV4
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions	
	90C8	A(01) and subsequent editions	
	90E5	A(01) and subsequent editions	
	90E8	A(01) and subsequent editions	

(3) Setting parameters

		#7	#6	#5	#4	#3	#2	#1	#0
2201			CPEEKH						
PK2VDN (#6)	0:	A curr	ent value is	displayed	as usually c	lone.			

1: The display of a peak current value is held.

NOTE

When reading an actual current by using an application that uses SERVO GUIDE or the FOCAS library or an application that uses the PMC window, note that this function displays a waveform different from an actual momentary current waveform. Actual momentary current: Dashed line Observed current: Solid line

4.1.4 Acceleration Monitor Function

(1) Overview

Width the acceleration monitor function, acceleration feedback can be observed on diagnosis screen No. 354.

(2) Series and editions of applicable servo software

CNC		Servo software	Bomarka
CNC	Series	Edition	Reillarks
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions	
Power Motion <i>i</i> -A			
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	P(16) and subsequent editions	
	90E1	01.0	
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	P(16) and subsequent editions	HRV4
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions	
	90C8	A(01) and subsequent editions	
	90E5	A(01) and subsequent editions	
	90E8	A(01) and subsequent editions	

(3) Setting parameters

By setting bit 0 of No. 2290 to 1 after setting an acceleration sensor (Subsection 2.1.8), acceleration feedback can be displayed on diagnosis screen No. 354.

By setting bit 1 of No. 2290 to 1, a peak acceleration rate can be held (for 1 second). By setting bit 2 of No. 2290 to 1, the remaining acceleration data after a stop can be observed.

	#7	#6	#5	#4	#3	#2	#1	#0	
2290						ACCMON	ACCHLD	ACCOUT	
ACCOUT(#0)	To the diag	To the diagnosis screen (No. 354), acceleration data output is:							
	0: Not pe	erformed.							
	1: Perfor	med.							
ACCHLD(#1)	A peak acc	eleration ra	te is:						
	0: Not he	eld.							
	1: Held ((for 1 secon	d).						
ACCMON(#2)	0: Accel	eration data	is output a	t all times.					
	1: The r	emaining a	cceleration	data after	a stop is o	output. (Th	e accelerat	ion data is	
	cleare	d to 0 durin	g movemer	nt and for 10	6 ms after a	stop.)			
Diagnosis No.354				Acceleratio	n feedback				

[Display unit] mm/s²

4.2 ACTIONS FOR ALARMS

If a servo alarm is issued, the related alarm number is displayed on the CNC alarm screen. Based on this information, check the cause of the servo alarm and take appropriate action.

(1) Alarms related to the amplifier and motor

Number	Message	Description
SV0010	SV OVERHEAT	Amplifier internal overheat
		\rightarrow See Supplementary 1.

Number	Message	Description
SV0011	SV MOTOR OVER	The digital servo software detected an abnormal specified value.
	CURRENT(SOFT)	Possible causes include an unconnected power cable, cable
		disconnection (open phase), and short-circuit.
		\rightarrow See Supplementary 2.
SV0012	SV DRIVE OFF CIRCUIT	The two drive off inputs are not in the same status or a drive off
	FAILURE	circuit error occurred.
		\rightarrow See Supplementary 2.
SV0013	SV CPU BUS FAILURE	An error was found in CPU bus data in the amplifier.
		\rightarrow See Supplementary 2.
SV0014	SV CPU WATCH DOG	An error occurred in CPU operation in the amplifier.
		\rightarrow See Supplementary 2.
SV0015	SV LOW VOLT DRIVER	The driver power supply voltage has dropped in the amplifier.
		\rightarrow See Supplementary 2.
		Possible causes include improper insertion of the control PC board
01/0010		and amplifier failure.
500016		An error was found in motor current detection data in the amplitier.
	ERROR	and amplifier failure
		And ampliner failure.
SV/0017	SV/INTERNAL SERIAL BUS	\rightarrow See Supplementary 2.
300017		Possible causes include improper insertion of the control PC board
	ALONE	and amplifier failure
		\rightarrow See Supplementary 2
SV0018	SV ROM DATA FAILURE	An error was found in ROM data in the amplifier.
010010		\rightarrow See Supplementary 2.
SV0019	SV MOTOR OVER CURRENT	A ground fault occurred in the motor, power cable, or amplifier.
	(GND FAULT)	\rightarrow See Supplementary 2.
SV0020	PS GROUND FAULT	A ground fault occurred in the motor, power cable, or amplifier.
		\rightarrow See Supplementary 2.
SV0021	PS OVERCURRENT 2	Overcurrent flowed in the input circuit.
		\rightarrow See Supplementary 2.
SV0022	PS OVERCURRENT 3	Overcurrent flowed in the input circuit.
		\rightarrow See Supplementary 2.
SV0023	PS OVERCURRENT 4	Overcurrent flowed in the input circuit.
		\rightarrow See Supplementary 2.
SV0024	PS SOFT THERMAL	A load higher than the rating was applied.
		\rightarrow See Supplementary 2.
SV0025	PS OVER VOLT. DC LINK 2	Overvoltage of the DC link section
		\rightarrow See Supplementary 2.
SV0026	PS OVER VOLT. DC LINK 3	Overvoltage of the DC link section
		\rightarrow See Supplementary 2.
SV0027	PS OVER VOLT. DC LINK 4	Overvoltage of the DC link section
01/0000		\rightarrow See Supplementary 2.
SV0028	PC LOW VOLT. DC LINK 2	The DC link voltage has dropped.
01/0000		\rightarrow See Supplementary 2.
370029	FULUW VULT. DU LINK 3	Soo Supplementary 2
S\/0020		\rightarrow See Supplementally 2.
310030		\rightarrow See Supplementary 2
S\/0031	PS ILLEAGAL PARAMETER	An invalid value is set for a PS control parameter
300001		For details, refer to the relevant serve amplifier descriptions such as
		B-65412EN
SV0032	PS CONTROL AXIS FRROR 1	An invalid value is set for parameter No 2557 Set parameter APS
2.0002		(No.11549#0) to 1 and execute automatic setting
SV0033	PS CONTROL AXIS ERROR 2	An invalid value is set for parameter No. 2557. Set parameter APS
		(No.11549#0) to 1 and execute automatic setting.

Number	Message	Description
SV0034	PS HARDWARE ERROR	A PS hardware error was detected.
		\rightarrow See Supplementary 2.
SV0035	SV NO FAILURE	No failure occurs in the servo amplifier.
		\rightarrow See Supplementary 2.
SV0036	PHASE OPEN	A power line or the like has an open phase.
		\rightarrow See Supplementary 2.
SV0037	FAILURE OF SV (OPEN)	An open failure occurred in the output of the servo amplifier.
		\rightarrow See Supplementary 2.
SV0038	SV FAILURE OF CURRENT	A failure occurred in the current detection circuit in the servo
	CTL.	amplifier.
01/0000		\rightarrow See Supplementary 2.
SV0039	FAILURE OF SV (SHORT)	A short-circuit occurred in the output of the servo amplifier.
S\/0040		\rightarrow See Supplementary 2.
300040	F3 SUB MODULE ERROR I	MODULE, PS or cable
		NODOLE, FS 01 Cable.
SV/0041	PS SUB MODULE ERROR 2	Failure of PS SUB MODULE PS or cable Replace PS SUB
000041		MODULE PS or cable
		\rightarrow See Supplementary 2.
SV0042	PS SUB MODULE ERROR 3	Failure of PS SUB MODULE. PS or cable. Replace PS SUB
		MODULE, PS or cable.
		\rightarrow See Supplementary 2.
SV0043	PS SUB MODULE ERROR 4	Failure of PS SUB MODULE, PS or cable. Replace PS SUB
		MODULE, PS or cable.
		\rightarrow See Supplementary 2.
SV0044	MISMATCHED FUNCTION	CNC, SV, SP or PS software has been update.
	CODE	Turn the power off, then restart.
SV0430	SV MOTOR OVERHEAT	Overheat
		\rightarrow See Supplementary 1.
SV0431	PS OVERLOAD	Overheat
0.40.400		\rightarrow See Supplementary 2.
SV0432	PS LOW VOLT. CONTROL	The control power supply voltage has dropped.
S)/0422		\rightarrow See Supplementary 2.
300433	F3 LOW VOLT. DC LINK	See Supplementary 2
S\/0434		The control nower supply voltage has dropped
000404		\rightarrow See Supplementary 2
SV0435	SVIOT VOLT. DCI INK	Low DC link voltage
010100		\rightarrow See Supplementary 2.
SV0436	SOFTTHERMAL(OVC)	The digital servo software detected a software thermal (OVC).
		\rightarrow See Supplementary 3.
SV0437	PS OVERCURRENT	Overcurrent on input circuit section.
		\rightarrow See Supplementary 2.
SV0438	SV ABNORMAL CURRENT	Motor overcurrent
		\rightarrow See Supplementary 4.
SV0439	PS OVER VOTL. DC LINK	The DC link voltage is too high.
		\rightarrow See Supplementary 2.
SV0440		Excessive generative discharge
0)/0.1.10	EXCESS-REGENERATION2	\rightarrow See Supplementary 2.
570442	PS PRE-CHARGE FAILURE	The spare charge circuit for the DC link is abnormal.
SV0442		\rightarrow See Supplementary 2.
300443		Internal cooling lan lailure. → See Supplementary 2
S\/0444	SV INTERNAL FAN FAILLIRE	Internal cooling fan failure
0,0444		\rightarrow See Supplementary 2

Number	Message	Description
SV0449	SV IPM ALARM	The IPM (Intelligent Power Module) detected an alarm.
		\rightarrow See Supplementary 2.
SV0600	SV DC LINK OVER CURRENT	DC link overcurrent.
		\rightarrow See Supplementary 2.
SV0601	SV EXTERNAL FAN FAILURE	Radiator cooling fan failure.
		\rightarrow See Supplementary 2.
SV0602	SV RADIATOR OVERHEAT	Overheat
		\rightarrow See Supplementary 2.
SV0603	INV. IPM ALARM(OH)	The IPM (Intelligent Power Module) detected an overheat alarm.
		\rightarrow See Supplementary 2.
SV0604	AMP COMMUNICATION	The communication between Servo Amplifier (SV) and Common
	ERROR	Power Supply (PS) is in error.
		\rightarrow See Supplementary 2.
SV0605	PS	The motor regenerative power is too much.
	EXCESS-REGENERATION1	\rightarrow See Supplementary 2.
SV0606	PS EXTERNAL FAN FAILURE	External radiator cooling fan failure.
		\rightarrow See Supplementary 2.
SV0607	PS IMPROPER INPUT POWER	An abnormality was found with the input power supply.
		\rightarrow See Supplementary 2.
SV0654	DB RELAY FAILURE	A failure occurs in the dynamic brake relay of the servo amplifier.
		Replace the amplifier.
		\rightarrow See Supplementary 2.

Action 1: Overheat alarms

If an overheat alarm occurs after long-time continuous operation, the alarm can be determined to have been caused by a temperature rise in the motor or amplifier. Stop operation for a while. If the alarm still occurs after the power is kept off for about 10 minutes, the hardware may be defective.

If the alarm occurs intermittently, increase the time constant, or increase the programmed stop time period to suppress temperature rise.

Motor and Pulsecoder temperature information is displayed on the diagnosis screen.

	Diagnosis No.
Motor temperature (°C)	No.308
Pulsecoder temperature (°C)	No.309

Action 2: Hardware alarms

For action to be taken, refer to manuals including the maintenance manual of the relevant servo amplifier. Maintenance manual of αi series: B-65285EN

Maintenance manual of βi series: B-65325EN

Action 3: OVC alarms

When an OVC alarm occurs, check that standard values are set for the following parameters. When the parameters are correct, take action to ease the operating condition, including increasing the time constant or programmed stop time period.

Parameter No.	Details
2062	Overload protection coefficient (POVC1)
2063	Overload protection coefficient (POVC2)
2065	Soft thermal coefficient (POVCLMT)
2161	OVC magnification at a stop (OVCSTP)
2162	Overload protection coefficient 2 (POVC21)
2163	Overload protection coefficient 2 (POVC22)
2164	Soft thermal coefficient 2 (POVCLMT2)

FOVC data is displayed on the diagnosis screen. (An OVC alarm occurs when OVC data is set to 100%.)

	Diagnosis No.
OVC data (%)	No.750

Action 4: Overcurrent alarms

This type of alarm is issued when an extremely large current flows through the main circuit.

When an overcurrent alarm is always issued after emergency stop is released or at the time of moderate acc./dec., the cause of the alarm is determined to be an amplifier failure, cable connection error, line disconnection, or a parameter setting error. First, check that standard values are set for the following servo parameters. If these parameter settings are correct, check the amplifier and cable status by referring to the maintenance manual on the servo amplifier.

Parameter No.	Details
2004	HRV setting
2040	Current loop gain (PK1)
2041	Current loop gain (PK2)
2013#1-4	-
2014#1-4	-

If an overcurrent alarm is issued only when an strong acc./dec. is performed, the operating conditions may be too abrupt. Increase the acc./dec. time constant, and see whether the alarm is issued.

- 1 If an overcurrent alarm is detected, and the LED indication in the amplifier remains set to "_", the overcurrent alarm may have been detected by the servo software. The cause may be one of the following:
 - The contact of the power line is poor, or the power line is disconnected or broken.
 - The AMR conversion coefficient or AMR offset is not set correctly.
- 2 If the emergency stop state is released without connecting the motor power line in a test such as a test for machine start-up, an overcurrent alarm (software) may be issued. In such a case, the alarm can be avoided temporarily by setting the bit parameter indicated below to 1. However, be sure to return the bit parameter to 0 before starting normal operation after the completion of the test. To ignore the overcurrent alarm (software), set the bit 0 of No2207.

(2) Alarms related to the Pulsecoder and separate serial Pulsecoder

Number	Message	Description
SV0360	ABNORMAL CHECKSUM(INT)	The checksum alarm occurred on the built–in Pulsecoder. →See Supplementary 1.
SV0361	ABNORMAL PHASE DATA(INT)	The phase data abnormal alarm occurred on the built-in Pulsecoder.
SV0362	ABNORMAL REV. DATA(INT)	The revolution count error alarm occurred on the built-in Pulsecoder.
SV0363	ABNORMAL CLOCK(INT)	The clock alarm occurred on the built-in Pulsecoder.
SV0364	SOFT PHASE ALARM(INT)	A digital servo soft detected an abnormality on the built in Pulsecoder. →See Supplementary 2.
SV0365	BROKEN LED(INT)	An LED in the built-in Pulsecoder is abnormal.
SV0366	PULSE MISS(INT)	A pulse error occurred on the built–in Pulsecoder. →See Supplementary 2.
SV0367	COUNT MISS(INT)	A count error occurred on the built–in Pulsecoder. →See Supplementary 2.

Number	Message	Description
SV0368	SERIAL DATA ERROR(INT)	The communications data could not be received from the
		built–in Pulsecoder.
		→See Supplementary 3.
SV0369	DATA TRANS. ERROR(INT)	A CRC error or stop bit error occurred in the communications
01/0000		data from the built-in Pulsecoder. \rightarrow See Supplementary 3.
SV0380		Separate detector error
SV0381	ABNORMAL PHASE (EXT)	An abnormal alarm in the position data occurred on the
S1/0202		Separate detector.
310302		→ See Supplementary 2.
SV0383	PULSE MISS(EXT)	A pulse error occurred on the separate detector
010000		\rightarrow See Supplementary 2.
SV0384	SOFT PHASE ALARM(EXT)	The digital servo software detected abnormal data on the
		separate detector. →See Supplementary 2.
SV0385	SERIAL DATA ERROR(EXT)	The communications data could not be received from the
		separate detector.
		→See Supplementary 3.
SV0386	DATA TRANS. ERROR(EXT)	A CRC error or stop bit error occurred in the communications
		data from the standalone detector.
		→See Supplementary 3.
SV0387	ABNORMAL ENCODER(EXT)	An abnormality occurred on a separate detector. For details,
0) /0 / / F		contact the manufacturer of the detector.
SV0445	SOFT DISCONNECT ALARM	I he digital servo software detected a disconnected
		Pulsecoder.
SV/0447		The herdware detected a disconnected concrete detector
300447	HARD DISCONNECT(EXT)	The fialdwale delected a disconnected separate delector.
		used Check whether the phase A/B detector is connected
		properly.
SV0453	SPC SOFT DISCONNECT ALARM	Software disconnection alarm of the α Pulsecoder.
		Turn off the power to the CNC, then remove and insert the
		Pulsecoder cable. If this alarm is issued again, replace the
		Pulsecoder.
		→See Supplementary 5.
DS0306	APC ALARM: BATTERY VOLTAGE	The battery voltage of the absolute position detector has
	0	dropped to a level at which data can no longer be held. Or, the
		power was supplied to the Pulsecoder for the first time.
		The battery or cable is thought to be defective. Replace the
		battery with the machine turned on.
D 0000 T		→See Supplementary 6.
DS0307	APC ALARM: BATTERY LOW 1	I ne battery voltage of the absolute position detector has
		dropped to a level at which a replacement is required.
		→See Supplementary 6
DS0308		The battery voltage of the absolute position detector dropped
000000		to a level at which a replacement was required in the past
		(including during power off)
		Replace the battery with the machine turned on.
		→See Supplementary 6.

▲ CAUTION For alarms with no action number indicated, the detector may be defective. Replace the detector.

Supplementary 1: Alarm that may occur due to a failure in the Pulsecoder or separate serial detector

The Pulsecoder or separate serial detector may be defective. Replace the detector.

Supplementary 2: Alarms that may occur due to noise

When an alarm occurs intermittently or occurs after emergency stop is released, there is a high possibility that the alarm is caused by noise. Take thorough noise-preventive measures. If the alarm still occurs continuously after the measures are taken, replace the detector.

Supplementary 3: Alarms that may occur due to a serial communication failure

Serial communication is not performed correctly. Check whether cable connection is correct and whether there is a line disconnection. This alarm may also be caused by noise. Take noise-preventive measures. If the alarm always occurs after power is turned on, the Pulsecoder, the control board of the amplifier, or the separate detector interface unit may be defective.

Supplementary 4: Alarm that may occur due to software disconnection

This alarm occurs when the change in the position feedback pulses obtained from the separate detector is relatively small for the change in velocity feedback pulses obtained from the built-in Pulsecoder. This alarm does not occur in a semi-closed system configuration. If this alarm occurs, check whether the separate detector outputs position feedback pulses correctly. When the detector outputs pulses correctly, only the motor rotates in the reverse direction at the start of machine operation because there is a large backlash between the motor position and scale position. In this case, you can increase the alarm level to a value equivalent to the backlash to avoid this alarm during normal operation.

Checking position feedback pulses

- <1> Set the types of data on the channel setting screen of SERVO GUIDE. CH1: ABS (Integral value of position feedback of the detector built into the motor) CH2: POSF (Integral value of position feedback of the separate detector)
- <2> In the Operation and Display dialog box, specify Synchro in Operation, CH1 in Input 1, and CH2 in Input 2.
- <3> Acquire data and display the difference between the semi-closed and full-closed modes (Input 2 Input 1) in the graph window.
- <4> Check the graph data.
 - If the difference between the semi-closed and full-closed modes becomes larger during reverse rotation, perform servo adjustment to decrease the difference. Alternatively, set a value a little larger than the difference between the semi-closed and full-closed modes for parameter No. 2064 to avoid the alarm.
 - If the difference is too large not during reverse rotation, check whether the parameters for the separate detector are set properly.

Related parameters

	#7	#6	#5	#4	#3	#2	#1	#0
2003							TGAL	
TGAL(#1)	1: The le	vel for dete	cting the so	oftware disc	connection	alarm is set	by paramet	er.
	When bit 1 of parameter No. 2003 is set to 0, the alarm is detected by 1/32rev.							
When bit 1 of parameter No. 2003 is set to 1, the alarm is detected by value set for parameter No. 2064/32 rev.							lue set for	

2064

Software disconnection alarm level

Standard setting 4:

4: Alarm occurs when motor turns 1/8 of a turn. Increase this value.

Supplementary 5: Software disconnection alarm of the α Pulsecoder

This alarm occurs when the absolute position data sent from the built-in Pulsecoder cannot be synchronized with the phase data. Remove the Pulsecoder cable with the NC power switched off and wait for about 10 minutes, then connect the cable again. If this alarm occurs again, replace the Pulsecoder.

When an absolute type linear encoder is used with a linear motor or when a synchronous built-in servo motor is used, this alarm must be ignored because the detector does not have phase data. Set the following bit.

Supplementary 6: Battery-related alarms

Check the connection and voltage of the battery. If the voltage drops, replace the battery. After absolute position detection is enabled, when the power to the CNC is turned on for the first time, the alarm may occur. In this case, turn the power to the CNC off then on again.

(3) Illegal servo parameter setting alarm

Number	Message	Description
SV0417	ILL DGTL SERVO PARAMETER	A digital serve parameter setting is incorrect. Investigate the cause of the alarm according to the instructions described in Subsection 2.1.9, "Actions for Illegal Servo Parameter Setting Alarms."

(4) Other alarms

Number	Message	Description
SV0407	EXCESS ERROR	The difference value of the amount of positional deviation for the synchronization axis exceeded the setting value (No.8314). (during synchronization control only)
SV0409	DETECT ABNORMAL TORQUE	An abnormal load was detected on the servo motor, or during Cs axis or spindle positioning. The alarm can be canceled by RESET. This alarm occurs when a load exceeding the alarm level is detected. The alarm may also occur when the estimated disturbance is not adjusted properly. In this case, adjust the estimated disturbance again according to the instructions described in Section 5.9, "UNEXPECTED DISTURBANCE TORQUE DETECTION EUNCTION"
SV0410	EXCESS ERROR (STOP)	 The amount of positional deviation during stopping exceeded the parameter No. 1829 setting value. Check the following points: Check whether the motor is not locked and whether the detector is connected properly. If this alarm occurs during a gradual stop, the time constant may be too small or gain adjustments may be made insufficiently. * Setting a large value for parameter No. 1829 may damage the machine. Carefully set the value.

Number	Message	Description				
SV0411	EXCESS ERROR (MOVING)	The amount of positional deviation during moving exceeded the				
		parameter No. 1828 setting value.				
		Check the following points:				
		Whether the motor is not locked.				
		The detector is connected properly.				
		• The time constant and parameter No. 1828 value are not too				
		small.				
		Gain adjustments are made thoroughly.				
		* Setting a large value for parameter No. 1828 may damage				
		the machine. Carefully set the value.				
SV0413	LSI OVERFLOW	The specified feedrate exceeded the limit. (See Appendix D).				
		Decrease the feedrate.				
SV0415	MOTION VALUE OVERFLOW	The specified feedrate exceeded the limit. (See Appendix D).				
		Decrease the feedrate.				
SV0420	SYNC TORQUE EXCESS	In feed axis synchronization control, for synchronization, the				
		difference value of torque between a master and slave axes				
		exceeded the parameter No. 2031 setting value.				
		This alarm occurs for a master axis.				
SV0421	EXCESS ERROR(SEMI-FULL)	The difference in feedback between the built-in Pulsecoder and				
		separate detector exceeded the value set for parameter No.				
		2118.				
		See Subsection 2.1.11.1, "Function for monitoring the difference				
		in error between the semi-closed and full-closed modes".				
SV0422	EXCESS VELOCITY IN TORQUE	In torque control, the commanded permissible velocity was				
		exceeded.				
SV0423	EXCESS ERROR IN TORQUE	In torque control, the total permissible move value specified as a				
		parameter was exceeded.				
SV0441	ABNORMAL CURRENT OFFSET	The digital servo software detected an abnormality in the motor				
		current detection circuit. The current offset (equivalent to the				
		current value in the emergency stop state) of the current detector				
		became abnormally large. If the alarm occurs again after the				
		power is turned on and off, the current detector may be				
01/0440		abnormal. Replace the amplifier.				
500448		The sign of the feedback signal from the standalone detector is				
		Dulaceder - See Supplementary 1				
SV/04E4		The magnetic note detection function terminated obnormally				
300404	ILLEGAL ROTOR FOS DETECT	The magnetic pole could not be detected because the meter did				
		net run				
		See "(6) Action for trouble for note position detection function" in				
		Subsection 3.2.1.2 "Parameter setting procedure 2 (note				
		nosition detection)"				
SV/0456		An attempt was made to set the current loop that could not be				
010100		set				
		See "Supplementary 2 [,] Control cycle setting" in Subsection				
		2.1.9. "Actions for Illegal Servo Parameter Setting Alarms"				
SV0458	CURRENT LOOP ERROR	The specified current loop differs from the actual current loop.				
		See "Supplementary 2: Control cycle setting" in Subsection				
		2.1.9, "Actions for Illegal Servo Parameter Setting Alarms".				
SV0459	HI HRV SETTING ERROR	For two axes whose servo axis numbers (parameter No. 1023)				
		are consecutively even and odd numbers. HIGH SPEED HRV				
		control is possible for one axis and impossible for the other.				
		See "Supplementary 2: Control cycle setting" in Subsection				
		2.1.9. "Actions for Illegal Servo Parameter Setting Alarms".				

Number	Message	Description
SV0465	READ ID DATA FAILED	A read of the ID information for the amplifier has failed at power-on. The FB cable may be connected to the JX5 pin incorrectly. Check the connection and turn the power off then on again. If
SV0466	MOTOR/AMP. COMBINATION	 The maximum current of an amplifier is different to that of a motor. Probable causes are: The FSSB setting is incorrect. Servo parameters have not been initialized. The parameter No.2165 setting is incorrect
SV0468	HI HRV SETTING ERROR(AMP)	An attempt was made to set up HIGH SPEED HRV control for use when the controlled axis of an amplifier for which HIGH SPEED HRV control could not be used. See "Supplementary 2: Control cycle setting" in Subsection 2.1.9. "Actions for Illegal Servo Parameter Setting Alarms".
SV0646	ABNORMAL ANALOG SIGNAL(EXT)	An error occurred in the analog 1Vp-p output of the separate detector. The cable, separate detector, or separate detector interface unit may be failed.
SV0649	MOTOR OVER SPEED	The permissible motor speed was exceeded.
SV0652	TEMP. ERROR	Communication between the separate detector interface unit and temperature sensor was disconnected. The cable may be disconnected or the temperature sensor may be defective.
SV0653	EXCESS ERROR (SV)	The difference between the estimated position error and actual position error exceeded the value set for parameter No. 2460. See Subsection 2.1.11.2, "Detection of excessive error between the estimated position and actual position (dynamic error monitoring)".

Supplementary 1: Feedback mismatch

This alarm occurs when the move directions for the position detector and velocity detector are opposite to each other. Check the rotation direction of the separate detector. If the direction is opposite to the direction in which the motor turns, take the following action:

- Phase A/B detector: Switch A and XA connection. Alternatively, set the following parameter to 1 to reverse the signal direction for the separate detector.
- Serial detector: Set the following parameter to 1 to reverse the signal direction for the separate detector.

	#7	#6	#5	#4	#3	#2	#1	#0
2018								RVRSE
RVRSE(#0) The signal direction for the separate detector is:								
	0: Not	t reversed.						
	1 D	1						

1: Reversed.

When there is a large torsion or backlash between the motor and separate detector, this alarm may occur when an abrupt acceleration/deceleration is performed. In this case, set the following parameter to 1 to change the detection level.

	#7	#6	#5	#4	#3	#2	#1	#0
2201							RNLV	
RNLV(#1) Change of	the feedbac	k mismatch	alarm dete	ction level		-	

- 0: To be detected at 600 min^{-1} or more
- 1: To be detected at 1000 min^{-1} or more

4.3 ADJUSTING PARAMETERS FOR HIGH-SPEED AND HIGH-PRECISION MACHINING

4.3.1 Servo HRV Control Adjustment Procedure

(1) Overview

For higher positioning precision, higher precision in the machined surface and machining profile, shorter machining time, and other improvements in machine tools, the adjustments of the servo control system are required. This subsection explains the servo adjustment procedure using servo HRV control. Servo adjustments can also be made easily by using SERVO GUIDE, which is an integrated tuning tool for servo spindles.

(2) Outline of the adjustment procedure

Before servo control performance can be improved by servo adjustments, it is necessary to understand these procedures and make adjustments step by step accordingly. Servo control is implemented by the structure shown in the block diagram below.

In the block diagram in Fig. 4.3.1 (a), servo HRV current control, which is located closest to the motor, drives the motor according to the command output by velocity control. The performance of this servo HRV current control supports the performance of velocity control. Velocity control controls the motor speed according to the velocity command output by position control. To attain the final target, which is to improve the capability to follow up position commands, a higher position gain must be set. This requires the improvement of velocity control performance. Hence, this requires the improvement of servo HRV current control performance. Therefore, in servo adjustments for improving the performance of servo control, the highest priority is given to the improvement of servo HRV current control, the next highest priority is given to the improvement of velocity control, then the third priority is given to the improvement of position control. Be sure to follow this order.

Fig. 4.3.1 (a) Block diagram of a servo control system

The adjustment of servo HRV current control improves the response speed of the current loop, therefore, higher gains can be set for the velocity loop and position loop. Gains increased for each control loop leads not only to the improvement of the command follow-up performance and disturbance suppression performance, but only to the simplification in servo function adjustments such as quadrant protrusion compensation. As a result, servo adjustments can be made more easily.

Fig. 4.3.1 (b) below shows the results of a gain adjustment for each current control cycle with servo HRV control. The figure indicates that the improvement of the response of the current control loop improves the response of velocity control and position control, and therefore quadrant protrusions can be reduced without the backlash acceleration function (described below).

Fig. 4.3.1 (b) Results of a velocity gain adjustment with each servo HRV control type (arc radius: 10 mm, F4000 mm/min, without using the backlash acceleration function)

This manual explains the servo adjustment procedure in the following order:

- 1 Initialization of parameters related to high-speed and high-precision machining Before starting the servo adjustment for high-speed and high-precision machining, set minimum required parameters.
- 2 Servo HRV control setting Select suitable servo HRV control from servo HRV2, HRV3, and HRV4.
- 3 Adjustment of high-speed velocity control Adjust the velocity loop gain and filter by using SERVO GUIDE.
- 4 Adjustment of acc./dec. in rapid traverse Adjust the time constant for rapid traverse. In position gain setting made in the next step, the limit is confirmed by checking stability during rapid traverse.
- 5 Position gain adjustment Adjust the position gain while observing the TCMD and motor speed in rapid traverse and cutting feed.
- Adjustment by using an arc
 Adjust the feed-forward and backlash acceleration function while measuring an arc figure.
- 7 Adjustment by using a square figure Adjust the reduced feedrate and the acceleration for deceleration at a corner while measuring the corner figure.
- 8 Adjustment by using a square with rounded corners Adjust the velocity in the arc parts while measuring the contour error in the arc parts.

(3) Details of the adjustment procedure

(3)-1 Initialization of parameters related to high-speed and high-precision machining

Table 4.3.1 (a) lists the parameter values to be set first before servo adjustments are made. Sufficient performance can be obtained just by setting these values. Furthermore, by separately adjusting the settings indicated by gray shading, much higher speed and higher precision can be obtained.

Parameter No.	Standard setting value	Description		
2004	0X000011 (Note 1)	Enables HRV2 control		
2040	Standard parameter (Note 1)	Current integral gain		
2041	Standard parameter (Note 1)	Current proportional gain		
2003 #3	1	Enables velocity loop PI function		
2017 #7	1 (Note 2)	Enables velocity loop high cycle management function		
2006 #4	1	Enables 1-ms velocity feedback acquisition		

Table 4.3.1 (a) Fundamental parameters

Parameter No.	Standard setting value	Description		
2016 #3	1	Enables variable proportional gain in the stop state		
2110	2 (detection unit of 1 μ m)	For variable proportional gain function in the stop state :		
2119	20 (detection unit of 0.1µm)	judgment level for stop state (specified in detection units)		
1825	5000	Servo loop gain (Position gain)		
2021	128	Load Inertia ratio (Velocity Loop Gain) (Note 3)		
2202 #1 1		Cutting/rapid traverse velocity loop gain variable		
2107 150		Velocity loop gain override at cutting traverse		

NOTE

- 1 Optimum parameters can be loaded automatically by setting a motor ID number for servo HRV2 control.
- 2 With some machines, a higher velocity loop gain can be set by using neither the acceleration feedback function nor auxiliary function rather than by using these functions. If it is impossible to set a high velocity loop gain when the velocity loop high cycle management function is used, try to use the acceleration feedback function (See Subsection 5.3.2), and use the function that allows a higher velocity loop gain to be set.
- 3 There is the following relationship between the load inertia ratio and velocity loop gain (%).

Velocity loop gain (%) = $(1 + \text{load inertia ratio} / 256) \times 100$

	Table 4.3.1 (b)	Feed-forward
Parameter No.	Standard setting value	Description
2005 #1	1	Enables feed-forward
2092	10000	Advanced preview feed-forward coefficient
2069	50	Velocity feed-forward coefficient

Parameter No.	Standard setting value	Description		
1851	1 or more	Backlash compensation		
2003 #5	1	Enables backlash acceleration		
2006 #0	0/1	0 : Semi-close system 1 : Full-close system		
2009 #7	1	Backlash acceleration stop		
2009 #6	1	Backlash acceleration only at cutting feed (FF)		
2223 #7	1	Backlash acceleration only at cutting feed (G01)		
2015 #6	0	Two-stage backlash acceleration (Note 1)		
2048	100	Backlash acceleration amount		
2082	5 (detection unit of 1 μm) 50 (detection unit of 0.1μm)	Backlash acceleration stop timing		
2071	20	Backlash acceleration time		

Table 4.3.1 (c) Backlash acceleration

NOTE

1 The above table lists the initial values set when the conventional backlash acceleration function is used. Set this parameter additionally if you want to use the two-stage backlash acceleration function or quadrant protrusion tuning with Tuning Navigator.

[Time Constant]

Set the initial value of the time constant of acc./dec. according to the high-speed and high-precision function of the CNC used.

Table 4.3.1 (d) AI contour control I, AI contour control II (30*i* Series, 0*i*-D Series), and AI advanced preview

control (0*i*-D Series)

Parameter No.	Standard setting value	Description		
1660	700	cc./dec. before interpolation: Acceleration (mm/s ²) \rightarrow 0.07G		
1772	64	Acc./dec. before interpolation: Bell-shaped time constant (ms)		
1769	24	Time constant for acc./dec. after interpolation (ms)		

(3)-2 Servo HRV control setting

(For 30*i* Series)

In standard setting, servo HRV2 control is set. However, to make high-speed and high-precision adjustments, servo HRV3 is recommended. If sufficient precision cannot be obtained with servo HRV3, consider using servo HRV4. (See Subsec. 5.1.3.)

(For 0*i* -D Series and Power Motion *i*-A)

In standard setting, servo HRV2 control is set. However, if sufficient precision cannot be obtained with servo HRV2, consider using servo HRV3. (See Subsec. 5.1.2.)

(a) Servo HRV2 control

By setting a motor ID number for servo HRV2 control, load the standard parameters.

(b) Servo HRV3 control

After setting servo HRV2 control, set the parameters as listed in Table 4.3.1 (e).

Parameter No.	Recommended value	Description	
2013#0	1	Enables HRV3 current control.	
2202#1	1	Enables the cutting/rapid velocity loop gain switching function.	
2283#0	1	Enables high-speed HRV current control in cutting feed (Note 1)	
2334	150	Current gain magnification in HRV3 mode	
2335	200	Velocity gain magnification in HRV3 mode	

Table 4.3.1 (e) HRV3 parameters

NOTE

- 1 When bit 0 of parameter No. 2283 is set to 1, no G code is needed. When bit 0 of parameter No. 2283 is set to 0, to use high-speed HRV current control, G codes need to be set. (High-speed HRV current control is enabled between G5.4Q1 and G5.4Q0.)
- 2 For other than Series 90D0, 90C5, and 90C8, when servo HRV3 control is used, the maximum number of axes per servo card decreases.

(c) Servo HRV4 control

After setting servo HRV2 control, set the parameters as listed in Table 4.3.1 (f).

Parameter No. 30 <i>i</i> Series	Recommended value	Description	
2014#0	1	Enables HRV4 current control.	
2300#0	1	Enables the extended HRV function.	
2202#1	1	Enables the cutting/rapid velocity loop gain switching function.	
2334	150	Current gain magnification in HRV3 mode	
2335	200	Velocity gain magnification in HRV3 mode	

Table 4.3.1 (f) HRV4 parameters

NOTE

- 1 Servo HRV4 can be used with Series 90G0(30*i*-B Series) or Series 90D0 (30*i*-A Series).
- 2 Use of servo HRV4 decreases the maximum number of axes per servo card and limits the maximum torque of the servo motor to 70%. For details, see Subsection 5.1.3, "Servo HRVV4 Control".
- 3 To use high-speed HRV current control, G codes must be set. (High-speed HRV current control is enabled between G5.4Q1 and G5.4Q0.)

(3)-3 Adjustment of velocity control

After setting servo HRV control, adjust the velocity loop gain and the resonance elimination filter. To obtain high servo performance, a high velocity loop gain must be set. Some machines, however, vibrate easily at a particular frequency, and setting a high velocity loop gain may cause vibration at that frequency (machine resonance). As a result, it becomes impossible to set a high velocity loop gain. In such a case, the adjustment of the resonance elimination filter is effective. The resonance elimination filter can lower the gain only in an area around a particular frequency, therefore allowing a high velocity loop gain and the resonance elimination filter can be adjusted more easily by using "Tuning Navigator" of SERVO GUIDE.

(a) Adjusting the velocity loop gain and the resonance elimination filter (when Tuning Navigator is used)

For adjustment of the resonance elimination filter, Tuning Navigator of SERVO GUIDE can be used. On the main bar of SERVO GUIDE, click the [Navigator] button, as shown in Fig. 4.3.1 (c).

[Starting	Tuning N	[avigator]					
	Parameter	Graph	Program	Navigator	Comm	Uninitialized	SERVO GUIDE
		Clid	king this bu	itton display	s the menu	as shown below.	
			Tuning na	vigator			
		<1> <2> <3>	Initial Gain- Filter-Tunin Gain-Tunin Backlash A Tuning of t High speed Unexpecte IFC gain-Tu Filter-Tunin Select tunin	-Tuning(Servo) g(Servo) g(Servo) cceleration Tuni ime constant fo l & High precisio d disturbance tr uning(Servo) g(Spindle) g item.	ng(Servo) r rapid travers n Tuning(Serv orque detectic	ie(

Fig. 4.3.1 (c) Starting Tuning Navigator of SERVO GUIDE

(Procedure for adjusting the velocity loop gain and the resonance elimination filter) In the adjustment of the velocity loop gain and the resonance elimination filter, use <1> through <3> in the above figure. Make adjustments in order from <1>.

<1> Initial Gain Tuning

First, select Initial Gain Tuning from the dialog box of Tuning Navigator. Initial Gain Tuning determines the velocity loop gain value with a margin for the oscillation limit. By making this

adjustment, a higher velocity gain than the initial value is set, so the frequency of machine resonance can be determined clearly (This gain is tentatively determined. The final velocity gain is determined in step <3>, "Gain Tuning".). Tuning Navigator shows a bode-plot as shown in Fig. 4.3.1 (d) and you can check the frequency characteristics of velocity loop. The upper line shows the gain characteristic and the lower line shows the phase characteristic.

[Points to be checked for frequency characteristics (bode-plot, gain line in particular)] (For details, refer to books of the control theory.)

- Gain level of resonance frequency has to be suppressed at least under -10dB.
- The peak gain (maximum value) has to be lower than +10 dB.
- Gain level near 1000Hz has to be lower than -20dB.
- <2> Filter Tuning

Next, select Filter Tuning from Tuning Navigator to adjust the resonance elimination filter to suppress machine resonance. Fig. 4.3.1 (e) shows an example of automatic filter tuning for a machine with two resonance frequencies (250 Hz and 530 Hz).

<3> Gain Tuning

By steps <1> and <2>, the influence of machine resonance can be eliminated, so a high velocity loop gain can be set. Finally, select "Gain Tuning". Tuning Navigator decides the final result of gain tuning. Automatic gain and filter tuning using Tuning Navigator is now completed.

(b) Adjusting the velocity loop gain and the resonance elimination filter (when Tuning Navigator is not used)

The following explains the procedure for adjusting the velocity loop gain and resonance elimination filter manually without using the automatic tuning functions of SERVO GUIDE.

- A) Adjustment by torque command waveform
- 1. Perform rapid traverse with a full stroke of the machine, and observe the torque command when the machine is stopped and when the machine moves at high speed. To observe the high-frequency vibration component (high-frequency machine resonance) of TCMD precisely, the sampling cycle period should be 125 μs.

NOTE

When using the cutting/rapid velocity loop gain switching function, perform cutting feed at the maximum cutting feedrate to also check the oscillation limit for the velocity loop gain during cutting feed.

- 2. As the velocity loop gain is increased gradually, the following oscillation phenomena occur:
 - Vibration occurs in the torque command waveform.
 - Vibration sound is generated from the machine.
 - A large variation in positional deviation is observed when the machine movement stops.
- 3. Perform frequency analysis (Ctrl-F) for the torque command issued when the above phenomena occur, and measure the vibration frequency.
- 4. While referencing Table 4.3.1 (g) as a guideline, set a filter using the measured vibration frequency as the attenuation center frequency. For the parameter numbers, see Table 4.3.1 (h). Set the initial values of the center frequency, attenuation bandwidth, and damping. When SERVO GUIDE is available, the resonance elimination filter can be set from the parameter window as shown in Fig. 4.3.1 (f). (In this example, values are set for "HRV Filter 2" and "HRV Filter 3". You can also set values for "HRV Filter 1" and "HRV Filter 2" in order.)

Resonance frequency	Attenuation bandwidth	Damping			
Lower than 150 Hz	Decrease the velocity loop gain. (Note 1)				
150 to 200 Hz	Decrease the velocity loop gain. (Note 2)				
200 to 400 Hz	60 to 100 Hz 0 to 50 %				
Higher than 400 Hz	100 to 200 Hz 0 to 10 %				

Table 4.3.1 (g) Guideline for setting a resonance elimination filter

NOTE

- 1 The disturbance elimination filter (see Subsection 5.4.4) may be effective.
- 2 When the resonance elimination filter is used, set a narrow attenuation bandwidth (about 50 Hz or less) and a large damping attenuation factor (about 50% to 80%).

	Attenuation center Attenuation bandwidtl frequency [Hz] [Hz]		Damping [%]		
Resonance elimination filter 2	No.2360	No.2361	No.2362		
Resonance elimination filter 3	No.2363	No.2364	No.2365		
Resonance elimination filter 4	No.2366	No.2367	No.2368		
Resonance elimination filter 1	No.2113	No.2177	No.2359		

Table 4.3.1 (h) Parameter numbers for setting resonance elimination filters

NOTE

- 1 When the center frequency becomes 200 Hz or lower, almost the same effect as when the velocity loop gain is decreased is obtained. Since the resonance elimination filter also has the effect in the change of phase, decreasing the velocity loop gain is recommended.
- 2 The resonance elimination filter becomes more effective as damping becomes closer to 0%. Therefore, when adjusting damping, start with a large value and decrease it gradually.

[Starting the parameter window]

Parameter	Graph	Program	Navigator	Comm	;Uninitialized	SERVO GUIDE
$\overline{\uparrow}$						

Clicking this button displays the parameter window.

[Parameter window main screen]		[Velocity control + filter]			
Param - Untitled(ON-LINE:Path1)		Param - Untitled(ON-LINE:Path1)			
<u>F</u> ile <u>E</u> dit <u>M</u> ove <u>W</u> indow <u>H</u> elp		<u>File E</u> dit <u>M</u> ove <u>Window</u> <u>H</u> elp			
Sv Sp Group(S) System setting System setting System setting Shape-error supression Acceleration Acceleration	Axis X CLock Hint	SV SP Group(G) +Filter Axis X Lock Filters Resonance elimination Resonance Elimination Filter L Adaptive Resonance Elim Center Freq. Bandwidth Damping HRV Filter 1 0 0 0 0 0 0 0	✓ Hint ination Filter		
Hasic Current Ctl. +Current Function Velocity Control +Basic Velocity Ctl. +Filter	Axis synchronization Control Position Feedback Control em Control ic Gear Box (EGB)	HRV Filter 2 250 \$ 60 \$ 50 \$ band elimination with damping 50 %			
Jerk Control +Fullclose Function Position Control Shape error Suppression Linear acc. after interpole +Backlash Acceleration Bell-shaped acc. before in Overshoot comp. Bell-shaped acc. in Rapid Stop for protection Unexpect Disturb Detect	em Disturbance Elimination Control Dected Disturbance Torque Detection Yosition Detection Eheck Safety	HRV Filter 3 500 cp 100 cp 0 cp band elimination filter (PWM) 0 % 0 cp 0 cp HRV Filter 4 0 cp 0 cp 0 cp			

Fig. 4.3.1 (f) Resonance elimination filter setting screen of SERVO GUIDE

- 5. After setting the resonance elimination filter by specifying tentative initial values in step 4, measure the torque command again. If there is still vibration left at the same frequency as before the application of the filter, decrease the damping setting. If vibration occurs at a frequency other than the set frequency, it may be adversely influenced by the setting of the resonance elimination filter. So, try to increase the setting of damping to about 80% to reduce the influence of the resonance elimination filter on velocity control. If vibration is still observed, stop setting the resonance elimination filter and decrease the velocity loop gain.
- 6. After determining the attenuation bandwidth and damping, increase the velocity loop gain until vibration phenomena checked in step 2 occur. The final value of the velocity loop gain is $\frac{70\%}{100}$ to $\frac{80\%}{1000}$ of the velocity loop gain (oscillation limit for the velocity loop gain) set when the vibration phenomena occur.

B) Adjustment using the frequency characteristics

The velocity loop gain can be adjusted also by increasing the velocity loop gain while measuring the frequency characteristics. As the velocity loop gain increases, the gain at a certain frequency swells in the frequency characteristics. The frequency corresponding to the swell is the resonance frequency. This method is to adjust the velocity loop gain by increasing it while the swell in gain is suppressed with the resonance elimination filter.

The velocity loop gain to be set is 70% to 80% of the velocity loop gain observed when the swell can no longer be suppressed by the resonance elimination filter (oscillation limit for the velocity loop gain). It is regarded as the final setting if there is no problem during rapid traverse and cutting feed at the maximum feedrate. If vibration occurs, decrease the velocity loop gain until the vibration stops.

(3)-4 Adjustment of acc./dec. in rapid traverse

The time constant of acc./dec. in rapid traverse is adjusted (Fig. 4.3.1(g)). Make adjustments in rapid traverse with the maximum load applied to the machine. Adjusting the time constant in rapid traverse can reduce the total machining time. No recommended value is specified for the time constant of acc./dec. in rapid traverse. It is important to make appropriate adjustments according to the characteristics of individual machines. While observing the torque command (TCMD) at the time of acc./dec. in rapid traverse to check that the TCMD does not reach the maximum current value, decrease the time constant of acc./dec. in rapid traverse.

Fig. 4.3.1 (g) Setting screen for the time constant of acc./dec. in rapid traverse of SERVO GUIDE

Fig. 4.3.1 (h) below shows the results of adjustments of the time constant in rapid traverse.

(3)-5 Adjustment of the position gain

Observe the velocity and torque command waveform at the time of acc./dec. during rapid traverse and cutting feed at the maximum cutting feedrate as shown in Fig. 4.3.1 (i). The standard setting of the position gain is from 5000 to 10000. When a low frequency vibration (hunting) of about 10 to 30 Hz occurs in the torque command waveform, the corresponding position gain is regarded as the oscillation limit. The position gain to be set is about 80% of the position gain of the oscillation limit.

Fig. 4.3.1 (i) Measurement of acc./dec. during rapid traverse for adjustments of the position gain

(Points to be checked for time regions <1> to <6>)

- No vibration is allowed in the stopped state. (Region <1>)
- Neither vibration nor sound must be generated during acceleration and deceleration. If the TCMD level has reached the maximum value, increase rapid traverse acc./dec. time constant T1 (linear part of the time constant). (Regions <2> and <5>)
- Neither vibration nor excessive overshoot must be generated at the end of acceleration and deceleration. If the TCMD level has reached the maximum value, increase rapid traverse acc./dec. time constant T2 (exponent part of the time constant). (Regions <3> and <6>)
- There must be no large variation in feedrate during movement at a constant feedrate. (Region <4>)

NOTE For axes for which interpolation is performed, set the same position gain.

Fig. 4.3.1 (j) Position gain setting screen of SERVO GUIDE

(3)-6 Adjustment by using an arc (adjustment of the feed-forward coefficient and adjustment of the servo function)

(a) Feed-forward function

For higher precision with small servo follow-up delay, the feed-forward function shown in Fig. 4.3.1 (k) is used. When the feed-forward coefficient is set to 100%, the positional deviation can be almost eliminated.

(Feed-forward)

By adding to a velocity command value the velocity compensation value equivalent to the position command issued from the CNC, the contour error due to position loop response delay can be reduced.

(Velocity feed-forward)

The torque compensation amount equivalent to the amount of change in velocity command (acceleration) is added to a specified torque value so that the contour error due to velocity loop response delay can be reduced.

Fig. 4.3.1 (k) Feed-forward control in a servo control system

(b) Adjusting the feed-forward coefficient

Fig. 4.3.1 (ℓ) shows the effect of the feed-forward function. The figure indicates that an arc radius error of 250 µm, which was measured before the use of the feed-forward function, has been reduced to almost 0 after the use of the feed-forward function. The feed-forward coefficient can be adjusted using SERVO GUIDE as shown in Fig. 4.3.1 (m). Note that, however, setting the feed-forward coefficient to more than 10000 (100%) means that the actual machine position advances ahead of commands from the CNC. So, such setting is not permitted. While checking fluctuation of radius by using an arc with about R10/F4000 or R100/F10000 set, make an adjustment so that the actual path matches the commanded path. At this time set the velocity feed-forward coefficient to about 100 % (To fine-tune the amount of arc radius, also adjust the feed-forward timing parameter after adjusting the feed-forward coefficient. For details of the feed-forward function, see Subsection 5.5.3.).

(i) Feed-forward coefficient: 0% (ii) Feed-forward coefficient: 100% Fig. 4.3.1 (I) Reduction of the contour error with the feed-forward function

Fig. 4.3.1 (m) Feed-forward function setting screen of SERVO GUIDE

(c) Adjusting backlash acceleration

To reduce quadrant protrusions (errors generated where the axis move direction is reversed), the backlash acceleration function is used. Set the backlash acceleration to the recommended value listed in Table 4.3.1 (c) and change the acceleration in steps of about 10 to 20 while observing the quadrant protrusion size. End the adjustment immediately before undercut occurs. A large quadrant protrusion or undercut may adversely affect cutting results. So, adjust the backlash acceleration to make the quadrant protrusions as small as possible. (For details of the backlash acceleration function, see Subsection 5.5.4. When higher precision is required, use the two-stage backlash acceleration function described in Subsection 5.5.5, "Two-stage Backlash Acceleration Function".)

(i) Backlash acceleration function: Disabled (ii) Backlash acceleration function: Enabled Fig. 4.3.1 (n) Reduction of the quadrant protrusions with backlash acceleration (when F4000 and R10 are set and the feed-forward function is enabled)

[Parameter window main screen]	[Contour error suppression + backlash acceleration]
Param - Untitled(ON-LINE:Path1)	🔲 🗖 🔀 🛛 Р Param - Untitled(ON-LINE:Path1)
<u>F</u> ile <u>E</u> dit <u>M</u> ove <u>W</u> indow <u>H</u> elp	<u>File E</u> dit <u>M</u> ove <u>W</u> indow <u>H</u> elp
● SV SP Group(G) System setting Axis X ✓ Lock CNC Options CNC Options Swstem setting Axis X ✓ Lock Shape-error supression Acceleration Acceleration Total 4 G ✓ AI Contour Control I (AC +AICC12 Current Control Hasic Velocity Control Axis Synchronization Control ✓ AI Contour Control II (AIT +AICC2 Axis Synchronization Control ✓ Headsaic Velocity Cdi. +Filter +Fulciose Function Position Toetaback Control ✓ Jerk Control Shape error Suppression +Feedforward Postion Control Stash Acceleration ✓ Inear acc. after interpols +Feedforward Postion Comp. Postion Comp. ● Bell-shaped acc. before in Overshoot comp. Vestoriot comp. Yeal-shaped costboring Toetex Safety Øbor Bell-shaped acc. in Rapid High-speed positioning Toetex Safety Toetex Safety	ck. V Hint Sy Sy Sp Group(G) +Backlash Acceleration Axis X Lock V Hint Backlash acceleration 2-stage backlash acceleration 2-stage backlash acceleration 2 2-stage Backlash acceleration enable 2-stage acceleration enable 2-stage acceleration enable 2-stage acceleration enable Acceleration enable Acceleration enable Acceleration enable Backlash comp. Backlash acceleration Backlash acc
Unexpect Disturb Detect	

Fig. 4.3.1 (o) Backlash acceleration function setting screen of SERVO GUIDE

- (9) Adjustment by using a square figure (adjustment of the high-speed and high-precision function and adjustment of the servo function)
 - (a) Setting the corner deceleration function

Fig. 4.3.1 (p) Square figure path

When the automatic corner deceleration function is used, an error (overshoot) at the corner (of a square figure) shown in Fig. 4.3.1 (p) can be reduced. Set the acceleration and time constant to the recommended values (Fig. 4.3.1 (q) corresponds to Tables 4.3.1 (d) and 4.3.1 (e)) and set the reduced corner feedrate to 400 mm/min (Fig. 4.3.1 (r)).

[Acc./dec. + Al contour control I (when Al contour

Fig. 4.3.1 (q) Setting screen for acc./dec. before interpolation in cutting feed of SERVO GUIDE

[Parameter window main screen]		[Acc./dec. + Al contour control I (when Al contour control I is used)]			
Param - Untitled(ON-LINE:Path1)			Param - Untitled(ON-LINE:Path1)		
<u>F</u> ile <u>E</u> dit <u>M</u> ove <u>W</u> indow <u>H</u> elp			<u>File E</u> dit <u>M</u> ove <u>W</u> indow <u>H</u> elp		
Sy SP Group(G) System setting CNC Options CNC Options Axis Setting Axis Setting Axis Setting Axis Setti	Axis X V Lock V Hint Total 4 axes Axis Synchronization Control Position Feedback Control am Control ic Gear Box (EGB) am Disturbance Elimination Control pected Disturbance Torque Detection Position Detection Check Safety		● SV SP Group(G) +AICC1 Time constant Corner deceleration Deceleration ♥ Deceleration by speed difference Allowable speed difference Allowable speed difference 400.000 (mm/min)	Axis X Clock ♥Hint by circular acc. Deceleration by acceleration ◀ Constraints Constrain	

Fig. 4.3.1 (r) Automatic corner deceleration function of SERVO GUIDE

Fig. 4.3.1 (s) shows the effect of the corner deceleration function. Deceleration at a corner reduces the amount of the overshoot.

(b) Adjustment for smooth deceleration at a corner

In automatic corner deceleration, the feedrate at which the tool moves along a corner is reduced according to the permissible acceleration set for acc./dec. before interpolation. When the automatic corner deceleration function is used, the tangential feedrate at the corner changes in a sharp V-shaped manner as shown in Fig. 4.3.1 (t) (i). If deceleration at the corner can be made smoother, the contour error at the corner can be decreased. To make deceleration smoother, the following three adjustments are available: (1) decrease the permissible acceleration for acc./dec. before interpolation, (2) increase the time constant of acc./dec. before interpolation, and (3) decrease the permissible feedrate difference at the corner. As shown in Fig. 4.3.1 (t) (ii), reducing the acceleration reduces the shock on the machine, which decreases the contour error. Note that when the time constant is increased, the precision is improved, but the total machining time becomes longer.

(i) Before the adjustment of the acceleration, time constant, and feedrate difference (the tangential feedrate sharply changes to about F2000.)

(ii) After the adjustment of the acceleration, time constant, and feedrate difference (the tangential feedrate smoothly changes up to F500.)

Fig. 4.3.1 (t) Reduction of the contour error by adjusting the deceleration at the corner

(c) Adjusting velocity feed-forward

The velocity feed-forward function has the effect of helping the torque command start earlier at the time of acc./dec. This effect is reflected in corner figures. So, adjust the velocity feed-forward coefficient so that corner figures can be improved. When the velocity feed-forward coefficient is too small, vibration occurs in the figure path. Adjusting the velocity feed-forward coefficient can suppress this vibration (Fig. 4.3.1 (u)).

[Parameter window	main screen]	[Contour error suppression + feed-forwar	d]
Param - Untitled(ON-LINE:Path1)		P Param - Untitled(ON-LINE:Path1)	_ 🗆 🗙
<u>F</u> ile <u>E</u> dit <u>M</u> ove <u>W</u> indow <u>H</u> elp		<u>F</u> ile <u>E</u> dit <u>M</u> ove <u>W</u> indow <u>H</u> elp	
● SV ● SP Group(G) System setting	🖌 Axis X 🔽 🗖 Lock 🗹 Hint	● SV ● SP Group(G) +Feedforward ▼ Axis X ▼ □Lock	🗹 Hint
CNC Options CNC Options 2 System setting		Advanced Preview FF	
Shape-error supression Acceleration	trol	FF enable Cut/rapid Feedforward switching Rapid FF	
AI Contour Control I (AIC AI Contour Control II (AIC AI Contour Control II (AIC +AICC1	Total 4 🤤 axes	FAD enable Cut/rapid FAD switching Linear FAD	
Current Control	Axis Synchronization Control	Adv./Conv. PF switching @ beil-shaped PAD	
+Dasic Current Cti. +Current Function	Position Feedback Control	Rapid	Cutting
Velocity Control	em Control	Feedforward coefficient (0.01%)	10000 😂
+Basic Velocity Cti. +Filter	ic Gear Box (EGB)	Velocity feedforward coefficient (%) 50 👙	50 🚖
Jerk Control +Fullclose Function	em Disturbance Elimination Control		24 🔼
Acceleration Shape error Suppressi		Acceleration time constant (ins)	
Linear acc. after interpola +Feedforward	bected Disturbance Torque Detection		
Bell-shaped acc. ater inte +IEC	n Position Detection	FF Timing adjustment	
Bell-shaped acc. before in Overshoot comp.	Theck Safety	Timing adjustment	0 🤤
Bell-shaped acc. in Rapid-High-speed positioning Stop for protection Unexpect Disturb Dete	ct		

Fig. 4.3.1 (v) Velocity feed-forward function setting screen of SERVO GUIDE

(3)-8 Adjustment by using a square with rounded corners (adjustment of the high-speed and high-precision function and servo function)

When acceleration suddenly changes at an arc part of a square figure with rounded corners as shown in Fig. 4.3.1 (w), positional deviation occurs. To reduce this positional deviation, it is effective to limit the acceleration at the arc part. The acceleration of circular motion is given by (tangential-feedrate)²/radius-of-circle. For example, when the arc radius is 5 mm and the feedrate in the linear part is F4000 mm/min, to decrease the feedrate in an arc part to F1000 mm/min, set the permissible acceleration to $(1000/60)^2/5 = 55.55 \text{ mm/s}^2$. For AI contour control, enter this permissible acceleration value as shown in Fig. 4.3.1 (x).

Fig. 4.3.1 (w) Path of a square figure with rounded corners

[Parameter window main screen]

[Acc./dec. + Al contour control I (when Al contour control I is used)]

P Param - Untitled(ON-LINE:Path1)		🛛 P Param - Untitled(ON-LINE:Path1)
<u>F</u> ile <u>E</u> dit <u>M</u> ove <u>W</u> indow <u>H</u> elp		<u>Eile E</u> dit <u>M</u> ove <u>W</u> indow <u>H</u> elp
Life gat Worke Window Heip State System setting Avis Setting CNC Options CNC Options System setting Avis Setting Avis Seting <td>Axis X Clock Hint Total 4 axes Axis Synchronization Control Position Feedback Control am Control ic Gear Box (EGB) am Disturbance Elimination Control Dected Disturbance Torque Detection Position Detection Check Safety</td> <td>Life Edit Wove Window Heip Sv Sp Group(G) +AICC1 Axis X Lock Vinit Corner deceleration Deceleration by circular acc. Deceleration by acceleration Other setting (Deceleration by acceleration Max. acceleration 55.550 (mm/sec^2) Min. feedrate limit 6.000 (mm/min)</td>	Axis X Clock Hint Total 4 axes Axis Synchronization Control Position Feedback Control am Control ic Gear Box (EGB) am Disturbance Elimination Control Dected Disturbance Torque Detection Position Detection Check Safety	Life Edit Wove Window Heip Sv Sp Group(G) +AICC1 Axis X Lock Vinit Corner deceleration Deceleration by circular acc. Deceleration by acceleration Other setting (Deceleration by acceleration Max. acceleration 55.550 (mm/sec^2) Min. feedrate limit 6.000 (mm/min)

Fig. 4.3.1 (x) Permissible acceleration setting screen of SERVO GUIDE

Fig. 4.3.1 (y) shows the change in feedrate from time to time when it is not reduced at an arc part and when it is reduced. Setting the permissible acceleration reduces the tangential feedrate. The change in feedrate along each axis, that is, acceleration is also reduced. When the permissible acceleration is set to reduce the feedrate at an arc part, the feed precision is improved. Fig. 4.3.1 (z) shows the reduction of the contour error with this feedrate switch function.

As shown in Fig. 4.3.1 (aa), the positional deviation in an arc part can also be suppressed by adjusting the velocity feed-forward coefficient. Since the positional deviation in an arc part is caused by velocity loop delay at the start and end of the arc, velocity feed-forward, which compensates for delay, is effective in the suppression of the positional deviation in arc parts.

(i) Velocity feed-forward: Disabled (ii) Velocity feed-forward: Enabled **Fig. 4.3.1 (aa) Reduction of the contour error in an arc part with the velocity feed-forward function**

4.3.2 High-speed Positioning Adjustment Procedure

(1) Overview

This subsection describes the servo adjustment procedure for high-speed positioning required with a punch press and PC board drilling machine.

(2) Adjustment procedure

Make a high-speed positioning adjustment while viewing the ERR (servo error amount) and TCMD. Set a measurement range as described below.

• ERR :

Adjust the measurement range so that the precision required for positioning can be seen. In the example below, a requested precision of $10 \ \mu m$ is assumed.

• TCMD:

Make an adjustment to view a specified maximum current value. If an adjustment is made to reduce positioning time, TCMD saturation may occur. Make an adjustment so that the TCMD lies within a specified maximum current.

<1> Velocity loop I-P function setting

In general, PI function reduces start-up time for a command, but requires a longer setting time, so that PI function is not suitable for high-speed positioning. On the other hand, the I-P function reduces the setting time as compared with the PI function, so the positioning time can be reduced (Fig. 4.3.2 (a)). Use the I-P function for velocity loop control to adjust high-speed positioning.

Fig. 4.3.2 (a) Setting times according to velocity loop control functions (cutting feedrate: F10000 mm/min, required positioning precision: 10 μm)

<2> Set a highest possible velocity loop gain while setting the resonance elimination filter when required according to the instructions described in Subsection 4.3.1, "Servo HRV Control Adjustment Procedure". A high velocity loop gain reduces the fluctuation of the torque command waveform as shown in Fig. 4.3.2 (b) and allows stable positioning.

Fig. 4.3.2 (b) Torque command waveform made stable by adjusting the velocity loop gain

<3> Set a switch speed of 15 min⁻¹ (1500 as the CNC parameter value) with the position gain switch function (see Subsection 5.7.1). When this function is enabled, a change in ERR waveform is observed as shown in Fig. 4.3.2 (c).

<4> Set a highest possible position gain. While viewing the ERR waveform as shown in Fig. 4.3.2 (d), adjust the position gain so that the overshoot value lies within a requested precision. After setting the position gain, perform rapid traverse for a long distance to check that low-frequency vibration due to an excessively increased position gain does not occur. If the set position gain is too high, vibration after an overshoot exceeds a requested precision. (A small overshoot can be suppressed by the adjustment in step <5> below.) In this example, the positioning time is reduced from 690 ms when the velocity loop PI function is used at first to 420 ms after adjustment (reduction by about 40%).

<5> A fine adjustment can be made for PK1V (velocity loop integral gain) so that neither overshoot nor undershoot occurs as shown in Fig. 4.3.2 (e). If the PK1V setting is too large, a large undershoot occurs.

4.3.3 Rapid Traverse Positioning Adjustment Procedure

(1) Overview

B-65270EN/08

With the Series 30*i* and 0*i*-D, nano interpolation is applied as standard. By combining nano interpolation with feed-forward, high-speed positioning can be performed in rapid traverse. This subsection describes servo adjustments for rapid traverse positioning.

(2) Reduction of a shock by bell-shaped acc./dec. and reduction of the positioning time by the feed-forward function

For high-speed positioning, it is necessary to set a short time required for acc./dec. and high position gain, and enable the feed-forward function. In rapid traverse according to linear acc./dec., however, acceleration change at the start and end of acceleration is large, so large force is produced for a short time, which causes a mechanical shock as shown in Fig. 4.3.3 (a) (i). (When the feed-forward function is disabled, the shock can be reduced to some extent since there is original delay in the servo control system.) In this case, the shock can be reduced by applying bell-shaped acc./dec. for smooth acceleration change as shown in Fig. 4.3.3 (a) (ii). When the problem with a shock can be solved by applying bell-shaped acc./dec., the feed-forward function can be used for eliminating servo system delay to reduce the positioning time. When feed-forward is applied, the positional deviation decreases during movement. Accordingly, positional deviation convergence occurs more rapidly, thus reducing the time required for positioning.

(3) Adjustment procedure

Make a rapid traverse positioning adjustment while viewing the ERR (servo error amount). Adjust the measurement range so that the time required for position deviation convergence within the in-position width can be seen. At the same time, observe the TCMD to check that the TCMD is not saturated. Before proceeding to the adjustment described below, adjust the velocity loop gain according to item (3)-3, "Adjustment of high-speed velocity control" in the Subsec. 4.3.1, "Gain Adjustment Procedure."

Fig. 4.3.3 (b) Measurement of rapid traverse acc./dec. before adjustment (when the feed-forward function is disabled)

The measurement data of Fig. 4.3.3(b) has been obtained under the condition below. Feed-forward are not used.

- Rapid traverse rate: 20000 mm/min
- Rapid traverse linear time constant: 150 msec
- Position gain: 30 sec⁻
- Travel distance: 100 mm

When the precision requested for rapid traverse positioning is $20 \mu m$, a time of about 80 ms is required from the completion of distribution to positioning. Reducing this time can speed up positioning.

<1> Default parameter setting for feed-forward

Set the parameters according to Table 4.3.3(a). By setting the default parameters, the time required for positioning can be much reduced.

lte ve	Default parameter			
Item	Series 30 <i>i</i>	Setting		
Rapid traverse feed-forward enable	No.1800#3	1		
Rapid traverse acc./dec. time constant -	No 1620			
linear part (ms)	NO. 1020	-		
Rapid traverse acc./dec. time constant -	No 1621			
bell-shaped part (ms)	100.1021	-		
Enables feed-forward	No.2005#1	1		
Feed-forward coefficient	No.2092(*1)	9700		
Velocity feed-forward coefficient	No.2069(*1)	100		

Table 4.3.3 (a	a) Default	parameters for ra	pid traverse	positioning	g adjustment
----------------	------------	-------------------	--------------	-------------	--------------

(*1) When using different values for cutting and rapid traverse, use the cutting feed/rapid traverse switchable fine acc./dec. function according to Section 5.2, "CUTTING FEED/RAPID TRAVERSE SWITCHABLE FUNCTION."

<2> Adjustment of the rapid traverse acc./dec. time constants (for details, see (3)-4 in Subsection 4.3.1) Adjust rapid traverse acc./dec. time constants T1 and T2 (Fig. 4.3.3 (a)). (No values recommended for the time constants are listed in Table 4.3.3 (a). This is because recommended values vary depending on the characteristics of the machine.) While measuring the ERR and TCMD, if the waveforms are not distorted abnormally and the precision does not change largely, make an adjustment by decreasing the time constants. Carefully adjust them to satisfy the condition $T1 \ge T2$. If a large mechanical shock occurs, increasing the time constant for the bell-shaped part, T2, is effective for reducing the shock.

<3> Velocity feed-forward adjustment

When feed-forward is enabled, the positioning time can be reduced, but a swell may occur due to insufficient velocity loop response immediately before machining stops. A swell can be reduced by an increased velocity loop gain, but there is an upper limit on the velocity loop gain. So, adjust the velocity feed-forward coefficient to reduce a swell for positioning time reduction. With the default setting of the velocity feed-forward coefficient, a swell occurs immediately before machining stops (Fig. 4.3.3 (c) (i)). The swell can be reduced by adjusting the velocity feed-forward coefficient (Fig. 4.3.3 (c) (ii)).

Fig. 4.3.3 (c) Reduction of a swell at the stop of machining by adjusting the velocity feed-forward coefficient

<4> Fine adjustment of feed-forward

Reduce the time required for positioning by making a fine adjustment of the feed-forward coefficient. If the feed-forward coefficient is not sufficiently large (Fig. 4.3.3 (d) (i)), make an adjustment by increasing the feed-forward coefficient by about 0.5% at a time. If the feed-forward coefficient is too large (Fig. 4.3.3 (d) (ii)), make an adjustment by decreasing the feed-forward coefficient by about 0.5% at a time.

Fig. 4.3.3 (d) Reduction of a swell at the stop of machining by adjusting the position feed-forward coefficient

If an adequate feed-forward coefficient is set, the in-position width is satisfied nearly at the same as distribution command completion, and shortest-time positioning is achieved as shown in Fig. 4.3.3 (e).

Fig. 4.3.3 (e) When an adequate feed-forward coefficient is set

4.3.4 Vibration in the Stop State

Vibration generated only in the stop state is caused by the decreased load inertia in a backlash. Adjust the auxiliary functions for suppressing stop-time vibration. Vibration may be generated only in the stop state also when the position gain is too large.

(Reference: Parameter numbers) For details, see Chapter 5, "SERVO FUNCTION DETAILS."

4.α*i*S/α*i*F/β*i*S/β*i*F/L*i*S/D*i*S SERIES PARAMETER ADJUSTMENT B-65270EN/08

Function 1: Velo	ocity loop p	proportional	high-speed	l processing	g function			
	#7	#6	#5	#4	#3	#2	#1	#0
2017	PK2V25							
PK2V25(#7)	1: Enable	es velocity	loop high c	ycle manag	gement funct	ion		
Function 2: Acc	eleration fe	edback						
2066			4	Acceleration	feedback gain			
Function 3: Fun	ction for ch	anging the	proportiona	al gain in th	e stop state	#0		#0
	#/	#6	#5	#4	#3	#2	#1	#0
2016					PK2VDN			
PK2VDN(#3)	1: Enable	es the funct	tion for cha	nging the p	proportional	gain in the	e stop state.	In the stop
	state: '	75%						
	#7	#6	#5	#4	#3	#2	#1	#0
2207					PK2D50			
PK2D50(#3)	1: Decrea	ases the pro	portional g	ain in the s	top state to :	50%.		
2119				Stop dec	ision level			
2324		Fun Arbitra	ction for char ary magnificat	nging the pro tion in the sto	portional gain op state (durin	in the stop s g cutting fee	state: d only)	

4.3.5 Vibration during Travel

Vibration is generated during travel by various causes. So, a most appropriate method must be selected after observing the vibration status carefully.

Function 2: Dual position feedback function

	#7	#6	#5	#4	#3	#2	#1	#0		
2019	DPFB									
DPFB(#7) 1: Enables dual position feedback.										
2078		Dua	al position fee	edback: conv	ersion coeffic	cient (numera	tor)			

4.α*i*S/α*i*F/β*i*S/β*i*F/L*i*S/D*i*S SERIES PARAMETER ADJUSTMENT

2079	Dual position feedback: conversion coefficient (denominator)											
2080			Dual positior	ı feedback: pi	rimary delay t	ime constan	t					
Function 3: Vibra	ion-dam	ping control										
2033		Vibration-o	damping con	trol function:	number of po	osition feedb	ack pulses					
2034			Vibratio	on-damping c	ontrol functio	on: gain						
Function 4: Mach	ne veloc	itv feedback										
	#7	#6	#5	#4	#3	#2	#1	#0				
2012							MSFE					
MSFE(#1) 1:	Enabl	es machine	velocity fee	edback.			••					

4.3.6 Stick Slip

When the time from the detection of a position error until the compensation torque is output is too long, a stick slip occurs during low-speed feed. Improvement in gain is required. However, for a machine with high friction and torsion, a higher gain cannot be set. In such a case, a stick slip phenomenon may occur.

(Reference: Parameter numbers) For details, see Chapter 5, "SERVO FUNCTION DETAILS."

2045

Incomplete integral gain

4.3.7 Overshoot

When the machine is operated at high speed or with a detection unit of 0.1 μ m or less, the problem of overshoots may arises. Select a most appropriate preventive method depending on the cause of the overshoot.

(Reference: Parameter numbers) For details, see Chapter 5, "SERVO FUNCTION DETAILS."

Function 1: Overshoot compensation function

5

SERVO FUNCTION DETAILS

Chapter 5, "SERVO FUNCTION DETAILS", consists of the following sections:

5.1	SERVO HRV CONTROL	.176
5.2	CUTTING/RAPID SWITCHING FUNCTION	.186
5.3	VIBRATION SUPPRESSION IN THE STOP STATE	.190
5.4	MACHINE RESONANCE ELIMINATION FUNCTION	.196
5.5	CONTOUR ERROR SUPPRESSION FUNCTION	.224
5.6	FUNCTION FOR REDUCING EFFECTS OF VARIATIONS IN MACHINE	
	CHARACTERISTICS	.275
5.7	HIGH-SPEED POSITIONING FUNCTION	.288
5.8	CONTROL STOP FUNCTIONS	.292
5.9	UNEXPECTED DISTURBANCE TORQUE DETECTION FUNCTION (OPTIONAL	
	FUNCTION)	.310
5.10	MULTIPLE-MOTOR DRIVING (TANDEM DRIVING)	.322
5.11	TORQUE CONTROL FUNCTION	.371
5.12	USING A SERVO MOTOR FOR SPINDLE CONTROL	.373
5.13	COMPENSATION FOR REVERSE OPERATION IN HIGH-SPEED FSSB RIGID TAPPING	.381
5.14	FUNCTION FOR OBTAINING CURRENT OFFSETS AT EMERGENCY STOP	.383

5.1 SERVO HRV CONTROL

(1) Overview

Servo HRV control is a digital servo control system based on high-speed, high-response current control and includes servo HRV1 control, servo HRV2 control, servo HRV3 control, and servo HRV4 control. Use of these control systems allows higher acceleration, higher speed, and higher precision.

(2) Servo HRV control and Series and editions of applicable servo software

	30 <i>i</i> –B Series	3	0 <i>i</i> –A Series	0 <i>i</i> –D Series	
	90G0 and subsequent editions	90D0 and subsequent editions (Note 1, 2)	90E0 and subsequent editions 90E1 and subsequent editions (Note 2)	90C5 and subsequent edition 90E5 and subsequent edition 90C8 and subsequent edition 90E8 and subsequent edition	
(Servo HRV1 control)	×	×	×	×	
Servo HRV2 control	0	0	0	•	
Servo HRV3 control	•	0	•	0	
Servo HRV4 control	0	•	×	×	

O: Supported (● is recommended)

×: Not supported

NOTE

- 1 When using servo HRV4 control, use Series 90D0/J(10) and subsequent editions.
- 2 Series 32*i*-A, Series 32*i*/35*i* –B, and Power Motion *i*-A do not support servo HRV4 control.
- 3 For 30i-A Series (Series 90D0 and 90E0), apply the same servo HRV control to all axes.
- 4 In 300*i*-B Series (Series 90G0), the same HRV control needs to be applied for each FSSB line.

(3) Features of servo HRV control

(a) Servo HRV2 control

Servo HRV control is a total control technology implemented by a servo motor, servo amplifier, and control systems as shown in the figure below. Servo HRV2 control has the following features:

 HRV filters for eliminating vibration components of the machine system can be used. The HRV filters include the following filters to cover a wide range of vibration from low frequency vibration to high frequency vibration: TCMD filter (a filter for eliminating middle frequency vibration) Resonance elimination filter (a filter for eliminating high frequency vibration)

Disturbance elimination filter (a filter for eliminating low frequency vibration)

- (2) Use of a $\alpha iS/\alpha iF/\beta iS/\beta iF$ series motor and a $\alpha i/\beta i$ servo amplifier enables high-speed, high-precision, and smooth feed.
- (3) Use of a precise pulse coder improves control performance.

Fig. 5.1 (a) Overview of servo HRV control

(b) Servo HRV3 control

In addition to the features of HRV2 control, servo HRV3 control has the following features:

- (1) Improvement of the response of a current loop through high-speed HRV current control
- (2) Best suited to machine tools that require high-speed and high-precision.

With 30*i* Series, use of servo HRV3 control is recommended.

(c) Servo HRV4 control

In addition to the features of servo HRV2 and servo HRV3, servo HRV4 control has the following features:

- (1) Further improvement of the response of a current loop than servo HRV3 control
- (2) Best suited to high-precision processing machines etc.

Series 90G0 or Series 90D0 is required to use servo HRV4 control.

5.1.1 Servo HRV2 Control

(1) Series and editions of applicable servo software

CNC		Servo software	Bomorko		
CNC	Series	Edition	Remarks		
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions			
Power Motion <i>i</i> -A					
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	A(01) and subsequent editions			
	90E1	01.0 and subsequent editions			
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	A(01) and subsequent editions	HRV4		
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions			
	90C8	A(01) and subsequent editions			
	90E5	A(01) and subsequent editions			
	90E8	A(01) and subsequent editions			

(2) Setting the parameters for servo HRV2 control

- <1> Set a motor ID number for HRV2 control.
- (For a motor ID number, see (3) of Subsection 2.1.3.)
- <2> Set initialization bit 1 to 0 then turn off the power to the CNC then turn on the power again.
- <3> The standard parameters for servo HRV2 control are automatically loaded.
- <4> Completion of setting

NOTE

For servo parameter initialization, see Subsection 2.1.3.

5.1.2 Servo HRV3 Control

(1) Series and editions of applicable servo software

CNC		Servo software	Bomorko		
CNC	Series	Edition	Remarks		
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions			
Power Motion <i>i</i> -A					
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	A(01) and subsequent editions			
	90E1	01.0 and subsequent editions			
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	A(01) and subsequent editions	HRV4		
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions			
	90C8	A(01) and subsequent editions			
	90E5	A(01) and subsequent editions			
	90E8	A(01) and subsequent editions			

(2) Setting parameters for servo HRV3 control

<1> See Subsection 5.1.1, and make settings for servo HRV2 control.

<2> Set servo HRV3 current control. (For each axis)

	-	#7	#6	#5	#4	#3	#2	#1	#0
2013									HR3
HR3(#0)	0: I	Does no	ot use serve	o HRV3 co	ntrol.				
	1:	Uses s	ervo HRV3	3 control.					

NOTE

Available servo axis numbers (parameter No. 1023) vary with the setting of HRV control. For details, see the following table.

	301	i–B Ser	ies		3	80 <i>i</i> –A S	eries		0 <i>i</i> –D Series				
	Series 90G0 No.1023=8n+1			Series 90D0 No.1023=2n+1			Series 90E0 Series 90E1 No.1023=4n+1		Series 90C5 Series 90C8 No.1023=2n+1		Series 90E5 Series 90E8 No.1023=4n+1		
No.1023	HRV2	HRV3	HRV4	HRV2	HRV3	HRV4	HRV2	HRV3	HRV2	HRV3	HRV2	HRV3	
8n+1	0	0	0	0	0	0	0	0	0	0	0	0	
8n+2	0	0	×	0	0	×	0	0	0	0	0	0	
8n+3	0	0	×	0	0	0	0	0	0	0	0	0	
8n+4	0	0	×	0	0	×	0	×	0	0	0	×	
8n+5	0	×	×	0	0	0	0	0	0	0	0	0	
8n+6	0	×	×	0	0	×	0	0	0	0	0	0	
8n+7	×	×	×	0	0	0	0	0	0	0	0	0	
8n+8	X	×	×	0	0	X	0	×	0	0	0	×	

Table 5.1.2	(a)	Available	servo	axis	numbers
-------------	-----	-----------	-------	------	---------

O: Available, \times : Not available

NOTE Series 32*i*-A, Series 32*i*/35*i*-B, and Power Motion *i*-A do not support HRV4 control.

<3> Set the cutting/rapid velocity loop gain switching function.

			#7	#6	#5	#4	#3	#2	#1	#0
	2202	1 [VGCCR	
	VGCCR (#	1) 0	: Does 1	not use the	cutting/rapi	id velocity l	oop gain sv	vitching fur	nction.	
		1	: Uses t	he cutting/	rapid veloci	ity loop gain	n switching	function.		
	<4> Set the	curre	ent loop ga	in magnifi	cation.					
	2334	lL		Current lo	op gain magi	nification in h	igh-speed HR	RV current co	ntrol mode	
	[Unit of dat	a] %	6							
[Va	alid data rang	ge] 1	00 to 150							
[Recom	mended valu	e] 1	50							
		Г	This param	eter is valio	d only for c	utting feed	in the high-	speed HRV	current con	trol mode.
	<5> Set the	velo	city loop g	ain magnif	ication.					
	2335	IL		Velocity lo	oop gain mag	nification in h	igh-speed HF	RV current co	ntrol mode	
_	[Unit of dat	a] %	0							
[Va	alid data rang	ge] 1	00 to 400	(A value of	f 0 indicates	s the default	t value (100)%).)		
		T	This param	eter is valio	d only for c	utting feed	in the high-	speed HRV	current con	trol mode.
		1 F								
	2107		,	Velocity loop	gain magnifica	ation for cutting	(cutting/rapid	velocity loop g	ain switching)	
FX X	[Unit of dat	a] %	0	(0.0.1.	1 1 0 1	1 (100			
[Va	alid data rang	se] [00 to 400	(A value of	t 0 indicates	s the default	t value (100)%).)		
		Ĩ	his param	eter is vali	d only for	cutting fee	d when the	high-speed	HRV curre	ent control
		n	node is not	t set.						
		1 · 1	1 1 1 1	1 7	. 1 .					
	<6> Set the	high	-speed HK	V current o	$\frac{1}{20}$		(1 (· 11 · 1 ·		·* 11
	I o use :	serve	3 HKV 3 co	ontrol with	301 Series (or U1-D Seri	es, set the f	ollowing bi	it, which aut	omatically
	sets the	high	i-speed HF	V current	control mo	de during ci	itting feed:			

		#7	#6	#5	#4	#3	#2	#1	#0
2283									NOG54
NOG54(#0) The high-speed HRV current control mode (servo HRV3 control) is:									

B-65270EN/08

- 0: Set only when both G5.4Q1 and G01 are specified.
- 1: Set when G01 is specified (G5.4Q1 is not monitored).

NOTE This function cannot be used during servo HRV4 control.

<7> This completes parameter setting. To actually enter the high-speed HRV current control mode, G codes must be programmed. (This is not required if bit 0 (NOG54) of No.2283 is set to 1. See Subsection 5.1.5, "High-Speed HRV Current Control" for details.)

NOTE

The velocity loop gain is changed as listed below according to whether the high-speed HRV current control mode is set or not.

	(/	
High-speed HRV current control mode	Feed	Velocity loop gain [%]
Set (G5.4Q1 - G5.4Q0)	Rapid traverse	(1 + No. 2021 / 256) × 100
	Cutting feed	(1 + No. 2021 / 256) × No. 2335 (High-speed HRV current control: Velocity loop gain magnification)
Not set	Rapid traverse	(1 + No. 2021 / 256) × 100
	Cutting feed	(1 + No. 2021 / 256) × No. 2107 (Cutting/rapid switching: Velocity loop gain magnification)

Table 5.1.2 (b) Velocity loop gain for cutting feed and rapid traverse

(3) Limitation on servo HRV3 control

(a) Servo motor output torque

The servo amplifiers that support 30*i* Series and 0*i*-D Series have high heat resistance, so there is no limitation on them.

(b) Rated current

The rated current during use of HRV3 may be reduced as compared with HRV2. For details, refer to "Environmental conditions - derating" in FANUC SERVO AMPLIFIER α *i*SV SERIES DESCRIPTIONS (B-65282EN).

5.1.3 Servo HRV4 Control

(1) Series and editions of applicable servo software

CNC		Servo software	Bomorko
CNC	Series	Edition	Remarks
Series 30 <i>i</i> /31 <i>i</i> -B	90G0	03.0 and subsequent editions	
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	J(10) and subsequent editions	HRV4

(2) Setting parameters for servo HRV4 control

<1> See Subsection 5.1.1, and make settings for servo HRV2 control.

<2> Set servo HRV4 control. (For each axis)

		#7	#6	#5	#4	#3	#2	#1	#0
2014									HR4
HR4(#0) 0: Does not use servo HRV4 control.									

1: Uses servo HRV4 control.

NOTE

- 1 When the high-speed HRV current control mode is set by the G5.4Q1 command, servo HRV3 control or servo HRV4 control, whichever set in a parameter, is enabled. Therefore, both the servo HRV3 control enable bit and the servo HRV4 control enable bit cannot be set to 1 at the same time. (If these bits are both set to 1, an alarm indicating invalid current control setting is issued.)
- 2 Available servo axis numbers (parameter No. 1023) vary with the setting of HRV control. For details, see the table shown in "Setting parameters for servo HRV3 control".
- 3 If servo HRV4 control is set, servo HRV3 control is performed during rapid traverse or when high-speed HRV current control is disabled.
- 4 In servo HRV4 control using Series 90G0 (30*i*-B Series) or Series 90D0 (30*i* -A Series), one axis is controlled with one CPU. So, functions (such as tandem vibration-damping control during synchronization control, and torque tandem control) involving two or more axes in servo software processing cannot be used.

<3> Enable the ext	ended HRV function	on. (For eacl	h axis)				
	#7 #6	#5	#4	#3	#2	#1	#0
2300							HRVEN
HRVEN($\#$ 0) 0:	Does not use the	extended H	RV function	n.			
1:	1: Uses the extended HRV function.						

<4> Set the cutting/rapid velocity loop gain switching function.

	#7	#6	#5	#4	#3	#2	#1	#0
2202							VGCCR	
VGCCR (#1) 0: Does not use the cutting/rapid velocity loop gain switching function.								
1: Uses the cutting/rapid velocity loop gain switching function.								

<5> Set the current loop gain magnification.

	2334	Current loop gain magnification in high-speed HRV current control mode
	[Unit of data] %
[Va	lid data range	100 to 150
[Re	commended	value] 150
		This parameter is valid only for cutting feed in the high-speed HRV current control mode.
	<6> Set the v	elocity loop gain magnification.
	2335	Velocity loop gain magnification in high-speed HRV current control mode
	[Unit of data] %
[Va	alid data range] 100 to 400 (A value of 0 indicates the default value (100%).)
	_	This parameter is valid only for cutting feed when the high-speed HRV current control
		mode is set.
	2107	Velocity loop gain magnification (cutting/rapid velocity loop gain switching)
	[Unit of data] %
[Va	alid data range] 100 to 400 (A value of 0 indicates the default value (100%).)
	-	This parameter is valid only for cutting feed when the high-speed HRV current control mode is not set.

5.SERVO FUNCTION DETAILS

<7> This completes parameter setting. To actually enter the high-speed HRV current control mode, G codes must be programmed. (See Subsection 5.1.5, "High-Speed HRV Current Control" for details.)

NOTE

The velocity loop gain is changed as listed below according to whether the high-speed HRV current control mode is set or not.

High-speed HRV current control mode	Feed	Velocity loop gain [%]
	Rapid traverse	(1 + No. 2021 / 256) × 100
Set (G5.4Q1 - G5.4Q0)	Cutting feed	(1 + No. 2021 / 256) × No. 2335 (High-speed HRV current control: Velocity loop gain magnification)
	Rapid traverse	(1 + No. 2021 / 256) × 100
Not set	Cutting feed	(1 + No. 2021 / 256) × No. 2107 (Cutting/rapid switching: Velocity loop gain magnification)

Table 5.1.3 (a) Velocity loop gain for cutting feed and rapid traverse

(3) Limitation on servo HRV4 control

(a) Servo motor output torque

During cutting operation in high-speed HRV current control, the torque command is automatically limited to 70% of the maximum current value of the servo amplifier. As a result, the torque command is easily saturated. Therefore, when determining the time constant in cutting feed, consider the cutting load and the above limitation. Normally, the high-speed HRV current control mode is used for light cutting for finish machining, so the limitation of the torque command to 70% of the maximum current value of the servo amplifier is not regarded as critical.

Fig. 5.1.3 (a) Limitation on torque during servo HRV4 control

(b) Rated current

The rated current during use of HRV4 may be reduced as compared with HRV2. For details, refer to "Environmental conditions - derating" in FANUC SERVO AMPLIFIER α *i*SV SERIES DESCRIPTIONS (B-65282EN).

(4) Servo HRV4 control hardware

(a) Servo amplifiers

A servo amplifier supporting servo HRV4 control must be specified.

(b) Detector

To use servo HRV4 control, a detector supporting high-speed communication needs to be used for motor feedback (as a detector on the semi-closed loop side).

The table below indicates examples of detectors that support high-speed communication.

If a setting is made to enable HRV4 when a detector not supporting high-speed communication is connected, "SV0456 INVALID CURRENT CONTROL PERIOD SETTING ALARM" is issued.

Manufacture	Configuration or model
FANUC	αi Pulse coder, βi Pulse coder
FANUC	α <i>i</i> CZ sensor (512A, 768A, 1024A)
FANUC	Combination of high-resolution serial output circuit H with an incremental scale (1Vpp output) supplied by a vendor other than FANUC
FANUC	Combination of high-resolution serial output circuit C with an incremental scale (1Vpp output) supplied by a vendor other than FANUC
HEIDENHAIN	RCN827F, RCN727F, RCN227F, RCN223F, ECN223F RCN8590F, RCN8390F, RCN5590F, RCN5390F, RCN2590F, RCN2390F LC493F, LC193F LC495F, LC195F
MITUTOYO	AT553, AT555, ST753
Magnescale	RU77, RS97, SR77, SR87
NEWALL	SHG-AF
Renishaw	RESOLUTE
FAGOR	LAF, GAF, SAF, SVAF, HAF-D, SAF-D

	Table 5.1.3 (a)	Sample configuration of a detector usable with HR	۷4
--	-----------------	---	----

The table above indicates the configurations and models whose support for high-speed communication is confirmed as of October, 2012. For details, contact the detector manufacturers.

5.1.4 Servo Card and Number of Servo Controlled Axes

(1) 30*i*-B Series

The servo card has one or two optical connectors depending on the number of FSSB systems, so the number of connectable amplifiers and separate detector interface units are changed accordingly.

• Maximum number of amplifier axes and separate detector interface units that can be connected to one FSSB optical connector

	Amplifier (αi SV+ αi SP)	Separate detector interface unit
Servo HRV2 control	28 axes	4 台
Servo HRV3 control	13 axes	2 台
Servo HRV4 control	6 axes	1 台

• Maximum number of amplifier axes that can be connected to the servo card

Servo card		Number of FSSB	Maximum	number of am	plifier axes
Name	Specification	systems	HRV2	HRV3	HRV4
Servo card A11	A02B-0323-H094	1	6 axes	4 axes	1 axes
Servo card A12	A02B-0323-H095	1	12 axes	8 axes	2 axes
Servo card A13	A02B-0323-H096	1	18 axes	12 axes	3 axes
Servo card A24	A02B-0323-H097	2	24 axes	16 axes	4 axes
Servo card A26	A02B-0323-H098	2	32 axes	24 axes	6 axes

5.SERVO FUNCTION DETAILS

* The assumed CNC is 30*i*-B. The maximum number of amplifier axes is limited to the maximum number of controlled axes for each CNC model.

NOTE

For the maximum number of controlled axes, refer to Section 6.2, "Interface to the Amplifiers" in Series 30*i*-B CONNECTION MANUAL (HARDWARE) (B-64483EN).

(2) 30*i*-A Series

The servo card has one or two optical connectors depending on the number of FSSB systems, so the number of connectable amplifiers and separate detector interface units are changed accordingly.

• Maximum number of amplifier axes and separate detector interface units that can be connected to one FSSB optical connector

	Amplifier	Separate detector interface unit
Servo HRV2 control	16 axes	2 units
Servo HRV3 control	10 axes	2 units
Servo HRV4 control	4 axes	1 unit

• Maximum number of amplifier axes that can be connected to the servo card

Ser	Number of FSSB	Maximum	plifier axes		
Name	Specification	ication systems		HRV3	HRV4
Servo card B11	A02B-0303-H082	1	4 axes	3 axes	1 axes
Servo card B12	A02B-0303-H083	1	8 axes	6 axes	2 axes
Servo card B13	A02B-0303-H084	1	12 axes	9 axes	3 axes
Servo card B24	A02B-0303-H089	2	16 axes	12 axes	4 axes
Servo card B26	A02B-0303-H085	2	24 axes	18 axes	6 axes

* The servo control software for servo HRV2 and HRV3 control is 90E0 and 90E1 Series.

* The servo control software for servo HRV4 control is 90D0 Series.

NOTE

For the maximum number of controlled axes, refer to Section 7.1, " CONNECTION TO THE SERVO AMPLIFIERS" in Series 30*i*-A CONNECTION MANUAL (HARDWARE) (B-63943EN).

(3) 0*i*-D Series

The servo card has one or two optical connectors depending on the number of FSSB systems, so the number of connectable amplifiers and separate detector interface units are changed accordingly.

• Maximum number of amplifier axes and separate detector interface units that can be connected to one FSSB optical connector

	Amplifier Separate detector interface			
Servo HRV2 control	16 axes	2 units		
Servo HRV3 control	10 axes	2 units		

• Maximum number of amplifier axes that can be connected to the servo card

Ser	vo card	Number of FSSB	Maximum number of a	mplifier axes
Name	Specification	systems	HRV2	HRV3
Servo card A1	A02B-0319-H031	1	2 axes	2 axes
Servo card A2	A02B-0319-H032	1	4 axes	4 axes
Servo card A3	A02B-0319-H033	1	6 axes	6 axes
Servo card A4	A02B-0319-H034	1	8 axes	8 axes
Servo card B2	A02B-0319-H042	2	8 axes	6 axes
Servo card B3	A02B-0319-H043	2	9 axes	9 axes

* The servo control software for servo cards A1 to A4 is 90C5 and 90C8 Series.

* The servo control software for servo cards B2 and B3 is 90E5 and 90E8 Series.

5.1.5 High-Speed HRV Current Control

(1) Starting the high-speed HRV current control mode

The high-speed HRV current control mode is turned on and off by using a G code (G5.4). The high-speed HRV current control mode is set for cutting commands specified between G5.4Q1 and G5.4Q0.

PRUGRHM	
00001;	
65.101;	
G5.4Q1;	
G00X100.;	
G91G02I-10. F4000. ;	
G02I-10.;	urrent
G00X-100. ;	
G5.4Q0;	
65. 1Q0;	
M30;	
%	

(2) Checking the high-speed HRV current control mode

DIAGN	DSE							
0700 X Y Z A	0000	0000	0000	000	0000	000		0000
0704				Ø			\mathbf{O}	

Diagnosis No. 700 is used for checking the status of the high-speed HRV current control mode in servo HRV3 control and servo HRV4 control. After setting servo HRV3 or HRV4 control and turning the power off then back on, check that bit 1 (HOK) of diagnosis No. 700 is set. When servo HRV3 or HRV4 control can be used, HOK is set to 1.

DIAGNO	DSE							
0700 X Y Z A 0704	000	0000	0000	000000000000000000000000000000000000000	0000	0000	1111	

When HOK is set to 1, specifying G5.4Q1 sets bit 0 (HON) of diagnosis No.700 to 1 during the cutting feed command. If NOG54 is set to 1, bit 0 is set to 1 during the cutting feed command even if G5.4Q1 is not specified.

When bit 0 (HON) of No.2283 is set to 1, a high-speed current control cycle is set, and the current gain magnification for high-speed HRV current control is applied.

5.2 CUTTING/RAPID SWITCHING FUNCTION

(1) Overview

Increasing the gains of the position loop and velocity loop is effective in the improvement of cutting profiles. However, the maximum feedrate and the acceleration of acc./dec. in rapid traverse are generally higher than those in cutting feed. So, vibration in the velocity loop or hunting in the position loop may occur in rapid traverse even when stable cutting feed can be performed with the same settings. To prevent this problem, the functions below are provided with a function for switching between parameters for cutting feed and parameters for rapid traverse.

Fig. 5.2 Parameters that can be switched between parameters for cutting feed and for rapid traverse

NOTE

- 1 The TCMD filter and resonance elimination filter can be used at the same time by parameter setting.
- 2 The cutting/rapid switching function is not applied to the resonance elimination filter.

(2) Setting procedure

(a) Switching of the velocity loop gain and fine acc./dec. [Series and editions of applicable servo software]

		Servo software	Demerke
CNC	Series	Edition	Remarks
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions	
Power Motion <i>i</i> -A			
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	A(01) and subsequent editions	
	90E1	01.0	
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	A(01) and subsequent editions	HRV4
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions	
	90C8	A(01) and subsequent editions	
	90E5	A(01) and subsequent editions	
	90E8	A(01) and subsequent editions	

<1> Cutting/rapid velocity loop gain switching function

When TCMD is saturated during acceleration in rapid traverse, oscillation is easily generated in the velocity loop at the end of acceleration in rapid traverse. In some machines, as the feedrate becomes higher, high-frequency oscillation easily occurs. In such cases, switching between the gain for cutting feed and the gain for rapid traverse is effective.

If the cutting/rapid velocity loop gain switching is set, the conventional velocity gain is used in rapid traverse, and the overridden value is used during cutting feed. The override value is usually set to about 150% to 200%. When vibration occurs only in the stop state, use the variable proportional gain function described in Subsection 5.3.3. (The variable proportional gain function described in Subsection 5.3.1 can be used together.)

When servo HRV3 control or HRV4 control is used, a separate override value can be specified during high-speed HRV current control. See Subsection 5.1.4, "High-speed HRV Current Control".

	#7	#6	#5	#4	#3	#2	#1	#0
2202							VGCCR	
	0: Disab 1: Enabl	les the cutti es the cuttir	ng/rapid ve ng/rapid vel	locity loop ocity loop	gain switch gain switch	ing function	n. 1.	
2107			Velocity lo	op gain mag	nification for	cutting (%)		
[Valid data range]	100 to 400	(A value of	0 indicates	the defaul	t value (100	0%).)		
	Cutting/rapid velocity loop gain switching function							
	No.	2202#1=0 (0	disabled)	Al	ways	(1 + No.	2021 / 256) >	< 100
	No	2202#1-1 (/	anablad)	Rapid	traverse	(1 + No.	2021 / 256) >	< 100
	NO.	2202#1=1 (6	enabled)	Cutti	ng feed	(1 + No. 20	21 / 256) × N	o. 2107

(b) Feed-forward, TCMD filter, 1/2 PI current control switching

[Series and editions of applicable servo software]

		Servo software	Domoska
CNC	Series	Edition	Remarks
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions	
Power Motion <i>i</i> -A			
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	A(01) and subsequent editions	
	90E1	01.0	
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	A(01) and subsequent editions	HRV4
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions	
	90C8	A(01) and subsequent editions	
	90E5	A(01) and subsequent editions	
	90E8	A(01) and subsequent editions	

<1> Cutting/rapid feed-forward switching function

The position feed-forward coefficient and the velocity feed-forward coefficient can also be changed. To do this, use the cutting/rapid feed-forward switching function.

		#7	#6	#5	#4	#3	#2	#1	#0
2214					FFCHG				
	0.	Disab	es the cutti	ng/ranid fee	d-forward	switching f	inction		

1: Enables the cutting/rapid feed-forward switching function.

Cutting/rapid feed-forward switching function		Position FF	Velocity FF	
No. 2214#4=0 (disabled)	Always	NI- 0000	No. 0000	
	Rapid traverse	NO. 2092	NO. 2069	
No. 2214#4=1 (enabled)	Cutting feed	No. 2144	No. 2145	

<2> TCMD filter switching

When high frequency vibration occurs only in rapid traverse, use of the TCMD filter, rather than the resonance elimination filter, is sometimes effective. On the other hand, when the TCMD filter is used unnecessarily in cutting feed, a delay caused by the filter reduces the stability limit of velocity loop gain. In such a case, using the TCMD filter only for rapid traverse is effective.

2067	TCMD filter coefficient								
2156	TCMD filter coefficient for rap	id traverse							
	Cutting/rapid feed-forward switching function		TCMD filter						
	No. 2156=0 (disabled)	Always	No. 2067						
	No. 2156 ± 0 (anabled)	Rapid traverse	No. 2156						
	$100.2150 \neq 0$ (enabled)	Cutting feed	No. 2067						

<3> Switching of the current loop 1/2 PI control function in cutting feed and rapid traverse When the cutting/rapid velocity loop gain switching function is enabled, the current loop 1/2 PI control function is turned off at the time of rapid traverse. Only when current loop 1/2 PI control must be used also for rapid traverse while the cutting/rapid velocity gain switching function is

1: Enables the current loop 1/2 PI control function.

enabled, set the bit for always enabling the current loop 1/2 PI control function.

#1

#0

#0

1: Enables the current loop 1/2 PI control function for cutting only.

NOTE Since this function bit is the same as that of the cutting/rapid velocity loop gain switching function, enable bit 2 of parameter No. 2202 to always enable the current loop 1/2 PI control function during use of the cutting/rapid velocity loop gain switching function.

When the cutting/rapid velocity loop gain switching function is used: • #6 #4

2202

#7	#6	#5	#4	#3	#2	#1		
					PIAL			
Always enables the current loop 1/2 PI control function.								

No. 2203#2=1	No. 2202#1	No. 2202#2
	0	0
Always enables the current loop 1/2 PI control function.	1	1
Enables the current loop 1/2 PI control function for cutting only.	1	0

NOTE

1:

To disable the current loop 1/2 PI control function, set bit 2 of parameter No. 2203 to 0.

(c) Position loop gain switching

[Series and editions of applicable servo software]

CNC		Servo software	Remarks	
CNC	Series	Edition		
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions		
Power Motion <i>i</i> -A				
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	A(01) and subsequent editions		
	90E1	01.0		
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	A(01) and subsequent editions	HRV4	
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions		
	90C8	A(01) and subsequent editions		
	90E5	A(01) and subsequent editions		
	90E8	A(01) and subsequent editions		

<1> Cutting/rapid position loop gain function

The position loop gain is set for cutting and rapid traverse separately so that they can be switched.

NOTE

- If mode switching is performed in a state where the in-position check is set to a large value and position error remains, a shock occurs.
- In addition, if the difference between the cutting and rapid traverse position loop gain settings is large, a shock may also occur.

In such a case, reduce the setting of the in-position check. Alternatively, reduce the difference between the position loop gain settings so that a shock becomes a permissible level.

		#7	#6	#5	#4	#3	#2	#1	#0		
2213			PGCCR2								
	0: Disables the cutting/rapid traverse position loop gain function.										
		1: Enabl	es the cuttin	g/rapid trav	verse positi	ion loop gai	n function.				
1825	1825 Position loop gain										
2178		Position loop gain for rapid traverse									
Valid data ran	ge]	0 to 32767									
[Unit of da	ita]	0.01/S									
	_										
		Cutting/ra	apid position	loop gain f	iunction		Position	loop gain p	arameters		
		No.2213#6=0 (disabled) Always No.1825									
						Rapid		No 2179			
			No.2213#6=1	(enabled)		NU.2170					

5.3 VIBRATION SUPPRESSION IN THE STOP STATE

5.3.1 Velocity Loop High Cycle Management Function

(1) Overview

This function makes the stability limit of velocity loop gain higher than before by accelerating velocity loop proportional calculation.

Cutting feed

No.1825

The use of this function enables the following:

- Improvement of the command follow-up characteristic of a velocity loop
- Improvement of the servo rigidity

(2) Series and editions of applicable servo software

CNC		Servo software	Remarks	
CNC	Series	Edition		
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions		
Power Motion <i>i</i> -A				
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	A(01) and subsequent editions		
	90E1	01.0		
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	A(01) and subsequent editions	HRV4	
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions		
	90C8	A(01) and subsequent editions		
	90E5	A(01) and subsequent editions		
	90E8	A(01) and subsequent editions		

(3) Setting parameters

Calculated in each velocity loop control cycle

Fig. 5.3.1 (a) Overview of velocity loop high cycle management function

(4) Performance comparison with the acceleration feedback function

	Acceleration feedback function	Velocity loop high cycle management function
Control method	Acceleration feedback is performed at high speed.	Only a velocity loop proportional calculation is made at high speed.
Adjustment method	Set a value of –10 to –20.	Set the function bit.
Effect	This function may prove more effective than the velocity loop high cycle management function, depending on the machine system resonance frequency and intensity.	In general, this function is more effective than the acceleration feedback function in improving the velocity loop gain.

(5) Caution and notes on use

Depending on the resonance frequency and resonance strength of the machine system, the use of this function may result in machine resonance. If this occurs, do not use this function.

NOTE

- 1 When this function is used, the observer function is disabled. To remove high-frequency oscillations, use the resonance elimination filter or torque command filter.
- 2 The normalization of the machine speed feedback function is disabled. If hunting cannot be eliminated by increasing the velocity loop gain, use the vibration damping control function, which provides a capability similar to the machine speed feedback function.
- 3 In (torque command) tandem control, velocity loop high cycle management function cannot be used with Series 9096. To use velocity loop high cycle management function with Series 9096, velocity command tandem control must be enabled before the high cycle management function is enabled.
- 4 When this function is used, some functions are restricted as follows:

Unavailable function	Function with restricted usage
Non-linear control	Machine speed feedback; normalization not performed
Acceleration feedback	Observer used for unexpected disturbance torque detection
N pulses suppression function	

5.3.2 **Acceleration Feedback Function**

(1) Overview

The acceleration feedback function is used to control velocity loop oscillation by using motor speed feedback signal multiplied by the acceleration feedback gain to compensate the torque command.

This function stabilizes the servo system when vibration of approximately 50 to 150 Hz occurs in a machine in which, for example:

- The motor and machine system are spring-coupled with each other.
- The external inertia is larger than the motor inertia.

Fig 5.3.2 is a velocity loop block diagram that includes acceleration feedback function.

: Acceleration feedback gain Ka

Fig. 5.3.2 (a) Velocity loop block diagram that includes acceleration feedback function

(2) Series and editions of applicable servo software

CNC		Servo software	Remarks	
CNC	Series	Edition		
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions		
Power Motion <i>i</i> -A				
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	A(01) and subsequent editions		
	90E1	01.0		
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	A(01) and subsequent editions	HRV4	
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions		
	90C8	A(01) and subsequent editions		
	90E5	A(01) and subsequent editions		
	90E8	A(01) and subsequent editions		

(3) Setting parameters

Specifying the following parameters as a negative value enables the acceleration feedback function.

2066 [Valid data range] -10 to -20

Acceleration feedback gain

(4) Caution and note

If the acceleration feedback gain is too large, abnormal sound or vibration can occur during acc./dec.

To solve this problem, reduce the gain.

NOTE

This function is disabled when the velocity loop high cycle management function (see Subsection 5.3.1) is used.

5.3.3 Variable Proportional Gain Function in the Stop State

(1) Overview

The velocity gain or load inertia ratio is generally increased if a large load inertia is applied to a motor, or to improve the response. An excessively large velocity gain may cause the motor to generate a high-frequency vibration when it stops. This vibration is caused by excessive proportional gain of the velocity loop (PK2V) when the motor is released within the backlash of the machine in the stop state. This function decreases the velocity loop proportional gain (PK2V) in the stop state only. The function can suppress the vibration in the stop state and also enables the setting of a high velocity gain.

(2) Series and editions of applicable servo software

CNC		Servo software	Remarks	
CNC	Series	Edition		
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions		
Power Motion <i>i</i> -A				
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	A(01) and subsequent editions		
	90E1	01.0		
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	A(01) and subsequent editions	HRV4	
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions		
	90C8	A(01) and subsequent editions		
	90E5	A(01) and subsequent editions		
	90E8	A(01) and subsequent editions		

(3) Setting parameters

The variable proportional gain function in the stop state is used.

Variable proportional gain function in the stop state : Stop judgment level

[Unit of data] Detection unit

[Recommended value]

2119

2 to 10 (Detection unit: $1 \mu m$) 20 to 100 (Detection unit: 0.1 µm)

In addition to the specification for reducing the proportional gain to 75% of the set value in the stop state, the function for reducing the proportional gain to 50% of the set value and the function for arbitrarily setting the magnification only during cutting feed are provided. When decreasing the velocity loop proportional gain in the stop state to 50%, set the following bit parameter in addition to the function bit for the function for changing the proportional gain in the stop state and the parameter for stop determination level.

	#7	#6	#5	#4	#3	#2	#1	#0		
2207					PK2D50					
PK2D50 (#3) When the variable proportional gain function in the stop state enabled (K2VDN = 1):										
0: The velocity loop proportional gain in the stop state is 75%.										
	1. The velocity loop propertional coin in the stop state is $500/$									

The velocity loop proportional gain in the stop state is 50%. 1:

5.SERVO FUNCTION DETAILS

When an arbitrary magnification is used for a proportional gain in the stop state during cutting feed, set the function bit for stop judgment level of the function for changing the proportional gain in the stop state. In addition, set the following parameter:

2324

Variable proportional gain function in the stop state : Arbitrary magnification in the stop state (during cutting feed only)

[Unit of data] % [Recommended value]

25 to 100

(4) Example of parameter setting

(a) When the cutting feed/rapid traverse switchable velocity loop gain function (see Section. 4.3) is not used, and

Bit 3 of No. 2016 = 1

Actual velocity gain in the stop state=(velocity gain setting)×0.75

(b) When the cutting feed/rapid traverse switchable velocity loop gain function (see Section. 4.3) is not used,

Bit 3 of No. 2016 = 1 and bit 3 of No. 2207 = 1

Actual velocity gain in the stop state=(velocity gain setting)×0.5

(c) When the cutting feed/rapid traverse switchable velocity loop gain function (see Section. 4.3) is not used,

Bit 3 of No. 2016 = 1 and No. 2324 = α

Actual velocity gain in the stop state=(velocity gain setting)× α /100

When the absolute value of an error is lower than the stop judgment level, the function changes the proportional gain of the velocity loop (PK2V) to 75% or 50% of the set value.

If the machine vibrates while in the stop state, enable this function and set a value greater than the absolute value of the error causing the vibration as the stop judgment level. The function cannot stop the vibration of a machine in the stop state when the current velocity loop proportional gain is too high. If this occurs, reduce the velocity loop proportional gain.

Fig. 5.3.3 (a) Relationship between error and velocity loop proportional gain (PK2V)

[Tip] Example of setting an arbitrary magnification in the stop state

(a) When the cutting feed/rapid traverse switchable velocity loop gain function (see Section. 4.3) is used, and

Bit 3 of No. 2016 = 1

- If the mode in the stop state is the cutting mode:
- Actual velocity gain in the stop state = (velocity gain setting for cutting) $\times 0.75$
- If the mode in the stop state is the rapid traverse mode:
 - Actual velocity gain in the stop state = (velocity gain setting for rapid traverse) $\times 0.75$
- (b) When the cutting feed/rapid traverse switchable velocity loop gain function (see Section. 4.3) is used,

Bit 3 of No. 2016 = 1 and bit 3 of No. 2207 = 1

• If the mode in the stop state is the cutting mode: Actual velocity gain in the stop state = (velocity gain setting for cutting) × 0.5

- If the mode in the stop state is the rapid traverse mode:
 - Actual velocity gain in the stop state = (velocity gain setting for rapid traverse) $\times 0.5$
- (c) When the cutting feed/rapid traverse switchable velocity loop gain function (see Section. 4.3) is used,

Bit 3 of No. 2016 = 1 and No. $2324 = \alpha$

- If the mode in the stop state is the cutting mode:
- Actual velocity gain in the stop state = (velocity gain setting for cutting) $\times \alpha/100$
- If the mode in the stop state is the rapid traverse mode:
 - Actual velocity gain in the stop state = (velocity gain setting for rapid traverse) $\times 0.75$
- (d) When the cutting feed/rapid traverse switchable velocity loop gain function (see Section. 4.3) is used,
 - Bit 3 of No. 2016 = 1, bit 3 of No. 2207 = 1, and No. 2324 = α
 - If the mode in the stop state is the cutting mode: Actual velocity gain in the stop state = (velocity gain setting for cutting) $\times \alpha/100$
 - If the mode in the stop state is the rapid traverse mode: Actual velocity gain in the stop state = (velocity gain setting for rapid traverse) $\times 0.5$

5.3.4 Current Loop 1/2 PI Control Function

(1) Overview

To improve servo performance in high-speed and high-precision machining, high-speed positioning, ultrahigh-precision positioning, and so forth, a velocity loop gain as high as possible needs to be set stably.

To set a high velocity loop gain stably, the response of the current loop needs to be improved.

The current loop 1/2 PI control function enables the response of the current loop to be improved.

(2) Series and editions of applicable servo software

CNC		Servo software	Remarks	
CNC	Series	Edition		
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions		
Power Motion <i>i</i> -A				
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	A(01) and subsequent editions		
	90E1	01.0		
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	A(01) and subsequent editions	HRV4	
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions		
	90C8	A(01) and subsequent editions		
	90E5	A(01) and subsequent editions		
	90E8	A(01) and subsequent editions		

(3) Control method

As shown in Fig. 5.3.4 (a), in the area where a small current flows, a current loop calculation is based on PI control rather than on the conventional I-P control method. When a large current flows, the control method returns to I-P control to suppress a current overshoot.

The proportional from the command is added to PWM calculation.

Fig. 5.3.4 (a) Block diagram of current loop 1/2PI control

(4) Setting parameters

<1> Enabling the current loop 1/2 PI control function at all times

switch function.)

<2> To enable the function for cutting only, use the following bit in addition to the previous bit:

	#7	#6	#5	#4	#3	#2	#1	#0	
2202							VGCCR		
VGCCR (#1) 1: To enable the current loop 1/2 PI control function for cutting only									
	(This function is used together with the cutting feed/rapid traverse velocity loop gain								

<3> To enable the function at all times while using bit 1 of parameter No. 2202, use the following bit <u>in</u> <u>addition to the settings of <1> and <2>:</u>

▲ CAUTION If the motor activation sound or vibration in the stop state increases when this parameter is set, do not use this parameter.

(5) Current control PI rate modification

The current control PI rate (p in Fig. 5.3.4(a)) is usually fixed at 1/2, but can be changed freely.

2323	Current control PI rate
[Valid data range	e] 0 to 4096
[Unit of data	1] 4096 represents p = 1.0 (complete PI).
	When the value 0 is specified, the specification of 2048 (1/2PI), which is equivalent to p
	= 0.5, is assumed.
	If you need to increase the velocity acin, in particular, a value

If you need to increase the velocity gain, in particular, a value greater than 1/2PI may be set. However, do not use this parameter usually.

5.4 MACHINE RESONANCE ELIMINATION FUNCTION

5.4.1 Selecting a Resonance Elimination Function

The frequency band where the resonance elimination functions produce elimination effects varies from one function to another. Check the resonance frequency in question with SERVO GUIDE or a vibrometer then select a resonance elimination function according to the frequency.

The figure below shows the classified functions and their effective resonance frequency bands.

5.SERVO FUNCTION DETAILS

	Low frequency	Middle frequency	High freq	uency
Classification	0Hz ź	100H 2	00Hz 400I	Hz 2kHz
Elimination of resonance component from command	Disturbance elimin 50Hz 100H Resonance elimination filter L 50Hz	ation filter Torque	command filter 400H Resonance elimination filter 200Hz	z
Elimination of resonance component from Fb		150Hz	Observer 400H	Z
Stabilization of full-closed system	Dual position Fb 50Hz Machine velocity Fb, vibrat	on damping		
Sabilization using acceleration sensor	Machin ing point control			

- * The figure above shows guideline frequencies.
- * For vibration at 100 Hz to 180 Hz, a disturbance elimination filter or torque command filter may be useful. A vibration improvement may be made by applying the current loop 1/2PI function or by fine velocity loop gain tuning.
- * The observer function may have an adverse effect such as instability produced at stop time. For resonance elimination at middle to high frequencies, try a torque command filter or resonance filter first. Only when resonance still exists, use the observer function.
- * The resonance elimination functions for use at low frequencies have the following features:

Function	Feature
Resonance elimination	Parameter setting is easy, and a large resonance elimination effect can be expected.
filter L	However, precision degradation (such as overshoot) is unavoidable. So, this function is
	not suitable for applications that require high precision. By using an exclusion rate, the
	precision and elimination effect need to be balanced.
Disturbance elimination	This function compensates for a torque command, so that precision is less affected.
filter	However, the maximum torque may decrease.
Dual position Fb,	These functions are dedicated to a full-closed system and improve vibration (instability)
machine velocity Fb,	caused by a twist between the motor and scale. The order of effect is: Dual position Fb
vibration damping control	> Machine velocity Fb = Vibration damping control.
Machining point control	This function has a limited influence on precision and produces a high elimination
	effect. Depending on the setting of gain, an acceleration loop may oscillate. An
	acceleration sensor needs to be installed.

5.4.2 Torque Command Filter (Middle-Frequency Resonance Elimination Filter)

(1) Overview

The torque command filter applies a primary low-pass filter to the torque command. If the machine resonates at one hundred Hz or over, this function eliminates resonance at such high frequencies.

CNC	Servo software		Demerike	
CNC	Series	Edition	Remarks	
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions		
Power Motion <i>i</i> -A				
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	A(01) and subsequent editions		
	90E1	01.0		
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	A(01) and subsequent editions	HRV4	
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions		
	90C8	A(01) and subsequent editions		
	90E5	A(01) and subsequent editions		
	90E8	A(01) and subsequent editions		

(2) Series and editions of applicable servo software

(3) Explanation

Fig. 5.4.2 (a) shows the configuration of a velocity loop including the torque command filter.

Fig. 5.4.2 (a) Configuration of velocity loop including torque command filter

As shown in Fig. 5.4.2(a), the torque command filter applies a low–pass filter to the torque command. When the machine has a resonance frequency of 100 Hz or higher, the components are included in the velocity feedback in Fig. 5.4.2 (a) and the resonance components may be amplified by the proportional of the velocity loop. However, the resonance is prevented by interrupting the high–frequency component of the torque command using the filter.

(4) Proper use of the observer and torque command filter

The torque command filter is set in the forward direction. Therefore, there are fewer bad influences exerted upon the entire velocity control system than the observer that filters a feedback signal. If the resonance is very strong and it cannot be eliminated, use the observer.

Use the torque command filter first when the mechanical system resonates at high frequency. If the resonance cannot be eliminated, use the observer.

(5) Setting parameters

2067	Torque command filter (FILTER)
[Typical setting]	1166 (200 Hz) to 2327 (90 Hz)
	When changing the torque command filter setting, see Table 5.4.2.
	As the cut-off frequency, select the parameter value corresponding to a half of the vibration frequency from the table below.
	(Example) In the case of 200-Hz vibration, select a cutoff frequency of 100 Hz for the torque command filter, and set FILTER = 2185.
	A CAUTION

Do not specify 2400 or a greater value. Such a high value may increase the vibration.

Cutoff frequency (Hz)	Setting value of parameter	Cutoff frequency (Hz)	Setting value of parameter		
90	2327	170	1408		
95	2255	180	1322		
100	2185	190	1241		
110	2052	200	1166		
120	1927	220	1028		
130	1810	240	907		
140	1700	260	800		
150	1596	280	705		
160	1499	300	622		

 Table 5.4.2 (a)
 Parameter setting value of torque command filter

(6) Cutting feed/rapid traverse switchable torque command filter

With this function, the torque command filter coefficient can be switched between rapid traverse and cutting feed to improve contouring accuracy during cutting and increase a maximum feedrate and maximum acceleration during rapid traverse at the same time.

2156

Torque command filter coefficient for rapid traverse

[Valid data range] 1166 (200 Hz) to 2327 (90 Hz)

When 0 is set, the cutting feed/rapid traverse switchable torque command filter is disabled. The normal filter coefficient (No. 2067) is used at all times.

When a value other than 0 is set, No. 2156 is used for stop time, rapid traverse, and jog feed, and No. 2067 is used for cutting only.

5.4.3 Resonance Elimination Filter Function (High-Frequency Resonance Elimination Filter)

(1) Overview

A filter function for removing high-speed resonance is added. With this function, high-speed resonance can be removed to set a higher velocity loop gain.

(2) Series and editions of applicable servo software

CNIC	Servo software		Demerika
CNC	Series	Edition	Remarks
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions	
Power Motion <i>i</i> -A			
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	A(01) and subsequent editions	
	90E1	01.0	
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	A(01) and subsequent editions	HRV4
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions	
	90C8	A(01) and subsequent editions	
	90E5	A(01) and subsequent editions	
	90E8	A(01) and subsequent editions	

(3) Control block diagram

Fig. 5.4.3 (a) Overview of a resonance elimination filter

(4) Setting parameters

- 1 If the frequency of a resonance elimination filter is set to a low frequency around 100 Hz, the control system can become unstable, resulting in a large vibration.
- 2 Modify parameters in the emergency stop state.

(5) Setting parameters

<1> Setting for resonance elimination filters 2 to 4

The resonance elimination filter has a function for cutting signals of a particular frequency band. Three parameters are used for this filter. They specify the center frequency of a range to be cut, a bandwidth to be cut, and damping separately.

2360	RE filter 2 : Attenuation center frequency
[Valid data range]	96 to 1000(HRV1 or HRV2), 96 to 2000(HRV3), 96 to 4000(HRV4) (independent of the
	damping setting)
[Unit of data]	Hz
0004	
[Valid data range]	0 to attenuation center frequency (independent of the damping setting)
[Unit of data]	Hz
2362	RE filter 2 : Damping
[Valid data range]	0 to 100 (If it is 0, the attenuation ratio is maximized.)
[Unit of data]	0_{6}
	/0
Resonance elim	ination filters 3 and 4 have the same specification as resonance elimination filter 2.
2363	RE filter 3 : Attenuation center frequency
r1	
2364	RE filter 3 : Attenuation bandwidth
2365	PE filter 3 · Damping
2000	
2366	RE filter 4 : Attenuation center frequency
 1	
2367	RE filter 4 : Attenuation bandwidth

5.SERVO FUNCTION DETAILS

(90G0/17.0 and subsequent editions)

QNOTCH(#6) Resonance elimination filter 4 has:

- 0: The standard specification.
- 1: The extended frequency specification.

Table 5.4.3 (a) Extension of the setting range of the attenuation center frequency of resonance elimination

filter 4				
	HRV1, HRV2	HRV3	HRV4	
Setting range of attenuation center frequency No. 2366 (No.2221#6=0)	96 to 1000	96 to 2000	96 to 4000	
Setting range of attenuation center frequency No. 2366 (No.2221#6=1)	96 to 2000	96 to 4000	96 to 4000	

B-65270EN/08

1 For resonance elimination filters 2 to 4, there is no specification that supports compatibility with conventional resonance elimination filters. Even if damping = 0, an arbitrary attenuation bandwidth can be specified for them.

2 Resonance elimination filters 2 to 4 are enabled if a nonzero value is set in the attenuation bandwidth or damping parameters for them. If you do not want use these resonance elimination filters, reset all the three parameters (attenuation center frequency, attenuation bandwidth, and damping) to 0.

<2> Setting for resonance elimination filter 1

Only resonance elimination filter 1 has the conventional specification if the damping is 0 and the improved specification if the damping is not 0.

2113	RE filter 1 : Attenuation center frequency
[Valid data range]	250 to 992 (if damping = 0)
	96 to 1000(HRV1 or HRV2), 96 to 2000(HRV3), 96 to 4000(HRV4) (if damping $\neq 0$)
[Unit of data]	Hz
2177	RE filter 1 : Attenuation bandwidth
[Valid data range]	20, 30, 40 (if damping = 0) (0 to attenuation center frequency for $30i$ -B)
	0 to attenuation center frequency (if damping $\neq 0$)
[Unit of data]	Hz
2359	RE filter 1 : Damping
[Valid data range]	$\overline{0}$ (If it is 0, the resonance elimination filer has the conventional specification.)
_	1 to 100 (If it is 1, the attenuation ratio is maximized. For resonance elimination filer 1.)
[Unit of data]	%

- 1 If damping = 0 for resonance elimination filter 1, this filter has the same specification as for conventional resonance elimination filters. So, its attenuation bandwidth can be set only to 20, 30, or 40 Hz (specification compatible with conventional resonance elimination filters). In 30*i*-B Series, even if damping = 0, resonance elimination filter 1 has the improved specification. (The specification compatible with conventional resonance elimination filters is not supported.)
- 2 Resonance elimination filter 1 is enabled if a nonzero value is set in the attenuation bandwidth or damping parameter for it. If you do not want use the resonance elimination filter, reset all the three parameters (attenuation center frequency, attenuation bandwidth, and damping) to 0.

[Parameters for resonance elimination filters]

	Attenuation center frequency [Hz]	Attenuation bandwidth	Damping
Resonance elimination filter 2	No.2360	No.2361	No.2362
Resonance elimination filter 3	No.2363	No.2364	No.2365
Resonance elimination filter 4	No.2366	No.2367	No.2368
Resonance elimination filter 1	No.2113	No.2177	No.2359

(6) Example of filter characteristics <1> Conventional resonance elimination filter

Center frequency = 300 Hz Bandwidth = 30 Hz Damping = 0

<2> Improved resonance elimination filter (with damping)

Center frequency = 300 Hz Bandwidth = 100 Hz Damping = 50%

<3> Improved resonance elimination filter (with two stages of damping)

(First stage) Center frequency = 300 Hz Bandwidth = 50 Hz Damping = 30% (Second stage) Center frequency = 600 Hz Bandwidth = 100 Hz Damping = 50%

5.4.4 Disturbance Elimination Filter Function (Low-Frequency Resonance Elimination Filter)

(1) Overview

The disturbance elimination filter function estimates a disturbance by comparing a specified torque with the actual velocity, and feeds forward the estimation to the specified torque to suppress the effect of the disturbance. In particular, this function is useful for a vibration of 50 Hz to 100 Hz.

Fig. 5.4.4 (a) Configuration of disturbance elimination filter

(2) Series and editions of applicable servo software

CNC	Servo software		Bomorko	
CNC	Series	Edition	Remarks	
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	09.0 and subsequent editions		
Power Motion <i>i</i> -A				
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	A(01) and subsequent editions		
	90E1	01.0		
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	A(01) and subsequent editions	HRV4	
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions		
	90C8	A(01) and subsequent editions		
	90E5	A(01) and subsequent editions		
	90E8	A(01) and subsequent editions		

(3) Setting pa	rameters								
	#7	#6	#5	#4	#3	#2	#1	#0	
2223	T1 1' 4 1	1		<u> </u>				DISOBS	
DISOBS (#0)	0 : Disable 1 : Enable	ance elimin ed. ed.	ation filter	function is:					
]								
	Disturbance elimination filter gain (Kd) 101 to 500 500 NOTE If a gain of 0 to 100 is set, the disturbance elimination filter function does not operate.								
[Valid data range] [Typical setting]									
2210	In antia ratio (Di) (0()								
[Valid data range]	inertia ratio (RJ) (%)								
[Vand data range]	100								
	Set an inertia ratio (= machine inertia/motor inertia) in %. Usually, set 100%.								
2220									
[Valid data range]	100 to 2000	1			on gain (Jinc)			
[Initial setting]	100 (Increase the setting step by step.) Set an inverse function gain as a conversion coefficient for acceleration-to-TCMD								
[
	conversion.	conversion. This parameter needs to be adjusted. As a guideline, set a value not greater							
	than the value obtained by the following expressions:								
	Linear moto	Linear motor (The detection unit of the scale is assumed to be $p \mu m$.)							
	$Jmo = 466048 \times p \times Jm/Kt/Imax$								
	Rotary moto	Rotary motor							
	$Jmo = 1396264 \times Jm/Kt/Imax$								
	Jm: Weight [kg] or inertia [kgm ²]								
	Kt: Torque constant [N/Ap] or [Nm/Ap]								
	Imax:	Maxim	um ampiiii	er current [/	Арј				
	NOTE If an excessively large gain value is set, an abnormal sound and vibration can occur.							and	
2321	Filter time constant (Tp)								
	• When	HRV1, HR	V2, or HR	V3 is used:					
[Valid data range]	/alid data range] 0 to 4096								
[Typical setting]	3700 (equiv	alent to T =	= 10 ms).						
	* Usuall	y, this valu	e does not	need to be c	hanged.				
	Set a filter	time consta	ant for dete	ermining an	estimated	disturbance	e velocity b	by using the	
	following ex	xpression:							
	Ip = 4096 > T: Setting ti	< exp (-t/1)	• • [aaa] •	0.001 [ass]					
	1: Setting ti	me constar	t [sec], t =	0.001 [sec]					
	• When	HRV4 is u	sed:						
[Valid data range]	0 to 4096								
[Typical setting]	3994 (equivalent to $T = 10 \text{ ms}$).								
	* Usuall	y, this valu	e does not	need to be c	hanged.				
				204					

Set a filter time constant for determining an estimated disturbance velocity by using the following expression: $Tp = 4096 \times exp (-t/T)$

T: Setting time constant [sec], t = 0.00025 [sec]

2322	Acceleration feedback limit (La)						
[Valid data range]	0 to 7282						
[Typical setting]	1000						
	Set a limiter for a feedback torque calculated from acceleration. This parameter suppresses an excessive motion at the time of adjustment. The value 7282 represents a maximum amplifier current. When a 160-A amplifier is used, for example, the value 1000 is equivalent to 22 A.						
	NOTE In a case where a value close to the torque limit may be used, the torque is limited if the acceleration feedback limit is not increased.						

(4) Procedure

- (1) Make an adjustment according to the procedure below. First, disable those functions that operate only in the stop state such as the function for changing the proportional gain in the stop state. For determining the resonance frequency and adjusting the disturbance elimination filter, use frequency characteristics measurement by SERVO GUIDE.
- (2) Enable the disturbance elimination filter function, set the disturbance elimination filter gain to 100 (not functioning), then measure the frequency characteristics. With SERVO GUIDE, observe the response waveform obtained during the above measurement, and

set the input amplitude (to about 500) to allow the waveform obtained during the above measurement, and be heard. A sinusoidal torque command is used, so that the command does not generate a torque in one direction. The command is to be executed away from the machine stroke limits.

Fig. 5.4.4 (b) Measurement example using SERVO GUIDE (before adjustment)

5.SERVO FUNCTION DETAILS

(3) Set the disturbance elimination filter gain to 500 and check the frequency characteristics with SERVO GUIDE while increasing the gain for inverse model starting with 100 in steps of 100. Adjust the value so that the gain swell part becomes small.

Fig. 5.4.4 (c) Measurement example using SERVO GUIDE (after adjustment)

- (4) Note that the velocity loop gain of higher frequencies is increased and even a violent vibration may be caused simply by enabling the disturbance elimination filter function. If a vibration occurs, increase the inverse function gain gradually, and check the vibration of the torque command. If the vibration becomes greater, decrease the inverse function gain. If the vibration can not be reduced by increasing and decreasing the inverse function gain, change the filter time constant by ±50 to eliminate the vibration.
- (5) If the frequency of vibration is higher than 100 Hz, use a separate machine resonance prevention function such as the vibration suppression filter and torque command filter.

5.4.5 Resonance Elimination Filter L (Low-Frequency Resonance Elimination Filter)

(1) Overview

The resonance elimination filter L function eliminates low-frequency vibration by applying a filter designed to eliminate low-frequency components to a feed-forward command/velocity command. This function reduces low-frequency vibration but can degrade contouring accuracy in high-speed feed. Before using this function, check the accuracy.

Fig. 5.4.5 (a) Configuration of a position loop including resonance elimination filter L
CNC		Servo software	Bemerke		
CNC	Series	Edition	Remarks		
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions			
Power Motion <i>i</i> -A					
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	P(16) and subsequent editions			
	90E1	01.0			
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	P(16) and subsequent editions	HRV4		
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions			
	90C8	A(01) and subsequent editions			
	90E5	A(01) and subsequent editions			
	90E8	A(01) and subsequent editions			

(2) Series and editions of applicable servo software

(3) Setting parameters

For resonance elimination filter L, the fourth-stage parameter of an ordinary resonance elimination filter for the torque command is used.

So, the two filters cannot be used at the same time.

To use the resonance elimination filter L function, enable the function bit (LNOTCH) below.

	#7	#6	#5	#4	#3	#2	#1	#0
2221						VFFNCH	LNOTCH	
LNOTCH(#1)	-					-		
	0: Uses r	esonance e	limination f	filter 4.				
	1: Uses r	esonance e	limination f	filter L.				
VFFNCH(#2)	Resonance	elimination	filter L is a	applied to:				
	0 1 1	0 1	1 0.1		1 /	D 0 10		

- 0: Feed-forward part only of the velocity command (\leftarrow Default)
- 1: Entire velocity command

NOTE

- 1 To enhance the elimination effect, set VFFNCH to 1.
- 2 When this parameter is set, the power must be turned off before operation is continued.

Set the following filter parameters:

2366	Resonance elimination filter L/resonance elimination filter 4 attenuation center frequency
[Valid data range]	5 to 50
[Unit of data]	Hz
[]	
2367	Resonance elimination filter L/resonance elimination filter 4 attenuation bandwidth
[Valid data range]	3 to 20
[Unit of data]	Hz
L .	
2368	Resonance elimination filter L/resonance elimination filter 4 damping
[Valid data range]	10 to 100 (A maximum attenuation rate is specified when 0 is set.)
[Unit of data]	%
L .	
	To stop the use of this function, be sure to set all parameters above
	to 0 then restart the CNC
	lo u inen restart the CNC.

5.SERVO FUNCTION DETAILS

2000

Draw1: Draw3: -201200 600 800 1200 1400 Fig. 5.4.5 (b) Effects of resonance elimination filter L

5.4.6 **Observer Function**

(1) Overview

-150

The observer is used to eliminate the high-frequency component and to stabilize a velocity loop when a mechanical system resonates at high frequency of several hundred Hertz.

-150

200

The observer is a status observer that estimates the controlled status variables using the software.

In a digital servo system, the speed and disturbance torque in the control system are defined as status variables. They are also estimated in the observer. An estimated speed consisting of two estimated values is used as feedback. The observer interrupts the high-frequency component of the actual speed when it estimates the speed. High-frequency vibration can thus be eliminated.

(2) Explanation

Fig. 5.4.6 (a) shows a block diagram of the velocity loop including an observer.

Fig. 5.4.6 (a) Configuration of velocity loop including observer

Fig. 5.4.6 (b) shows a block diagram of the observer.

Fig. 5.4.6 (b) Block diagram of the observer

POA1, POK1, and POK2 in Fig. 5.4.6 (b) correspond to digital servo parameters. The observer has an integrator as a motor model. POA1 is a coefficient that converts the torque command into motor acceleration and is the characteristic value of the motor. The motor model is accelerated by this value. The actual motor is also accelerated by the torque and disturbance torque that it generates.

The disturbance torque works on the actual motor. There is a time lag in the current loop. The POA1 value does not completely coincide with the characteristic value of actual motor. This is why the motor's actual velocity differs from the motor speed estimated by an observer. The observer is compensated by this difference. The motor model is compensated proportionally (POK1), and the observer is compensated integrally (POK2/s).

POK1 and POK2 act as a secondary low-pass filter between the actual speed and estimated speed. The cutoff frequency and damping of the filter are determined by the POK1 and POK2 values. The difference between the observer and low-pass filter lies in the existence of a POA1 term. Using POA1, the observer's motor model can output an estimated speed that has a smaller phase delay than the low-pass filter.

When an observer function is validated, the estimated speed in Fig. 5.4.6 (b) is used as velocity feedback to the velocity control loop. A high-frequency component (100 Hz or more) contained in the actual motor speed due to the disturbance torque's influence may be further amplified by the velocity loop, making the entire system vibrate at high frequency. The high frequency contained in the motor's actual speed is eliminated by using the velocity feedback that the observer outputs. High-frequency vibration can be suppressed by feeding back a low frequency with the phase delay suppressed.

In some systems, the use of the observer function can suppress vibration during movement but makes the machine unstable while it is in the stop state. In such cases, use the function for disabling the observer in the stop state, as explained in Art. (7) of this section.

CNC		Servo software	Demerke
CNC	Series	Edition	Remarks
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions	
Power Motion <i>i</i> -A			
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	A(01) and subsequent editions	
	90E1	01.0	
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	A(01) and subsequent editions	HRV4
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions	
	90C8	A(01) and subsequent editions	
	90E5	A(01) and subsequent editions	
	90E8	A(01) and subsequent editions	

(3) Series and editions of applicable servo software

(4) Setting parameters

	#7	#6	#5	#4	#3	#2	#1	#0
2003						OBEN		
OPEN(#2) 1	l. To one	able the obc	orvor functi	010				

OBEN (#2) 1: To enable the observer function

2047

Observer coefficient (POA1) [Setting value] Keep the standard setting unchanged.

2050

Observer coefficient (POK1)

When HRV1, HRV2, or HRV3 is used:

[Setting value] Usually, use the standard setting.

When HRV4 is used:

[Setting value] $956 \rightarrow$ To be changed to 264

Observer coefficient (POK2)

When HRV1, HRV2, or HRV3 is used: [Setting value] Usually, use the standard setting.

When HRV4 is used:

[Setting value] $510 \rightarrow$ To be changed to 35

(5) Note

As shown in Fig. 5.4.6 (a), the standard parameters are set so that the cutoff frequency of the filter becomes 30 Hz. With this setting, the effect of filtering becomes remarkable at resonance frequencies above the range of 150 Hz to 180 Hz.

To change the cutoff frequency, set parameters POK1 and POK2 to a value listed below, while paying attention to Table 5.4.6 (a):

Generally, the observer function does not work unless its cutoff frequency is held below Fd/5 or Fd/6, where Fd is the frequency component of an external disturbance. However, if this bandwidth is some 20 Hz or lower, the velocity loop gain also drops or becomes unstable, possibly causing a fluctuation or wavelike variation.

	HRV1, HI	RV2, HRV3	HRV4		
Cuton frequency (Hz)	POK1	POK2	POK1	POK2	
10	348	62	90	4	
20	666	237	178	16	
30	956	510	264	35	
40	1220	867	348	62	
50	1460	1297	430	96	

Table 5.4.6 (a) Changing the observer cutoff frequency

	HRV1, HR	V2, HRV3	HRV4		
Cuton frequency (Hz)	POK1	POK2	POK1	POK2	
60	1677	1788	511	136	
70	1874	2332	1874	183	

(6) Setting observer parameters when the unexpected disturbance torque detection function is used

The unexpected disturbance torque detection function (see Section 5.9) uses the observer circuit shown in Fig. 5.4.6 (b) to calculate an estimated disturbance. In this case, to improve the speed of calculation, change the settings of observer parameters POA1, POK1, and POK2 by following the explanation given in Section 5.9.

When the observer function and unexpected disturbance torque detection function are used together, however, the defaults for POK1 and POK2 must be used.

(7) Stop time observer disable function

If the observer function is enabled, the machine may fluctuate and become unstable when it stops. Such a fluctuation or unstable operation can be prevented by disabling the observer function only in the stop state.

(8) Setting parameters

<1> Function bit

	#7	#6	#5	#4	#3	#2	#1	#0
2018							MOVOBS	
MOVOBS (#1)	The functio	n for disab	ling the obs	erver in the	e stop state i	s:		
	0: Disabl	led						
	<u>1: Enable</u>	ed \leftarrow Set	this value.					

<2> Level at which the observer is determined as being disabled

2119	Level at which the observer is determined as being disabled

[Unit of data] Detection unit

[Typical setting] 1 to 10

If the absolute value of the position error is less than the level at which the observer is determined as being disabled, the observer function is disabled.

NOTE This parameter is also used for the stop determination level of the function for changing the proportional gain in the stop state.

(Usage)

Set the function bit and the level at which the observer is determined as being disabled so that it is greater than the peak absolute value of the oscillating position error.

5.4.7 Vibration Damping Control Function

(1) Overview

In a closed-loop system, the Pulsecoder on the motor is used for velocity control and a separate detector is used for position control.

During acceleration/deceleration, the connection between the motor and machine is distorted and causes the speed of the machine to slightly differ from the actual motor speed, making it difficult to properly control the machine (reduce vibration on the machine) in some cases.

The vibration damping control function feeds back the difference between the speeds on the motor and machine (speed transfer error) to the torque command, to reduce vibration on the machine.

5.SERVO FUNCTION DETAILS

This function has the effect of the machine velocity feedback function, but is superior to the machine velocity feedback function in that restrictions as imposed with the machine velocity feedback function are eliminated.

(2) Control method

The following figure shows the block diagram for vibration damping control:

Position feedback

Fig. 5.4.7 (a) Block diagram for vibration damping control

(3) Series and editions of applicable servo software

CNC		Servo software	Domorko
CNC	Series	Edition	Remarks
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	015.0 and subsequent editions	
Power Motion <i>i</i> -A			
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	A(01) and subsequent editions	
	90E1	01.0	
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	A(01) and subsequent editions	HRV4
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions	
	90C8	A(01) and subsequent editions	
	90E5	A(01) and subsequent editions	
	90E8	A(01) and subsequent editions	

(4) Setting parameters

2033

Number of position feedback pulses for vibration damping control conversion coefficient

[Valid data range] -32767 to 32767

When 0 is set, this function is disabled.

If a negative value is specified, it is internally read as 10 times the specified value. (-1000=10000)

When a flexible feed gear (F·FG) is used (In the case of using the A/B phase separate type detector and analog SDU) Set value = Number of feedback pulses per motor revolution, received from a separate detector/8

(Example 1)

With a 5 mm/rev ball screw, 0.5 μ m/pulse separate detector, and a detection unit of 1 μ m, F·FG = 1/2

Then,

Set value = $10,000 \times 1/8 = 1250$

When a flexible feed gear (F·FG) is used

(In the case of using the serial separate type detector)

Set value = Number of feedback pulses per motor revolution, received from a separate detector (after feedback pulse)/8 (Example 2)

If a flexible feed gear is used under the conditions described in example 1 above, Set value = $10,000 \times 1/2 \times 1/8 = 625$

When a flexible feed gear (F·FG) is used
(In the case of using the analog SDU)
Set value = (Travel distance per motor revolution [mm]) / (detector signal pitch [mm]) × 512 / 8

(Example 3)

When travel distance per motor revolution=10 [mm], and detector signal pitch=20 [µm]

Set value = $10 / 0.020 \times 512 / 8 = 32000$

If the above expression is indivisible, set the nearest integer.

NOTE

For 30*i*-B Series and Power Motion *i*-A, it is not necessary to set parameter No. 2033 because automatic calculation is performed based on the parameter for the number of position pulses.

2034

Vibration-damping control gain

[Valid data range] -32767 to 32767

[Standard setting] About 500

This is the feedback gain for vibration damping control.

Adjust the value in increments of about 100, observing the actual vibration. An excessively large gain will amplify the vibration.

If setting a positive value amplifies the vibration, try setting a negative value.

5.4.8 **Dual Position Feedback Function (Optional Function)**

(1) Overview

A machine with large backlash may cause vibrations in a closed loop system even if it works steadily in a semi-closed loop system. The dual position feedback function controls the machine so that it operates as steadily as in the semi-close system.

This function is optional function.

(2) Control method

The following block diagram shows the general method of dual position feedback control:

Position feedback (from separate detector)

Fig. 5.4.8 (a) Block diagram of dual position feedback control

As shown in Fig. 5.4.8, error counter ER1 in the semi-closed loop system and error counter ER2 in the closed loop system are used. The primary delay transfer function is represented by the following equation:

Primary delay time constant = $(1 + \tau s)^{-1}$

The actual error, ER, depends on the time constant $\boldsymbol{\tau},$ as described below:

- (1) When time constant τ is 0 $(1 + \tau s)^{-1} = 1$
 - ER = ER1 + (ER2 ER1) = ER2 (error counter of the full-closed loop system)
- (2) When time constant τ is $\infty \dots (1 + \tau s)^{-1} = 0$

ER = ER1 (error counter of the semi-closed loop system)

This shows that control can be changed according to the primary delay time constant. The semi-closed loop system applies control at the transitional stage and the full-closed loop system applies control in positioning.

This method allows vibrations during traveling to be controlled as in the semi-closed loop system.

(3) Series and editions of applicable servo software

CNC		Servo software	Bomorko
CNC	Series	Edition	Remarks
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions	
Power Motion <i>i</i> -A			
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	A(01) and subsequent editions	
	90E1	01.0	
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	A(01) and subsequent editions	HRV4
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions	
	90C8	A(01) and subsequent editions	
	90E5	A(01) and subsequent editions	
	90E8	A(01) and subsequent editions	

(4) Setting parameters

	#7	#6	#5	#4	#3	#2	#1	#0
2019	DPFB							
DPFB (#7)	1: To ena	able dual po	sition feed	lback				
2049			Dual pos	sition feedbad	k maximum a	mplitude		
[Setting value]	Maximum a	amplitude (µm)/(miniı	num detect	ion unit for	full-closed	$mode \times 64$)
	This param	eter should	normally b	be set to 0.				
[Unit of data]	Minimum d	letection un	it for full-	closed mode	$e(\mu m/p) \times 6$	54		
	If setting =	0, compen	sation is n	ot clamped.	If the para	meter is sp	ecified, and	d a position
	error larger	than the s	specified v	alue occurs	during set	ni-closed a	nd full-clo	sed modes,
	compensati	on is clam	bed. So s	et the para	neter with	a value two	times the	sum of the
	backlash an	d pitch erro	or compens	sation amou	nts.			
	If it is impo	ssible to fin	nd the sum	, set the par	ameter to 0.			
2078		Du	al position fe	edback conv	ersion coeffic	ient (numerat	tor)	
2079		Dua	l position fee	edback conve	rsion coefficie	ent (denomina	ator)	
[Setting value]] Reduce the following fraction and use the resulting irreducible fraction.							
	Number of position feedback pulses							
	Conversio	n Numera	ator	per motor re	evolution	food goar)		
	coefficient	() =			eeu year)		
		Denomir	nator		1 million			

	(Example) When the αi Pulsecoder is used with a tool travel of 10 mm/motor revolution (1 μ m/pulse) Conversion coefficient $\left(\frac{\text{Numerator}}{\text{Denominator}}\right) = \frac{10 \times 1000}{1,000,000} = \frac{1}{100}$
2080	Dual position foodback primary dolay time constant
[Setting value]	Set to a value in a range of 10 to 300 msec or so
[Unit of data]	msec
	Normally, set a value of around 100 msec as the initial value. If hunting occurs during acc./dec., increase the value in 50-msec steps. If a stable status is observed, decrease the value in 20-msec steps. When 0 msec is set, the same axis movement as that in full-closed mode is performed. When 32767 msec is set, the same axis movement as that in semi-closed mode is performed. For a system that requires simultaneous control of two axes, use the same value for both axes.
2081	Dual position feedback zero-point amplitude
[Setting value]	Zero width (µm)/minimum detection unit for full-closed mode
[Unit of data]	Minimum detection unit $(\mu m/p)$ for full-closed mode Positioning is performed so that the difference in the position between full-closed mode and semi-closed mode does not exceed the pulse width that corresponds to the parameter-set value. First set the parameter to 0. If still there is fluctuation, increase the parameter value. If this is applied to an axis with a large backlash, a large position error may remain. For details, see Art. (5) in this section.
2118	Dual position feedback: Level on which the difference in error between the semi-closed and full-closed modes becomes too large
[Setting value]	Level on which the difference in error is too large (μ m)/minimum detection unit (μ m/p) for full-closed mode
[Unit of data]	Minimum detection unit $(\mu m/p)$ for full-closed mode If the difference between the Pulsecoder and the separate detector is greater than or equal to the number of pulses that corresponds to the value specified by the parameter, an alarm is issued. Set a value two to three times as large as the backlash. When 0 is set, detection is disabled.
P2080:	
Normalmente, impostare com Se si verifica un grosso errore Se si osserva uno stato stabili	e valore iniziale 100 msec. e di inseguimento durante acc. / dec., aumentare il valore a passi di 50 msec. e, diminuire il valore a passi di 20 msec.

Quando è impostato 0 msec, si ottiene lo stesso comportamento della modalità full-closed (la posizione viene determinata solo dalla riga esterna).

Quando viene impostato 32767 msec, si ottiene lo stesso comportamento della modalità semi-closed (la posizione viene determinata solo dall'encoder motore). ATTENZIONE: impostando valori elevati (15000-20000), è capitato di aver problemi durante le fasi di cambio utensile perchè non viene chiuso il segnale IN-POSITION e la macchina resta in attesa.

Per un sistema con il controllo simultaneo di due assi (gantry), utilizzare lo stesso valore per entrambe gli assi.

NOTE

The function for monitoring the difference in error between the semi-closed and full-closed modes is useful also for monitoring for a problem such as the feedback pulse missing of a separate detector. When only the monitoring of the difference in error between the semi-closed and full-closed modes is to be performed on a machine for which dual position feedback is not required as a stabilization function, the function for monitoring the difference in error between the semi-closed and full-closed modes can be used by not only making an ordinary full-closed loop setting but also setting a conversion coefficient for dual position feedback and the parameter for the monitoring level of the difference in error between the semi-closed and full-closed modes. (No option setting and function bit setting need to be made.) See Subsection 2.1.11.1, "Function for monitoring the difference in error between the semi-closed and full-closed modes" for details.

HBSF (#4) A backlash compensation and pitch error compensation are:

Added after selection according to the conventional parameter No. 2010. 0:

Added to the closed loop side and semi-closed loop side at the same time. 1:

When this parameter is set to 1, the settings of No. 2010 are ignored.

* In 30*i*-B Series, when the dual position feedback function is enabled, pitch error compensation amounts are added to both the closed loop side and the semi-closed side regardless of the bit setting. Compensation of backlash acceleration amounts is the same as before.

No 2040#4	No 0000#4	Counter to which pitch error compensation amount is added				
NO.2010#4	NO.2206#4	30 <i>i</i> -A, 0 <i>i</i> -D Series	30 <i>i</i> -B Series			
0	0	Closed loop side	Closed loop side and semi-closed loop side			
1	0	Semi-cllosed loop side	Closed loop side and semi-closed loop side			
0	1	Closed loop side and semi-closed loop side	Closed loop side and semi-closed loop side			
1	1	Closed loop side and semi-closed loop side	Closed loop side and semi-closed loop side			

NOTE

If a setting is made to perform the function for monitoring the difference in error between the semi-closed and full-closed modes for an axis placed in a simple full-closed loop, the specification for addition of a backlash compensation and pitch error compensation is the same as in the case of using the dual position feedback function. In this case, it is recommended to make the setting above to "Add a backlash compensation and pitch error compensation to the closed loop side and semi-closed loop side at the same time".

(5) Use with smooth backlash compensation

A smooth backlash compensation value can be added onto the semi-closed side by setting the parameter indicated below to 1 when the dual position feedback function is used together with smooth backlash compensation.

[Applicable servo software]

(30*i*-B Series)

90G0 Series 21.0 and subsequent editions

(30*i*-A Series)

90D0 Series Q(17) and subsequent editions

90E0 Series Q(17) and subsequent editions

90E1 Series 01.0 and subsequent editions (0*i*-D Series)

90C5,C8 Series A(01) and subsequent editions

90E5,E8 Series A(01) and subsequent editions

[Applicable system software]

Series 30 <i>i</i> -A	: G00C, G01C, G02C Series 27 and subsequent editions
	: G004, G014, G024 Series 01 and subsequent editions
Series 31 <i>i</i> -A5	: G12C, G13C Series 27 and subsequent editions
	: G124, G134 Series 01 and subsequent editions
Series 31 <i>i</i> -A	: G103, G113 Series 12 and subsequent editions
	: G104, G114 Series 01 and subsequent editions
Series 32 <i>i</i> -A	: G203 Series 12 and subsequent editions
	: G204 Series 01 and subsequent editions
Series 0 <i>i</i> -MD	: D4F1 Series 01 and subsequent editions
Series 0 <i>i</i> -TD	: D6F1 Series 01 and subsequent editions
Series 0 <i>i</i> Mate-MD	: D5F1 Series 01 and subsequent editions
Series 0i Mate-TD	: D7F1 Series 01 and subsequent editions

For the series 30*i*/31*i*/32*i*/35*i*-B, all series and editions support this function.

	#7	#6	#5	#4	#3	#2	#1	#0
11601(FS30 <i>i</i>)		SBN						
SBN (#6)	When both	of smooth	backlash c	ompensatic	on and dual	position fe	eedback are	enabled, a
smooth backlash compensation value is:								
	1: Used f	for compen	sation on th	e semi-clos	ed side.			

0: Dependent on the settings of bit 4 of No. 2206 and bit 5 of No. 2010.

(6) Zero-width setting for a machine with a large backlash or twist

Dual position feedback function (or hybrid function) is used for an axis where a machine backlash of about 1/10 revolution in terms of the motor shaft exists, the machine may stop with a position error remaining, which is greater than the dual position feedback zero-width parameter value. (In some cases, there may be ten or more pulses left.) To solve this problem, make the following settings:

5.4.9 Machine Speed Feedback Function

(1) Overview

In many full-closed systems, the machine position is detected by a separate detector and positioning was controlled according to the detected positioning information. The speed is controlled by detecting the motor speed with the Pulsecoder on the motor. When distortion or shakiness between the motor and the machine is big, the machine speed differs from the motor speed during acceleration and deceleration. Hence, it is difficult to maintain high position loop gain.

This machine speed feedback function allows adding the speed of the machine itself to the speed control in a fully closed system, making the position loop stable.

(2) Series and editions of applicable servo software

CNC		Servo software	Bomorko	
CNC	Series	Edition	Remarks	
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions		
Power Motion <i>i</i> -A				
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	A(01) and subsequent editions		
	90E1	01.0		
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	A(01) and subsequent editions	HRV4	
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions		
	90C8	A(01) and subsequent editions		
	90E5	A(01) and subsequent editions		
	90E8	A(01) and subsequent editions		

(3) Control block diagram Fig. 5.4.9 (a) is a control block diagram PK1V: velocity loop integral gain Machine speed PK2V: velocity loop proportional gain : machine speed feedback gain α Machine PK2V × α 1/(JL • s) 1/s Spring coupling MCMD + VCMD + PK1V/s + PK2V 1/(Jm • s) Kp TCMD Motor Speed feedback Position feedback

Fig. 5.4.9 (a) Position loop block diagram that includes machine speed feedback function

As shown in Fig. 5.4.9 (a), this function corrects the torque command by multiplying the machine speed by machine velocity feedback gain, α , as shown by the bold line. When $\alpha = 1$, the torque command is corrected equally by the motor speed and the machine speed.

(4) Adding the normalization function

(a) Overview

If an arc is drawn with the machine speed feedback function enabled, the arc may be elongated in the direction parallel to the axis to which the machine speed feedback function is applied. To solve this problem, the machine speed feedback function was improved.

(b) Explanation

The current machine speed feedback configuration is as shown above figure. Assuming that the motor speed feedback is much the same as the speed feedback at the tip of the machine, the speed feedback for the proportional term is $(1 + \alpha)$ times the motor speed feedback. This causes a conflict to the weight of the VCMD.

So, the proportional term speed feedback is divided by $(1 + \alpha)$ to eliminate the conflict.

* The normalization function cannot be used when the velocity loop proportional high-speed processing function is used.

(5) Setting parameters

- 219 -

5.SERVO FUNCTION DETAILS

2088	Machine speed feedba	Machine speed feedback gain (MCNFB)						
	 When a serial output type separate detec (parameters Nos. 2084 and 2085, parameters) (Setting range: 1 to 100 or -1 to -100) (Typical setting) 	Vhen a serial output type separate detector is used or when the flexible feed gear parameters Nos. 2084 and 2085, parameter Nos. 1977 and 1978) is set to $1/1$ Setting range: 1 to 100 or -1 to -100) Typical setting)						
	When the normalization function is not used:	MCNFB = 30 to 100						
	When the normalization function is used:	MCNFB = -30 to -100						
	 Other than flexible feed gear (No. 2084, 2 (Setting range: 101 to 10000 or -101 to - (Typical setting) When the normalization function is not used: When the normalization function is used: 	085, 1977, 1978) = 1/1 10000) MCNFB = 3000 to 10000 MCNFB = -3000 to -10000						
	 When 30<i>i</i>-B Series is used (valid data ra 10000 (in units of 0.01%)) For 30<i>i</i>-B Series, the normalization function 	inge: 1 to 100 (in units of 1%) or 101 to on is always enabled.						
	(Typical setting)							
	When the increment system is 0.01%:	MCNFB=3000 to 10000						
	When the increment system is 1%:	MCNFB=30 to 100						

(6) Note

It the machine has a resonance frequency of 200 to 400 Hz, using this function may result in a resonance being amplified, thus leading to abnormal vibration or sound. If this happens, take either of the following actions to prevent resonance.

- Using an observer (⇒ Subsection 5.4.6) (If the machine speed feedback function is used together with the observer function, the motor speed and machine speed are filtered out simultaneously.)
- Using a torque command filter (\Rightarrow Subsection 5.4.2)

5.4.10 Machining Point Control

(1) Overview

The machining point control function suppresses vibration after positioning by attaching an acceleration sensor to the machining point and using acceleration feedback for control.

NOTE

Machining point control uses an acceleration sensor. For the setting of an acceleration sensor, see Subsection 2.1.7.

(2) Series and editions of applicable servo software

CNC		Servo software	Domorko	
CNC	Series	Edition	Remarks	
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	09.0 and subsequent editions		
Power Motion <i>i</i> -A				
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	P(16) and subsequent editions		
	90E1	01.0		
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	P(16) and subsequent editions	HRV4	

(3) Setting parameters

(a) Setting machining point control

(Function bit setting)

To use machining point control, enable the following function bit:

(Band-pass filter setting)

When gain is tuned for machining point control, components other than a vibration suppression target frequency may cause vibration to disable a high gain value from being set. To extract a vibration suppression target frequency component only, be sure to set the vibration suppression target frequency component only.

NOTE If the value 4 or a smaller number is set, an illegal parameter setting alarm (detail number 3553) is issued. Set the value 5 or a greater number.

(b) Tuning machining point control

Three parameters are available for tuning machining point control. By tuning these parameters, vibration after specified acceleration/deceleration can be suppressed.

- Gain 1
- Timing adjustment parameter
- Gain 2

(Tuning of machining point control gain 1)

Tune machining point control gain 1 so that the acceleration rate (enclosed by the dashed line in the Fig. 5.4.10 (a)) after acceleration/deceleration based on specified acceleration decreases. Tune machining point control gain 1, starting with a small value (about 50).

(Tuning of the timing adjustment parameter)

Tune the machining point control timing adjustment parameter so that the acceleration rates (enclosed by the dashed lines in the Fig. 5.4.10 (a)) after acceleration/deceleration based on specified acceleration decrease.

This timing adjustment is implemented with a low-pass filter applied to feedback. Set the parameter so that the cut-off frequency of the filter is around the frequency of vibration.

After the setting of the timing adjustment parameter is modified, gain 1 needs to be tuned again. To obtain an optimum vibration suppression effect, tune the timing adjustment parameter and gain 1 repeatedly.

Machining point control enabled

Fig. 5.4.10 (b) Adjustment of machining point control gain 1 and timing adjustment parameter

2096Machining point control timing adjustment parameter (MPCTIM)[Valid data range]0 to 32767[Typical setting]The setting of the parameter corresponds to the cut-off frequency of the low-pass filter.

ting] The setting of the parameter corresponds to the cut-off frequency of the low-pass filter. Set the parameter so that the cut-off frequency is around the frequency of vibration.

Cut-off frequency [Hz]	Parameter setting	Cut-off frequency [Hz]	Parameter setting
5	3969	17.5	3669
7.5	3907	20	3612
10	3847	25	3501
12.5	3787	30	3392
15	3728	40	3186

Table 5.4.10 (a) Cut-off frequency and Parameter setting value

NOTE

When 0 is set in the parameter, the cut-off frequency of the filter is 40 Hz.

(Tuning of machining point control gain 2)

By tuning machining point control gain 2, vibration may be further suppressed.

While checking the effect of vibration suppression, tune machining point control gain 1 and machining point control gain 2 repeatedly. Tune machining point control gain 2, starting with a small value about 10).

2265

Machining point control gain 2 (MPCK2)

[Valid data range] 0 to 32767

5.4.11 **Torque Command Filter (Secondary) (High-frequency Resonance Elimination Filter**)

(1) Overview

The torque command filter in Subsection 5.4.2 applies a primary low-pass filter to a torque command. On the other hand, the torque command filter (secondary) applies a secondary low-pass filter. The secondary low-pass filter has higher resonance elimination effects than the primary low-pass filter. The secondary low-pass filter is effective particularly when multiple resonance points are present in a high frequency of 1 kHz or more.

(2) Series and editions of applicable servo software

CNC		Servo software	Bomorko	
CNC	Series	Edition	Remarks	
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions		
Power Motion <i>i</i> -A				
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	A(01) and subsequent editions		
	90E1	01.0 and subsequent editions		
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	A(01) and subsequent editions	HRV4	
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions		
	90C8	A(01) and subsequent editions		
	90E5	A(01) and subsequent editions		
	90E8	A(01) and subsequent editions		

(3) Setting parameters

The torque command filter (secondary) uses the same parameters as the resonance elimination filter function in Subsection 5.4.3.

2113, 2360, 2363, 2366

RE filters 1 to 4: Attenuation center frequencies

[Unit of data] Hz

[Valid data range] 500 to 1000(HRV1,HRV2), 500 to 2000(HRV3), 500 to 4000(HRV4)

Set a cutoff frequency. The cutoff frequency needs to be equal to or less than the resonance frequency to be eliminated. For example, when the resonance frequency is 1 kHz, the cutoff frequency needs to be 500 Hz or less.

2177, 2361, 2364, 2367

RE filters 1 to 4: Attenuation bandwidth

Set 0.

RE filters 1 to 4: Damping

[Standard setting] 70 (Set a positive value.) [Unit of data] %

5.5 CONTOUR ERROR SUPPRESSION FUNCTION

5.5.1 Feed-forward Function

(1) Principle

Fig. 5.5.1 (a) Feed-forward control block diagram

Adding feed-forward term α to the above servo system causes the position error to be multiplied by (1 - α).

Adding feed-forward term α also causes figure error $\Delta R1$ (mm) due to a radial delay of the servo system during circular cutting to be multiplied by $(1 - \alpha^2)$.

$$\Delta \text{R1 (mm)} = \frac{\text{Feedrate}^2 (\text{mm/s})^2}{2 \times \text{position gain}^2 \times \text{radius (mm)}} \times (1 - \alpha^2)$$

(Example) If $\alpha = 0.7$, $\Delta R1$ is reduced to about 1/2.

Beside $\Delta R1$, figure error $\Delta R2$ (mm) may occur in a position command when an acc./dec. time constant is applied after interpolation for two axes.

Therefore, total radial figure error ΔR during circular cutting is:

 $\Delta R = \Delta R1 + \Delta R2$

This section describes the conventional feed-forward function.

The shape error in the direction of the radius during circular cutting is as shown in Fig. 5.5.1 (b) below.

Fig. 5.5.1 (b) Path error during circular cutting

(2) Series and editions of applicable servo software

CNC		Servo software	Bomorko
CNC	Series	Edition	Remarks
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions	
Power Motion <i>i</i> -A			
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	A(01) and subsequent editions	
	90E1	01.0	
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	A(01) and subsequent editions	HRV4
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions	
	90C8	A(01) and subsequent editions	
	90E5	A(01) and subsequent editions	
	90E8	A(01) and subsequent editions	

(3) Setting parameters

<1> Enable PI control and the feed-forward function.

FEED (#1) 1: To enable the feed-forward function

<2> Specify the feed-forward coefficient.

2092		Advanced preview feed-forward coefficient (ADFF1)
[Typical setting	g] (9800 to 10000
		Advanced preview feed-forward coefficient (in units of 0.01%) = $\alpha \times 10000 (0 \le \alpha \le 1)$

5.SERVO FUNCTION DETAILS

Example) When $\alpha = 98.5\%$, ADFF1 = 9850

<3> Specify the velocity feed-forward coefficient.

- <4> Run a program to move the axis for cutting feed at maximum feedrate. Under this condition, check whether the VCMD waveform observed on the Servo Guide or the servo check board overshoots and what the shock caused during acceleration /deceleration is like.
 - \Rightarrow If an overshoot occurs, or the shock is big, increase the acc./dec. time constant, or reduce α .
 - \Rightarrow If an overshoot does not occur, and the shock is small, reduce the acc./dec. time constant, or increase α .

Linear acc./dec. is more effective than exponential acc./dec.

Using acc./dec. before interpolation can further reduce the figure error.

<5> By setting the parameter below, the feed-forward function can be used for cutting feed as well.

	#7	#6	#5	#4	#3	#2	#1	#0
1800					FFR			
FFR (#3) Specifies whether feed-forward control during rapid traverse is enabled or disabled. 0: Disabled								bled.

1: Enabled

By using the feed-forward function during rapid traverse, the positioning time can be reduced. On some machines, however, a shock may occur at the time of acc./dec. In such a case, make adjustments such as increasing the acc./dec. time constant.

Moreover, a feed-forward coefficient can be set separately for each of cutting and rapid traverse. (See Subsection 5.5.2, "Cutting/Rapid Feed-forward Switching Function".)

<6> To use the EGB function, set the following parameter:

		#7	#6	#5	#4	#3	#2	#1	#0
2011								FFAL	
FFAL (#1) Feed-forward control is:									

1: Always enabled regardless of the mode.

When the EGB functions are used, conventional feed-forward coefficients are applied.

2068	Feed-forward coefficient (FALPH)
	FALPH = $\alpha \times 100$ or $\alpha \times 10000$

When FALPH is smaller than or equal to 100: In units of 1% When FALPH is greater than 100: In units of 0.01%

[Typical setting] 70 or 7000

5.5.2 Cutting/Rapid Feed-forward Switching Function

(1) Overview

This function enables the use of separate feed-forward coefficients between cutting feed and rapid traverse.

(2) Series and editions of applicable servo software

CNC		Servo software	Pomarka
CNC	Series	Edition	Remarks
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions	
Power Motion <i>i</i> -A			
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	A(01) and subsequent editions	
	90E1	01.0	
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	A(01) and subsequent editions	HRV4
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions	
	90C8	A(01) and subsequent editions	
	90E5	A(01) and subsequent editions	
	90E8	A(01) and subsequent editions	

(3) Setting parameters

<1> First, set the parameters below in the same way as for the current feed-forward function.

5.5.3 Feed-forward Timing Adjustment Function

(1) Overview

If the feed-forward function is applied with the aim of decreasing contour errors, the same feed-forward coefficient must be used for all axes. Even if a unified feed-forward coefficient is used, however, the axes may not necessarily behave in the same manner because of differences in the mechanical characteristic and velocity loop response among the axes.

The feed-forward timing adjustment function is intended to change the feed-forward timing so as to make the characteristics of each axis at high-speed movement. It does not change the feed-forward coefficient. So it can change the characteristic of a portion where the acceleration is high without affecting the operation for straight portions.

If the radius of an arc subjected to high-speed cutting differs among axes, resulting in a vertical or horizontal oval, this function is useful in improving roundness through fine adjustment.

(2) Control method

When an arc is cut at high speed, delaying the feed-forward timing causes the path to bulge. On the contrary, advancing the feed-forward timing causes the path to shrink. The feed-forward timing adjustment function lets you make fine adjustments on the characteristic of servo axes.

Let the radius, feedrate, and position gain be, respectively, R, V, and Kp. Delaying the feed-forward timing by $\tau(s)$ increases the radius of the arc by:

 $\Delta \mathbf{R} = \tau \times \mathbf{V}^2 / (\mathbf{K}\mathbf{p} \times \mathbf{R})$

To be specific, assume radius R = 10 mm, feedrate V = 4000 mm/min, and position gain $Kp = 40s^{-1}$. Shifting the timing by 1 ms corresponds to:

 $\Delta R = 11 \ \mu m$

(3) Series and editions of applicable servo software

		Servo software	Demerike
CNC	Series	Edition	Remarks
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions	
Power Motion <i>i</i> -A			
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	A(01) and subsequent editions	
	90E1	01.0	
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	A(01) and subsequent editions	HRV4
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions	
	90C8	A(01) and subsequent editions	
	90E5	A(01) and subsequent editions	
	90E8	A(01) and subsequent editions	

(4) Setting parameters

bit.

		#7	#6	#5	#4	#3	#2	#1	#0
2415								IAHDON	
IAHDON(#1)) The	e default value of the feed-forward timing adjustment parameter is:							
	0:	Feed-forward timing is adjusted by only No. 2095.							
	1:	Comp	Compatible with that of 16 <i>i</i> Series. (See the table below.)						
	*	By setting No.2415#1(IAHDON)=1 and No. 2095=0, the feed-forward timing							
		becomes compatible with that of 16i Series. For 30i-B Series, the default value is							
		fixed t	to the timin	g compatib	le with that	of 16 <i>i</i> Seri	es regardle	ss of the set	ting of this

The feed-forward timing actually applied is represented by the following equation. Feed-forward timing = Parameter No.2095 + Default value

		Default feed-forw	ard timing value				
	No.2415	5#1=0	No.2415	#1=1			
	30 <i>i</i> -A,0 <i>i</i> -D Series	30 <i>i</i> -B Series	30 <i>i</i> -A,0 <i>i</i> -D Series	30 <i>i</i> -B Series			
HRV2 control	0	3900	3900	3900			
HRV3 control	0	3900	3900	3900			
HRV4 control	0	3792 (*1)	3792 (*1)	3792 (*1)			

Table 5.5.3 (a) Default feed-forward timing value	5.5.3 (a) Default feed-forward timing
---	---------------------------------------

If the same feed-forward timing as before is set when the NC is replaced, set parameter No. 2095 with reference to the following table.

Table 5 5 3 (h) Setting of	narameter No	2095 when the	NC model is replaced
10010 0.0.0 (0) octaing of	purumeter no.	2000 Which the	No model is replaced

NC model			
Before replacement	After replacement	No.2415#1	No.2095
16:	20: 4 0: D	0	No.2095(new setting) = No.2095 + Default value
	301-A, 01-D	1	No.2095(new setting) =
Selles	Series		No.2095(old setting) - Default value
		0	No.2095(new setting) =
16 <i>i</i> 20 <i>i</i> P 9	20: P Sorios		No.2095(old setting) - Default value
Series 307-B Series		1	No.2095(new setting) =
			No.2095(old setting) - Default value
		0	No.2095(new setting) =
30 <i>i</i> -A Series	30 <i>i</i> -B Series		No.2095(old setting) - Default value
		1	No.2095(new setting) = No.2095(old setting)

(*1) When HRV4 control is used and any of the following functions is used, the default value is -240:

- High-speed processing
- AI contour control II
- High-speed cycle machining

2095

Feed-forward timing adjustment coefficient

Specifying +4096 causes the feed-forward timing to advance by 1 ms.

Specifying -4096 causes the feed-forward timing to delay by 1 ms.

If you want to decrease the radius of an arc at high-speed cutting, increase the coefficient by about 300 at each step.

If you want to increase the radius of an arc at high-speed cutting, decrease the coefficient by about 300 at each step.

5.5.4 **Backlash Acceleration Function**

(1) Overview

If the influence of backlash and friction is large in the machine, a delay may be produced on reversal of motor, thus resulting in quadrant protrusion on circular cutting. This is a backlash acceleration function to improve quadrant protrusion.

(2) Series and editions of applicable servo software

CNC		Servo software	Demerke
CNC	Series	Edition	Remarks
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions	
Power Motion <i>i</i> -A			
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	A(01) and subsequent editions	Override is supported by J(10) and subsequent editions
	90E1	01.0 and subsequent editions	
Series 30 <i>i/</i> 31 <i>i</i> -A	90D0	A(01) and subsequent editions	HRV4
			Override is supported by J(10) and
			subsequent editions
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions	
	90C8	A(01) and subsequent editions	
	90E5	A(01) and subsequent editions	
	90E8	A(01) and subsequent editions	

(3) Setting parameters

<1> Set the backlash compensation.

	#7	#6	#5	#4	#3	#2	#1	#0
2003			BLEN					
BLEN (#5) 1: To enable backlash acceleration								
2048			Ba	acklash accel	eration amou	nt		
[Typical setting]	20 to 600							
			- (230 -				

Offset for the velocity command that is to be added immediately after a reverse.

2071Period during which backlash acceleration remains effective (in units of 2 msec)[Typical setting]20 to 100The period during which the acceleration amount is added. At the start of adjustment, set
20. When a long quadrant protrusion is found, gradually increase the setting in steps of
10.

<3> When the optimum backlash acceleration amount varies with the machining feedrate, use the acceleration amount override and the limit of the acceleration amount.

2114	Acceleration amount override						
[Valid data range]	ata range] 0 to 32767						
<u> </u>							
2338	Limit of acceleration amount						

[Valid data range] 0 to 32767 (When 0 is set, the acceleration amount is not limited.)

[Example] Example of setting the acceleration amount

Acceleration amount (parameter No. 2048) = 46, acceleration amount override (parameter No. 2114) = 23, limit of acceleration amount (parameter No. 2338) = 500

<4> Setting the direction-based backlash acceleration function

When the optimum acceleration amount differs between a reverse operation in the positive direction and a reverse operation in the negative direction, set the acceleration amount used for the reverse operation from the negative direction to positive direction in the following parameter:

	2094		Backlash acceleration amount (for reverse from negative to positive direction)
[]	ypical setting] 20 to 600	
	2340		Acceleration amount override (for reverse from negative to positive direction)
[Va	lid data range] 0 to 32767	
	2341		Limit of acceleration amount (for reverse from negative to positive direction)

[Valid data range] 0 to 32767 (When 0 is set, the acceleration amount is not limited.)

[Parameters used for direction-based setting]

Direction-based setting	Reverse direction	Backlash acceleration amount	Acceleration amount override	Limit of acceleration amount	
None	Common	NL 0040	N. 6444	NL 0000	
Dessert	From + to -	No. 2048	No. 2114	No. 2338	
Present	From - to +	No. 2094	No. 2340	No. 2341	

<5> If a reverse cut occurs, use the backlash acceleration stop function.

(4) Procedure for setting acceleration amount override

There are two methods for setting the acceleration amount override as listed below.

- Setting method 1 (calculation not required)
 - <1> With an assumed minimum acceleration, obtain the optimum backlash acceleration amount while observing quadrant protrusions. Set the obtained value as the backlash acceleration amount (setting).
 - <2> Set the acceleration to a middle point between the minimum and maximum levels, and while increasing the override value, observe quadrant protrusions to determine the optimum override value.
 - <3> Finally, set the maximum acceleration, and observe the arc figure. If an undercut is generated at the switching point of quadrants, set the acceleration amount limit to prevent the acceleration amount from increasing excessively.
- Setting method 2 (strict calculation required) Obtain an optimum backlash acceleration amount for two different accelerations (an assumed minimum acceleration and an intermediate acceleration between the minimum and maximum accelerations), and substitute the obtained value in the following equation for the backlash acceleration amount override:

(setting)

Backlash = Backlash acceleration acceleration amount = amount (setting)	\times (1+ $\frac{\text{Acceleration amount override} \times \text{Acceleration}}{2048}$)
Acceleration = $\frac{(\text{Feedrate [mm/min]})^2}{\text{Radius [mm]}} \times \frac{1}{\text{Detect}}$ Find a solution of the simultaneous equations	$\frac{128}{\text{tion unit }[\mu\text{m}] \times 1000}$. The results are as follows:
Acceleration = (Acceleration amo amount override = (Acceleration amo amount 1) × (Acceleration	2000000000000000000000000000000000000
Backlash acceleration amount $=$ amount 1) \times	(Acceleration 2) - (Acceleration \times (Acceleration 1)

(Acceleration 2) (Acceleration 1)

Finally, operate at the maximum acceleration, and adjust the limit of the acceleration amount.

(5) Ignoring the backlash acceleration function at handle feed

To disable the backlash acceleration function at handle feed, set the following:

NOTE If bit 3 of parameter No. 1800 is set to 1, the backlash acceleration function is always enabled, and it cannot be disabled.

-

The bit shown below can also be used to enable the backlash acceleration function only during cutting. Use of this bit enables and disables the backlash acceleration function even when bit 3 of parameter No. 1800 is set to 1. Backlash acceleration is enabled even at the hole bottom during rigid tapping.

[Reference]

Adjustment the backlash acceleration

Run a program for an arc, and make an adjustment while checking the arc figure on SERVO GUIDE.

(6) Disabling backlash acceleration after a stop

When using the function for disabling backlash acceleration after a stop, make the setting below. For details, see "(7) Adjustment of backlash acceleration" in Appendix E.

		#7	#6	#5	#4	#3	#2	#1	#0
2283		BLSTP2							
BLSTP2(#7) 1: Disables backlash acceleration after a stop.									

5.5.5 Two-stage Backlash Acceleration Function

(1) Overview

When the machine reverses the direction of feed, two types of delay are likely to occur; one type due to friction in the motor and the other due to friction in the machine.

The two-stage backlash acceleration function compensates for two types of delays separately, thus enabling two-stage compensation.

Two-stage	 First stage:	The friction torque is canceled when the motor reverses.
compensation	 Second stage:	The friction torque in the machine is canceled.

Furthermore, optimum compensation can be performed at all times for first stage against changing speed and load.

The two-stage backlash acceleration function performs compensation as shown below:

end point can also be set by setting the end scale factor parameter. Fig. 5.5.5 (a) Backlash acceleration under control of the two-stage backlash acceleration function

(2) Series and editions of applicable servo software

CNC		Servo software	Bomorko	
CNC	Series Edition		Remarks	
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions		
Power Motion <i>i</i> -A				
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	A(01) and subsequent editions		
	90E1	01.0		
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	A(01) and subsequent editions	HRV4	
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions		
	90C8	A(01) and subsequent editions		
	90E5	A(01) and subsequent editions		
	90E8	A(01) and subsequent editions		

(3) Setting parameters

- <1> With SERVO GUIDE, make settings for measuring the motor speed and estimated disturbance value.
 - (See Chapter 7, "SERVO TUNING TOOL SERVO GUIDE" for SERVO GUIDE.)
- <2> Turn on the power to the NC.
- <3> Specify the backlash compensation value.

<4> Adjusting the velocity loop gain

Enable PI control, and increase the velocity loop gain (load inertia ratio) as much as possible. (For velocity loop gain adjustment, see Subsection 4.3.1.)

* By setting a high velocity loop gain, the response of the motor improves, and quadrant protrusions can be reduced. If the velocity loop gain is changed in the subsequent adjustments, the adjustments become complicate. So, increase the velocity loop gain sufficiently at this stage.

<5> Enable the two-stage backlash acceleration function.

[Setting value] No change is required.

• When HRV4 control is used:

[Setting value] $956 \rightarrow$ To be changed to 264

2051			Observer gain
• When I	HRV	/1, HRV2, or HRV3 control is used:	

[Setting value] No change is required.

• When HRV4 control is used:

[Setting value] $510 \rightarrow$ To be changed to 35

* When setting an observer gain, follow the settings of other functions (observer, unexpected disturbance torque detection). When the two-stage backlash acceleration function is used, the settings need not be changed.

5.SERVO FUNCTION DETAILS

<7> Adjust observer parameter POA1.

The two-stage backlash acceleration function takes the friction torque as an estimated disturbance value by using the observer circuit and determines the first stage acceleration amount. Therefore, observer parameter POA1 must be adjusted to obtain correct acceleration. While observing estimated disturbance value DTRQ, perform acc./dec. to adjust POA1 to the optimum value.

NOTE

The procedure for this adjustment is similar to the procedure for adjusting observer-related parameters in the unexpected disturbance torque detection function (Subsection 5.9.1). Make an adjustment by following steps <5> and <6> in (3), "Parameter adjustment methods", in Subsection 5.9.1 in this parameter manual. When the unexpected disturbance torque detection function is used, and the adjustment has already been made, re-adjustment is not needed.

2047 [Setting val

Observer parameter (POA1)

[Setting value] Adjusted value (Make an adjustment according to steps <5> and <6> in (3) in Subsection 5.9.1.)

2087		Torque offset parameter				
[Setting value)	Adjusted value (If the center of an estimated disturbance value does not become zero on				
	i	an axis such as the gravity axis, make an adjustment according to step <6> in (3) in				
		Subsection 5.9.1.)				

<8> Adjusting the first stage acceleration Specify the following parameters.

2094 [Unit of data] %

First stage acceleration amount from negative direction to positive direction (%)

Normally, this parameter is set to 0. If the quadrant protrusion varies with the reverse direction of the position command in the machine conditions, set an appropriate value in this parameter.

When this parameter is set, parameter No. 2048 specifies the first stage positive-to-negative backlash acceleration amount.

(Setting the first stage acceleration in the parameter window)

<u> </u>	÷ /
Param - CNC-PARA.prm(OFF-LINE:Path1)	
<u>F</u> ile <u>E</u> dit <u>M</u> ove <u>W</u> indow <u>H</u> elp	
	ration 💌 Axis X 💌 🗆 Lock 🗹 Hint
Backlash acceleration 2-stage backlash acceleration	ation 2-stage backlash acceleration 2 2-stage 💶 🕨
Backlash acceleration enable	
Two-stage acceleration enable	5
Acceleration enable only on cutting	3
Backlash comp	
Backlash comp.	0.100um
Backlash comp. disable for position	I lime (ms)
1st-stage acceleration 1st stage backlash acceleration target	00
1st-stage acceleration goal(> +) (%)	
POA1 2	37 🛓
Offset torque	0.0Ap

(Protrusions caused by machine friction remain, but these protrusions are corrected later when second stage acceleration is adjusted.)

First stage acceleration amount (too large) (Cuts are caused by excessively high acceleration at the time of reverse motor rotation.)

Second stage start position (detection unit)
Detection unit
10 (For a detection unit of 1 µm)
100 (For a detection unit of 0.1 µm)
NOTE
1 As the second stage start position, the absolute value of the setting
is used.
2 When setting = 0, the specification of 100 is internally assumed.
Second stage end scale factor
In units of 0.1
0 to 10279 (multiplication by 0 to 1027.9)
Normally, this value may be set to 0.
When the second stage end scale factor is set to 0, the second stage acceleration distance
is assumed as follows:
If a positive value is set as the second stage start position, a value obtained by multiplying
the start position by 2 is assumed.
If a negative value is set as the second stage start position, a value obtained by
multiplying the start position by 3 is assumed.
- 238 -

By setting the second stage end scale factor, the second stage acceleration distance may be set to any value.

NOTE

When the following conditions are satisfied and the adjusted values in 30i-A Series are applied to 30i-B Series, the adjusted values on which parameters Nos. 2082 and 2089 are based need to be divided by 4.

- HRV4 control is enabled. (No.2014#0=1)
- Two-stage backlash acceleration is enabled. (No.2015#6=1)
- Two-stage backlash acceleration Type-2 is disabled.
- (No.2271#5=1)

When two-stage backlash acceleration Type-2 is enabled (bit 5 of parameter No. 2271 is 1), the adjusted values on which parameter No. 2089 is based also need to be divided by 4.

(Setting example)

When the second stage start position is set to 10, and the second stage end scale factor is set to 50 (meaning multiplication by 5), second stage acceleration is performed as shown below.

(Second stage acceleration setting in the parameter window)

P Param - CNC-PARA.prm(OFF-LINE	Path1)	
<u>File E</u> dit <u>M</u> ove <u>W</u> indow <u>H</u> elp		
● SV ● SP Group(G) +Backlast	Acceleration 💌 Axis	XL 🔽 🗆 Lock 🔽 Hint
Backlash acceleration 2-stage backlash	acceleration 2-stage ba	cklash acceleration 2 2-stage 💶 🕨
2nd-stage acceleration		
▼ Type2 enable		₽ <u></u> ~
Acceleration 500	-	₩ 0.4
Charlies assilies		
Scarcing posicion 10	1.00um	0 2 4 6 8 10
Ending position 0	2.00um	Interval um
Acceleration offset 0	÷.	
Format change(recommendation)		∞
Acceleration override 5		4 4 CC
Acceleration limit 800	* *	
		F m/min

(A larger second stage acceleration amount is set to view the timing of second stage acceleration, so that cuts occur. This is corrected later.) Start/end parameter (insufficient) (The time for second stage acceleration is too short, so that second stage protrusions are not fully eliminated.)

Fig. 5.5.5 (d) Two-stage backlash acceleration (adjustment of start position and end scale factor)

NOTE

Note that the two-stage backlash acceleration cannot be used together with the backlash stop function.

Second stage acceleration is not completed by nature until a distance specified by "Second stage end scale factor" is moved. For example, if only several microns are moved after the direction is reversed, second stage acceleration continues. To prevent such continued acceleration from occurring, set a maximum allowable duration of time with the parameter below.

2146	Two-stage backlash acceleration end timer
[Unit of data]	ms
Typical setting]	50

<9> Second stage acceleration adjustment

The two-stage backlash acceleration function has effect even if only first stage is used. However, a protrusion may linger because of machine friction. In such a case second stage is useful. Adjust the second stage acceleration so that it falls in a range where no cut occurs.

When the second stage acceleration override function is used, the second stage acceleration amount of two-stage backlash acceleration is found from the following formula:

(Second stage acceleration amount)=

(Second stage acceleration amount setting) × $\begin{cases} 1 + \alpha \times \frac{(\text{Second stage override setting})}{a} \\ \text{If OVR8} = 1, a = 256 \\ \text{If OVR8} = 0, a = 4096 \end{cases}$

Here, let α be a circular acceleration, R be a radius (mm), F be a circular feedrate (mm/min), and P be a detection unit (mm). Then, α can be expressed as:

$$\alpha = \left\{\frac{2}{R} \left(F / 60 \times 0.008\right)^2\right\} / R$$

So, the second stage override setting and acceleration amount are related as follows:

(Second stage override setting) = $\frac{a}{\alpha} \times \left\{ \frac{\text{(Second stage acceleration amount)}}{\text{(Second stage acceleration amount setting)}} - 1 \right\}$

Example)

When using a second stage acceleration amount override, adjust the backlash second stage acceleration amount for two types of feedrates. Suppose that the adjusted values below are obtained.

No. 2018#2=1

- i) In the case of R10, F1000 (detection unit of 1 μ m), the optimal second stage acceleration amount is 40.
- ii) In the case of R10, F6000 (detection unit of 1 μ m), the optimal second stage acceleration amount is 100.

From the results above, the expressions below are obtained. For i)

$$\alpha = \left\{ \frac{2}{10} \left(1000/60 \times 0.008 \right)^2 \right\} / 0.001 = 3.56$$

Expressions <1>

(Second stage override setting) = $\frac{256}{3.56} \times \left\{ \frac{40}{(\text{Second stage acceleration amount setting)}} - 1 \right\}$

For ii)

$$\alpha = \left\{\frac{2}{10} \left(6000/60 \times 0.008\right)^2\right\} / 0.001 = 128$$

Expressions <2>

(Second stage override setting) = $\frac{256}{128} \times \left\{ \frac{100}{(\text{Second stage acceleration amount setting)}} - 1 \right\}$

From expressions <1> and <2>, the following is obtained:

256	40
3.56	$($ Second stage acceleration amount setting $)^{-1}$
_ 256	100 1
$-\frac{128}{128}$	$\left(\frac{1}{(\text{Second stage acceleration amount setting})} \right)^{-1} \right)$

Accordingly, (second stage acceleration amount setting) = $38.3 \div 38$

From expression <2> (or from expression <1>), (second stage override setting) = 3.3 = 3

Set these values in No. 2039 and No. 2114. This completes the setting of a second stage acceleration override.

NOTE

Second stage override is effective for second stage offset.

<11>Setting a limit to the second stage acceleration amount

Making an optimum override setting for low-speed and high-speed ranges may result in an insufficient acceleration amount in a medium-speed range. To avoid this problem, adjust overriding for low-speed and medium-speed ranges, and set an optimum value for the high-speed range in the following parameter as a limit value.
5.SERVO FUNCTION DETAILS

Fig. 5.5.5 (f) Override adjustment for the second stage acceleration amount of two-stage backlash acceleration

<12>Direction-specific setting for second stage acceleration

If the optimum second stage acceleration amount varies depending on the direction in which turn-over occurs, specify the following parameters.

2340	Second stage acceleration amount override for turn-over from the negative direction to the positive direction
[Valid data range]	0 to 32767
	Not used if the two-stage backlash second stage acceleration amount from the negative direction to the positive direction (parameter No. 2339) is 0.
	This parameter takes effect when a reverse from the negative direction to the positive direction takes place if the two-stage backlash second stage acceleration amount from the negative direction to the positive direction (parameter No. 2339) is not 0. It is not overridden if the setting is 0.
2341	Second stage acceleration limit value for turn-over from the negative direction to the positive direction
[Valid data range]	0 to 32767
	Not used if the two-stage backlash second stage acceleration amount from the negative direction to the positive direction (parameter No. 2339) is 0. This parameter takes effect when a reverse from the negative direction to the positive direction takes place if the two-stage backlash second stage acceleration amount from the negative direction to the

positive direction (parameter No. 2339) is not 0.

If the setting is 0, the second stage acceleration amount is not limited.

[Parameters used for direction-based setting]

Direction-based setting	Reverse direction	Second stage acceleration	Acceleration amount override	Acceleration limit value	
None	Common Na 2020		No 2114	No 0000	
Decout	From + to -	N0.2039	NO.2114	N0.2338	
Present	From - to+	No.2339	No.2340	No.2341	

(4) Neglecting backlash acceleration during feeding by the handle

By enabling the bit below, the backlash acceleration function can be enabled only during cutting feed.

BLCUT2(#7) 1: The backlash acceleration function is enabled only during cutting feed.

(5) Two-stage backlash acceleration function (type 2)

When the two-stage backlash acceleration function is used, quadrant protrusions may be reduced more effectively by starting the second stage acceleration as early as possible. The two-stage backlash acceleration function type 2 enables the second stage acceleration immediately after a reverse operation takes place.

CNC		Servo software	Bomorko
CNC	Series	Edition	Remarks
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions	
Power Motion <i>i</i> -A			
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	E(05) and subsequent editions	
	90E1	01.0	
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	E(05) and subsequent editions	HRV4
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions	
	90C8	A(01) and subsequent editions	
	90E5	A(01) and subsequent editions	
	90E8	A(01) and subsequent editions	

Fig. 5.5.5 (g) Comparison with conventional second stage acceleration

Normally, second stage acceleration is not output until the second stage start distance is reached. The two-stage backlash acceleration type 2 starts outputting the acceleration amount immediately after the reverse operation, and starts attenuation after the start distance.

- Setting parameters

5.5.6 Static Friction Compensation Function

(1) Overview

When a machine, originally in the stop state, is activated, the increase in speed may be delayed by there being a large amount of static friction. The backlash acceleration function (see Subsection 5.5.4 and Subsection 5.5.5) performs compensation when the motor rotation is reversed. This function adds compensation data to a velocity command when the motor, originally in the stop state, is requested to rotate in the same direction, thus reducing the activation delay.

(2) Series and editions of applicable servo software

CNC		Servo software	Demerke
CNC	Series Edition		Remarks
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions	
Power Motion <i>i</i> -A			
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	A(01) and subsequent editions	
	90E1	01.0 and subsequent editions	
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	A(01) and subsequent editions	HRV4
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions	
	90C8	A(01) and subsequent editions	
	90E5	A(01) and subsequent editions	
	90E8	A(01) and subsequent editions	

(3) Block diagram

Fig. 5.5.6 (a) Configuration of static friction compensation

(4) Setting parameters

<1> Enable this function.

<2> Set adjustment parameters.

	2071		Time during which the static friction compensation function is enabled (in 2-ms units)	
[V	alid data rang	e]	0 to 32767	
٢R	ecommended	val	uel 10	

[Recommended value] 10

2072		Static friction compensation
[Valid data rang	ge]	0 to 32767

[Recommended value] 100

Enables direction-by-direction

static friction compensation.

Offset for the velocity command that is to be added at the start of travel from a stopped state

2073	Stop state judgement parameter									
[Valid data range] 1	to 32767									
[Method of setting]S	top determina	ation time = $(param)$	eter setting	$(x) \times Ts$						
1	Ts = 4ms (Series 30 <i>i</i>), 8ms (Series 0 <i>i</i>)									
li	t the machine	starts moving after	stopping f	or the time set	in this para	imeter or mo	ore, this			
C	ompensation	function is enabled								
Γ	NOTE									
	1 If a sma	all value is set ir	n this para	ameter, feed	l at a low t	feedrate is				
	regarde	ed by mistake a	s stop sta	te, and com	pensation	may not b	be			
	perform	ned correctly.	n such a	case, increa	ase the se	tting of this	S			
	parame	eter.								
	2 When t	he static friction	compen	sation function	on is enat	oled, be su	ire			
L	to set a	i nonzero positiv	e value i	n this param	ieter.					
•	#7	#6 #5	#4	#3	#2	#1	#0			
2009	BLST									
BLST (#7) 1	: The funct	ion used to release	static fricti	on compensati	on is enable	ed.				
2097	Parameter for stopping static friction compensation									
[Valid data range] 0	to 32767									
[Recommended valu	le] 5				.1 1 (o ·			
Р	Parameter related to the distance the tool travels until the end of the static friction									
C	ompensation	Iunction. Determin	e the setting	g by looking a	t the actual s	snape.				
2347		Static fric	tion compen	sation (minus dir	ection)					
[Valid data range] 0	to 32767			-	-					
S	peed commar	nd offset applied w	hen a mov	ement is starte	ed from a st	op in the mi	inus (-)			
d	irection.									
V	Vhen No. 234	7≠0, direction-by-c	lirection sta	atic friction co	mpensation	is enabled.	When a			
n	movement is made in the minus (-) direction, the value set in parameter No. 2347 is									
aj	applied as a static friction compensation value. When a movement is made in the plus (+)									
u V	Vhen No 23	47=0 the value s	et in narar	2 is applied. neter No. 207	12 is used	as a static	friction			
C	ompensation v	value.	zi ili parai	neter 100. 207	2 15 useu	as a static	iii c tion			
Г		Applied static	riction com	pensation						
	No.2347	Movement in + Movement in –			Remarks					
F		direction	(direction						
		•								

No. 2347

No.2072

Non-zero

value

5.5.7 Torsion Preview Control Function

(1) Overview

For relatively large machines having torsion, torsion occurs between the motor and the machine end during acceleration and deceleration. In machines of this type, positional deviation is caused by torsion during acceleration and deceleration.

Torsion preview control compensates the speed command by estimating the amount of torsion from the position command. This reduces the amount of positional deviation during acceleration and deceleration.

Fig. 5.5.7 (a) Torsion preview control structure

(2) Series and editions of applicable servo software

CNC		Servo software	Bemerke	
CNC	Series	Edition	Remarks	
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0 09.0 and subsequent editions			
Power Motion <i>i</i> -A				
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	M(13) and subsequent editions		
	90E1	01.0 and subsequent editions		
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	M(13) and subsequent editions	HRV4	

(3) Notes

- This function works only in the nano interpolation mode.
- Because this function requires the user to observe the machine operation at the time of adjustment, a separate detector is needed.
- Enable the feed-forward function.
- The function is more effective when the time constant of acc./dec. is set so that acceleration changes smoothly. (Example: Bell-shaped acc./dec. before interpolation plus linear-shaped acc./dec. after interpolation)

(4) Setting parameters

<1> Setting feed-forward

Torsion preview control uses feed-forward processing. Therefore, the following parameter must be set:

	#7	#6	#5	#4	#3	#2	#1	#0
1800					FFR			
FFR(#3)	Feed-forw	ard control d	luring rapid	l traverse is	•			
	0: Disal	oled.						
	1: Enab	led.						
2092			Advanced pr	eview feed-fo	rward coeffic	ient (ADFF1)		
2068			Fee	d-forward co	efficient (FAL	PH)		
2144		Posit	ion advanced	l preview feed	l-forward coe	fficient for cu	ıtting	

When enabling torsion preview control also in rapid traverse, set FFR to 1

<2> Operation measurement and time constant setting

To make adjustments, measure the velocity waveform and error amount.

The waveform may be measured using either the waveform display screen or SERVO GUIDE. When operating the machine at a feedrate of about F10 m/min, check that the following waveform is observed:

Fig. 5.5.7 (b) Position error and actual speed

Torsion preview control differentiates position commands, so attention should be given to the command mode and time constant setting.

To ensure continuity of position command differential values, the bell-shaped time constant and the time constant of acc./dec. after interpolation must be set as well as the time constant of acc./dec. before interpolation. The adjustment examples presented here assume a large machine with a low resonance frequency of about 10 Hz and set a time constant that prevents the machine from shaking largely at the time of acc./dec.

Time constant of acc./dec. before interpolation: 750 ms taken to reach F12000 mm/min

Acc./dec. before interpolation: bell-shaped time constant: 200ms

Time constant of acc./dec. after interpolation: 100ms

By setting the three time constants as explained above, the acceleration component of position commands form a bell shape, and the compensation value of torsion preview control also becomes smooth. The values of the time constants depend on the vibration status of the machine. So, set the time constants not to allow acc./dec. to cause large vibration.

For position command data resolution and smoothness, nano interpolation is used. When using torsion preview control, be sure to perform operation in a nano interpolation mode such as AI nano contour control or AI nano high precision contour control (when nano interpolation is disabled, torsion preview control is also disabled.)

<3> Setting the acceleration

In torsion preview control, three acceleration areas can be specified, and compensation coefficients can be set separately for these areas.

In a machine having the spring characteristic assumed by torsion preview control, there are almost proportional relationships between the acceleration and the torsion amount and position error. Therefore, setting the acceleration set for the time constant of acc./dec. before interpolation and one acceleration which is about 1/2 to 3/4 of the acceleration is normally sufficient.

[Unit of data] $D \times 1000 \text{ [mm/s^2]}$ unit (D: detection unit (mm)) [Valid data range] 0 to 32767

• If the detection unit is 1 μ m, the unit is 1 mm/s²; if the detection unit is 0.1 μ m, the unit is 0.1 mm/s².

Torsion preview control: acceleration 3 (LSTAC3)

- If the acceleration is set to 0, the setting is ignored.
- Set acceleration values so that acceleration 1 is smaller than acceleration 2, and acceleration 2 is smaller than acceleration 3. If acceleration 1 is greater than acceleration 2, the setting of acceleration 2 is ignored.

In this example, set the acceleration for the time constant of acc./dec. before interpolation and another lower acceleration.

- LSTAC2

2385

Time constant of acc./dec. before interpolation is 750ms taken to reach F12000mm/min

- → Acceleration = 12000/60/0.75 = 266.7mm/s² If the detection unit is 0.1 µm, a value is set in units of 0.1 mm/s². Therefore, LSTAC2 = 2667
- LSTAC1

Acceleration that is 3/4 of LSTAC2, 1000 ms taken to reach F12000 mm/min

- \rightarrow Acceleration = 12000/60/1 = 200 mm/s², therefore, LSTAC1 = 2000
- LSTAC3 LSTAC3 = 0 because LSTAC3 is not used.

Fig. 5.5.7 (d) Example of compensation curve

<4> Setting the acceleration torsion compensation value

The acceleration torsion compensation value is used to compensate the amount of torsion generated at a constant acceleration. While changing the acceleration setting, measure the position error generated at a constant acceleration.

Set the values measured in Fig. 5.5.7 (e) and Fig. 5.5.7 (f) above in the acceleration torsion compensation values shown below.

5.SERVO FUNCTION DETAILS

Set the amount of torsion generated at acceleration 1 (when the acceleration is a negative value) in the detection unit.

Position error

2.4 2.8 3.2 3.6

min

▲ 500 pulses

-=50μm

B-65270EN/08	J.SERVO FUNCTION DETAILS					
2392	Torsion preview control: Acceleration torsion compensation value K2N (LSTK2N)					
[Unit of data]	Detection unit					
[Valid data range]	0 to 32767					
	Set the amount of torsion generated at acceleration 2 (when the acceleration is a negative					
	value) in the detection unit.					
2393	Torsion preview control: Acceleration torsion compensation value K3N (LSTK3N)					
[Unit of data]	Detection unit					
[Valid data range]	0 to 32767					
	Set the amount of torsion generated at acceleration 3 (when the acceleration is a negative					
	value) in the detection unit. If 4 is set, acceleration 2 and the settings up to K2 apply.					
	When all the three accelerations are not used, set 0 in the					
	parameter of the acceleration not used.					
	From Fig. 5.5.7 (a) and Fig. 5.5.7 (f) ISTV1 through ISTV2 and ISTV1N through					
	FIOIN FIG. 5.5.7 (e) and Fig. 5.5.7 (f), LSTKT unrough LSTK5 and LSTKTN unrough I STK3N are set as follows:					
	LSTK1=60 $LSTK2=100$ $LSTK3=0$					
	LSTK1=45 $LSTK2N=90$ $LSTK3N=0$					
<5> Setting	the maximum compensation value (enabling torsion preview control)					
2382	Torsion preview control: Maximum compensation value (LSTCM)					
[Unit of data]	Detection unit					
[Valid data range]	0 to 32767					
	Set the maximum value of the compensation value to be added to the velocity command					
	in the detection unit. By setting the parameter to a value greater than 0, torsion preview					
	control is enabled. Set a value greater than the maximum position error value measured (a value obtained by multiplication by about 1.2 to 2)					
	I STCM-500					
	The above setting enables this compensation, which reduces the position error generated					
	at the time of acc/dec					
2000						
	Actual speed					
500						

min

-500

-1000

-1500

-2000

0.4 0.8 1.2 1.6

<6> Setting the torsion delay compensation value

≜500 pµlses =50µm

Position error

2.4 2.8 3.2 3.6

-500

-1000

-1500

-2000

0.4 0.8 1.2 1.6

Just with the acceleration torsion compensation value, the torsion amount generated at the start of acc./dec. due to delay in velocity control cannot be corrected, therefore there is a position error still left. Adjust the torsion delay compensation value while observing the waveform plotted at the time of acc./dec.

5.SERVO FUNCTION DETAILS

When the torsion delay compensation value is set to 2000, there is slight position error still left, so a fine adjustment is made. Then, the position error is decreased to $10 \,\mu\text{m}$ or less as shown in the figure below.

(Torsion delay compensation value =3000 / 2500)

Fig. 5.5.7 (m) Effect of compensation for torsion delay - 2

<7> Setting the torsion torque compensation coefficient

Torsion torque compensation is set when an adequate velocity loop gain cannot be obtained and acceleration torsion compensation does not work efficiently. The delay in velocity control can be compensated by adding the differential of the compensation value to TCMD.

Fig. 5.5.7 (n) Torsion torque compensation

5.5.8 Overshoot Compensation Function

(1) Setting parameters

[Recommended value] 30000

NOTE

When the overshoot compensation function is not used (OVSC = 0), basically set PK3V to 0.

If incomplete integration is used when OVSC = 1, the positional deviation does not become 0 in the stop state or the cutting precision degrades.

2077

Overshoot compensation counter (OSCTP)

[Valid data range] 0 to 32767 [Recommended value] 20

(2) Series and editions of applicable servo software

CNC		Servo software	Bomorko
CNC	Series	Edition	Remarks
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions*	
Power Motion <i>i</i> -A			
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	A(01) and subsequent editions	
	90E1	01.0	
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	A(01) and subsequent editions	HRV4
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions	
	90C8	A(01) and subsequent editions	
	90E5	A(01) and subsequent editions	
	90E8	A(01) and subsequent editions	

* When overshoot compensation Type2 is used in 30*i*-B Series, 90G0/15.0 and subsequent editions are required.

(3) Explanation

(a) Servo system configuration

Fig. 5.5.8 (a) shows the servo system configuration. Fig. 5.5.8 (b) shows the velocity loop configuration.

Fig. 5.5.8 (a) Digital servo system configuration

Fig. 5.5.8 (b) Velocity loop configuration

(b) When incomplete integration and overshoot compensation are not used.

First, 1–pulse motion command is issued from NC. Initially, because the Position Feedback and Velocity Feedback are "0", the 1–pulse multiplied position gain Kp value is generated as the velocity command (VCMD).

Because the motor will not move immediately due to internal friction and other factors, the value of the integrator is accumulated according to the VCMD. When the value of this integrator creates a torque command, large enough to overcome the friction in the machine system, the motor will move and VCMD will become "0" as the value of MCMD and the Position Feedback becomes equal.

Furthermore, the Velocity Feedback becomes "1" only when it is moved, and afterwards becomes "0". Therefore the torque command is held fixed at that determined by the integrator.

The above situation is shown in Fig. 5.5.8 (c).

Fig. 5.5.8 (c) Response to 1 pulse movement commands

If Fig. 5.5.8 (c) on the previous page, the torque (TCMD1) when movement has started becomes greater than the machine static friction level. The motor will move 1 pulse, and finally stops at the TCMD2 level. Because the moving frictional power of the machine is smaller than the maximum rest frictional power, if the final torque TCMD2 in Fig. 5.5.8 (c) is smaller than the moving friction level, the motor will stop at the place where it has moved 1 pulse, Fig. 5.5.8 (d). When the TCMD2 is greater than the moving friction level the motor stop and overshoot will occur Fig. 5.5.8 (e).

The overshoot compensation function is a function to prevent the occurrence of this phenomenon.

(c) Response to 1 pulse movement commands

(i) Torque commands for standard settings (when there is no overshoot)

(ii) Torque commands for standard settings (during overshoot)

Fig. 5.5.8 (e) Torque commands (during overshoot)

Conditions to prevent further overshoot are as follows. When TCMD1 > static friction > dynamic friction > TCMD2...... <1> and there is a relationship there to TCMD1 > static friction > TCMD2 > dynamic friction...... <2> regarding static and dynamic friction like that of (ii), use the overshoot compensation in order to make <2> into <1>. The torque command status at that time is shown in (iii).

(iii) Torque command when overshoot compensation is used

Function bit
OVSC = 1 (Overshoot compensation is valid)
Parameter
PK3V: around 30000 to 25000 (Incomplete integral coefficient)

(Example)

Fig. 5.5.8 (f) Torque command (when overshoot is used)

If this overshoot compensation function is used, it is possible to prevent overshoot so that the relationship between machine static and dynamic friction and TCMD2 satisfies <1>, however the torque TCMD during machine stop is

TCMD2 = 0

the servo rigidity during machine stop is insufficient and it is possible that there will be some unsteadiness at ± 1 pulse during machine stop.

There is an additional function to prevent this unsteadiness in the improved type overshoot prevention function and the status of the torque command at that time is shown in (iv).

• `	T	1	1 /1	•	1 /	1 4	· ·	· 1
1371	Ioraije	command	when the	imnr.	oved type	overchoot	compensation	10 11000
	TOTUL	Commana	WIICH UIV	~ 1000		UVCISHOUL	Compensation	is useu
- • ,		••••••			0, 0 , 0, p 0	0.0101000	• • • • • • • • • • • • • • • • • • • •	

Function bit	1 (Overshoot cor	npensation is valid)
Parameter		
PK3V:	around 32000	(Incomplete integral coefficient)
OSCTP:	around 20	(Number of incomplete integral)

When overshooting with this parameter, try increasing the value of the overshoot protection counter (OSCTP) by 10. Conversely, when there is no overshooting, but unsteadiness occurs easily during machine stop, decrease the overshoot protection counter (OSCTP) value by 10.

When overshoot protection counter (OSCTP) = 0 it is the same as existing overshoot compensation.

Fig. 5.5.8 (g) Torque command (using improved type overshoot compensation)

If this function is used, the final torque command is TCMD3. If the parameter PK3V (t3) is fixed so that this value becomes less than the dynamic friction level, overshoot is nullified. Because torque command is maintained to some degree during machine stop, it is possible to decrease unsteadiness during machine stop.

(4) Improving overshoot compensation for machines using a 0.1- μ m detection unit

(a) Overview

Conventional overshoot compensation performs imperfect integration only when the error is 0.

A machine using a 0.1-µm detection unit, however, has a very short period in which the error is 0, resulting in a very short time for imperfect integration.

The new function judges whether to execute overshoot compensation when the error is within a predetermined range.

(b) Setting par	ameters					
2101		Overs	hoot compensa	tion enable leve	el	
[Valid data range] 01	to 32767					
[Unit of data] De	etection unit					
[Recommended value] 1 (detection unit:	1µm)				
-	10 (detection unit	: 0.1 µm)				
	To set an error	range for	which overs	hoot compen	sation is en	nabled, set Δ , as
	indicated below, a	as the overs	hoot compen	sation enable	level.	
	Imperfect	Imperfect	integration	Imperfect		
	integration	ena	bled	integration		
	disabled	•	⊢	disabled	→	
					-	
			0		Frror	
	4	← →			Enor	
	- /	Δ	+,	Δ		

Fig. 5.5.8 (h) Relationship between error and overshoot compensation

(5) Overshoot compensation type 2

(a) Overview

For a machine using, for example, 0.1-µm detection units, the use of the conventional overshoot compensation function may generate minute vibrations when the machine stops, even if the parameter for the number of incomplete integration is set.

This is caused by the repeated occurrence of the following phenomena:

- While the machine is in the stopped state, the position error falls within the compensation valid level, and the integrator is rewritten. Subsequently, the motor is pushed back by a machine element such as a machine spring element, causing the position error to exceed the compensation valid level.
- While the position error is beyond the threshold, a torque command is output to decrease the position error, then it decreases to below the threshold again.

In such a case, set the bit indicated below to suppress the minute vibration.

5.5.9 Interactive Force Compensation Function

(1) Overview

If a rotary axis with an eccentric load is located on a linear axis, an interactive force such as a centrifugal force or reaction force due to acceleration/deceleration is applied to the linear axis when a motion is made on the rotary axis. Similarly, an interactive force is applied to the rotary axis due to acceleration/deceleration on the linear axis.

The interactive force compensation function is a servo function that achieves more accurate position control by compensating the interactive forces in servo software and canceling their influences. This function is useful for enabling machine tools such as 5-axis machine tools to perform higher-speed and higher-precision machining.

• When a constant-speed rotation is made on a rotary axis

• When acceleration is performed on a rotary axis

• When acceleration is performed on a linear axis

(2) Series and editions of applicable servo software

CNC		Servo software	Remarks	
CNC	Series	Edition		
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	16.0 and subsequent editions		
Power Motion <i>i</i> -A				
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	P(16) and subsequent editions		
	90E1	01.0 and subsequent editions		
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	P(16) and subsequent editions	HRV4	

5.SERVO FUNCTION DETAILS

To use the interactive force compensation function, the system software below is needed.

CNC	System software				
C N	Series	Edition			
Series 30 <i>i</i> -A	G00C,G01C,G02C	27 and subsequent editions			
	G004,G014,G024	01 and subsequent editions			
Series 31 <i>i</i> -A5	G12C,G13C	27 and subsequent editions			
	G124,G134	01 and subsequent editions			
Series 31 <i>i</i> -A	G103,G113	06 and subsequent editions			
	G104,G114	01 and subsequent editions			
Series 32 <i>i</i> -A	G203	06 and subsequent editions			
	G204	01 and subsequent editions			

For the series 30*i*/31*i*/32*i*/35*i*-B and Power Motion *i*-A, all series and editions support this function.

(3) Axis configuration for the interactive force compensation function (a) Target axis configuration

The interactive force compensation function basically assumes the two axis configurations described below.

• Configuration 1: Rotary table (C-axis) on a linear axis (X-axis) Configuration in which a rotary axis with an eccentric load is located on a linear axis and the center axis of the rotary axis is normal to the linear axis (When the two axes are parallel with each other, no interactive force occurs.)

• Configuration 2: Rotary table (C-axis) on a rotary axis (A-axis) Configuration in which the center axis of a rotary axis with an eccentric load is normal to the center axis of a rotary axis on which the rotary axis with an eccentric load is located

(b) Axis naming in interactive force compensation

With the interactive force compensation function, an axis that produces an interactive force when a movement is made on the axis is named a **moving axis**, and an axis affected by such an interactive force (an axis to which interactive force compensation is applied) is named a **compensated axis**.

In configuration 1, for example, suppose that an interactive force acts on the rotary axis due to acceleration operation on the linear axis. In such a case, the linear axis is referred to as the moving axis, and the rotary axis is referred to as the compensated axis.

Conversely, suppose that an interactive force acts on the linear axis due to rotation on the rotary axis. In such a case, the rotary axis is referred to as the moving axis, and the linear axis is referred to as the compensated axis.

(c) Axis configuration

For one compensated axis, up to two moving axes can be specified (interactive force applied from two axes onto one axis can be compensated for simultaneously). Of two specifiable moving axes, the first one is referred to as the first moving axis, and the second one is referred to as the second moving axis.

Bidirectional compensation is applicable between two axes.

An axis to which torque tandem control or synchronous control is applied can be set as a moving axis or compensated axis.

When a servo axis number (No. 1023) is represented in the following format, set servo axis numbers so that n for a moving axis matches n for the corresponding compensated axis.

For series 90D0: Servo axis number = 4n+k

(where, n is an integer, a	and $k = 1, 2, 3, 4$	
No.1023=1,2,3,4	5,6,7,8	9,
//	ر/	(/

The servo axis numbers in one group (enclosed in a dashed frame) can be used to specify a combination of moving axes and a compensated axis.

For series 90E0 or 90E1: Servo axis number = 8n+k

(where n is an integer, and $k = 1$,	2, 3, 4, 5, 6, 7, 8)	
No.1023=1,2,3,4,5,6,7,8	9,10,11,12,13,14,15,16	17,
		儿 丿

For series 90G0: Servo axis number = 16n+k

(where n is an integer, and $k = 1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14$)								
No.1023=1,2,3,4,5,6, 9,10,11,12,13,14	17,18,19,20,21,22, 25,26,27,28,29,30	33,…						

(d) Notes

To use the interactive force compensation function, <u>feed-forward must be enabled</u>. While feed-forward is disabled for a moving axis, interactive force is disabled.

When no direct connection is made between a moving axis and compensated axis, the interactive force compensation function cannot be used.

(4) Setting parameters

The function of each parameter is described below.

- * For an example of parameter setting, see "(5) Example of parameter setting".
- * A compensation value used with the interactive force compensation function is calculated on the compensated axis side. So, parameters for setting a compensation gain, angle data offset value, and so forth are to be set on the compensated axis side.

SERVO FUNC	CTION DE	TAILS					E	3-65270EN/08
	#7	#6	#5	#4	#3	#2	#1	#0
2292(FS30 <i>i</i>)	MOVAXS	MV1IFC	MV1ID2	MV1ID1	MV1ID0	IFC10N	C1TYP1	C1TYP0
t with moving axis MOVAXS(#7)	Specifies wi function. (F	hether the a Power-off p	axis is a mo parameter)	oving axis	used with th	ne interactiv	ve force co	mpensatior

that affects another axis), set this bit parameter to 1.

Set with compensated axis

MV1IFC(#6) Sets calculation of interactive force from the first moving axis.(Power-off parameter)

- 0: Disables calculation of interactive force from the first moving axis.
- 1: Enables calculation of interactive force from the first moving axis.

When this bit parameter is set to 1, interactive force from the first moving axis is calculated. (However, when position feed-forward for the first moving axis is disabled, the calculated value of interactive force is 0.)

This bit parameter specifies interactive force calculation alone. To enable interactive force compensation actually, IFC1ON (bit 2 of No. 2292) needs to be set as well.

Set with compensated axis

MV1ID2,MV1ID1,MV1ID0(#5,4,3) Specifies a servo axis number for the first moving axis.

This bit parameter is specific to 30*i*-A Series. In 30*i*-B Series and Power Motion *i*-A, the servo axis numbers of the first moving axis and second moving axis are specified by parameter No. 2606.

For calculation of interactive force from the first moving axis (bit 6 of No. 2292=1), a servo axis number needs to be specified for the first moving axis. Set these bit parameters to values below according to a desired servo axis number.

MV1ID2	MV1ID1	MV1ID0	Servo axis number for moving axis (Series 90E0,90E1)
0	0	0	8n+1
0	0	1	8n+2
0	1	0	8n+3
0	1	1	8n+4
1	0	0	8n+5
1	0	1	8n+6
1	1	0	8n+7
1	1	1	8n+8

* n = 0, 1, 2, ...

NOTE
When the interactive force compensation function is used, a
restriction is imposed on selection of a moving axis and
compensated axis. When a servo axis number (No. 1023) is
represented in the format below, select a moving axis and
compensated axis from those axes that have the same n value.
Series 90D0:
Servo axis number = 4n+k (where, n is an integer, and k = 1, 2,
3, 4)
Series 90E0, 90E1:
Servo axis number = 8n+k (where n is an integer, and k = 1, 2,
3, 4, 5, 6, 7, 8)
Series 90G0:
Servo axis number = $16n+k$ (where n is an integer, and k = 1, 2,
3, 4, 5, 6, 9, 10, 11, 12, 13, 14)
If the n value of a moving axis and the n value of a compensated
axis differ from each other, modify the servo axis number setting so
that the two n values match.

Set with compensated axis

IFC1ON(#2) Turns on/off the compensation function for interactive force from the first moving axis.

- 0: Does not compensate for interactive force from the first moving axis.
- 1: Compensates for interactive force from the first moving axis.

By setting this bit parameter to 1, compensation for interactive force from the first moving axis is enabled. (However, bit 6 (MV1IFC) of No. 2292 must be set to 1.)

Set with compensated axis

C1TYP1,C1TYP0(#1,0)Sets a compensation type (for the first moving axis).

Set a compensation type according to the axis configuration and axis type to which the interactive force compensation function is applied. An example of axis configuration is provided below.

Axis configuration	C1TYP1	C1TYP0	Compensation type
Interactive force from linear axis to rotary axis	0	0	Type L
Interactive force from rotary axis to linear axis	0	1	Type R

• Configuration 1: Rotary axis (C-axis) on a linear axis (X-axis)

• Configuration 2: Rotary axis (C-axis) on a rotary axis (A-axis)

When the C-axis is a compensated axis \rightarrow Type L (Bits 1, 0 of No. 2292=0,0) When the A-axis is a compensated axis \rightarrow Type R (Bits 1, 0 of No. 2292=0,1)

	#7	#6	#5	#4	#3	#2	#1	#0
2293(FS30 <i>i</i>)		MV2IFC	MV2ID2	MV2ID1	MV2ID0	IFC2ON	C2TYP1	C2TYP0

Set with compensated axis

(Power-off parameter)

MV2IFC(#6) Sets calculation of interactive force from the second moving axis.

0: Disables calculation of interactive force from the second moving axis.

1: Enables calculation of interactive force from the second moving axis.

Set with compensated axis

MV2ID2,MV2ID1,MV2ID0(#5,4,3) Specifies a servo axis number for the second moving axis.

This bit parameter is specific to 30*i*-A Series. In 30*i*-B Series and Power Motion *i*-A, the servo axis numbers of the first moving axis and second moving axis are specified by parameter No. 2606.

MV2ID2	MV2ID1	MV2ID0	Servo axis number for moving axis (Series 90E0, 90E1)
0	0	0	8n+1
0	0	1	8n+2
0	1	0	8n+3
0	1	1	8n+4
1	0	0	8n+5
1	0	1	8n+6
1	1	0	8n+7
1	1	1	8n+8
			* n = 0, 1, 2,

Set with compensated axis

IFC2ON(#2) Turns on/off the compensation function for interactive force from the second moving axis.

- 0: Does not compensate for interactive force from the second moving axis.
- 1: Compensates for interactive force from the second moving axis.

Set with compensated axis

C2TYP1,C2TYP0(#1,0)Sets a compensation type (for the second moving axis).

Axis configuration	C2TYP1	C2TYP0	Compensation type
Interactive force from linear axis to rotary axis	0	0	Type L
Interactive force from rotary axis to linear axis	0	1	Type R

Set with compensated axis

This parameter is specific to 30*i*-B Series. In 30*i*-A Series, the servo axis numbers of the first moving axis and second moving axis are specified by bits 3, 4, and 5 of parameter No. 2292 and bits 3, 4, and 5 of parameter No. 2293, respectively.

2606(ES30 <i>i</i> -B)	Axis number of second moving axis	Axis number of first moving axis				
[Unit of data]	-					
[Valid data range]	1 to 9999					
[Setting value]	Set the axis number (1 to 99) of the second r 99) of the first moving axis.	noving axis 2×100 + the axis number (1 to				
	When the interactive force from the first moving axis and second moving calculated (bit 6 of parameter No. 2292 = 1 and bit 6 of parameter No. 2293 = target moving axes (axes having influences) need to be specified. Set this parameter according to the axis numbers (parameter No. 1023) of the axes. When the moving axis is a tandem axis, make settings according to the axis number master axis.					
	NOTEIt is not possible to arbitrarily selecompensated axis to which the infunction is applied. The moving a be selected from among axes had number (parameter No. 1023) reaction Axis number = 16n + k (where to 14)If the value "n" of the moving axis compensated axis, change the selected axis, change the selected axis, concide with each other.	ect the moving axis and nteractive force compensation axis and compensated axis need to aving the same value "n" in the axis presented in the following form. e, n is an integer, and $k = 1$ to 6, 9 s is different from that of the ettings of axis numbers so that				
Set with compensate	ed axis					
2478(FS30 <i>i</i>)	Interactive force compensation: Compe	ensation gain (for the first moving axis)				
[Unit of data]	-					
[Valid data range]	0 to 32767					
	Set a coefficient (gain) for interactive force c	ompensation.				

The optimum value varies according to the weight of an eccentric load and the distance from the rotation center. So, set a proper value according to "(6) Setting parameters".

Set with compensated axis

2479(FS30 <i>i</i>)	Interactive force compensation: Angle data offset (for the first moving axis)
[Unit of data]	360/4096 deg
[Valid data range]	0 to 4096
	Set angle data that can be read when an eccentric load is placed at the reference position of the rotary axis. The parameter setting varies, depending on the compensation type as follows:
	Compensation type $L \rightarrow An$ offset relative to the angle data of the compensated axis is set with the compensated axis.
	Compensation type $R \rightarrow An$ offset relative to the angle data of the moving axis is set with the compensated axis.

Set with compensated axis

2480(FS30i)	
-------------	--

Interactive force compensation: Compensation gain (for the second moving axis)

5.SERVO FUNCTION DETAILS

Set with compensated axis

2481(FS30 <i>i</i>)	Interactive force compensation: Angle data offset (for the second moving axis)
	For a rotary axis, the number of pulses per revolution output from a detector needs to be set.
Set with rotary axis	
2455(FS30 <i>i</i>)	Integer part of the number of pulses per revolution (α)
[Valid data range]	0 to 32767
Set with rotary axis	
2456(FS30 <i>i</i>)	Exponent part of the number of pulses per revolution (β)
[Valid data range]	0 to 12
	From the number of feedback pulses per revolution on a rotary axis, find the values of the integers (α and β) that satisfy the expression below then set the found values in the parameters above.
	Number of pulses per revolution on a rotary axis = $\alpha \times 2^{\beta}$ (where, $1 \le \alpha \le 32767$, $0 \le \beta \le 12$) An example of parameter setting is provided below using a detector indicated below for a synchronous built-in servo motor.

Detector	No.2455	No.2456	Remarks
α <i>i</i> CZ 512A	8192	7	Manufactured by FANUC
α <i>i</i> CZ 768A	12288	7	Manufactured by FANUC
α <i>i</i> CZ 1024S	16384	7	Manufactured by FANUC
RCN223F	16384	10	Manufactured by HEIDENHAIN

(5) Example of parameter setting

To use the interactive force compensation function, an axis (moving axis) that produces an interactive force by movement on the axis and an axis (compensated axis) that is affected by the interactive force need to be set, and the relationship between the two axes needs to be set properly according to the machine configuration. This example explains the parameters for axis setting.

As an example, suppose a machine with the following axis configuration:

- Assume a configuration where the X-axis (linear axis) is placed on the Y-axis (linear axis), the C-axis (rotary axis) is placed on the X-axis, and an eccentric load is mounted on the C-axis.
- Suppose that a synchronous built-in servo motor is used for the C-axis and that the detector $\alpha i CZ1024A$ is used.
- Suppose also that the servo axis numbers (No. 1023) and detection units indicated below are used for the axes. (Use of servo software Series 90G0 is assumed.)

Axis	No.1023	Detection unit	Remarks
X-axis	1	1 μm	Linear axis
Y-axis	2	1 μm	Linear axis
C-axis	6	0.001 deg	Rotary axis

- Suppose that the X-axis and Y-axis cross each other at right angles and that no interactive force occurs between the X-axis and Y-axis.
- This example simultaneously compensates for an interactive force that is produced by rotation on the C-axis and acts on the X-axis and Y-axis and also compensates for an interactive force that is produced by acceleration on the X-axis and Y-axis and acts on the C-axis.

Compensated axis: X-axis Compensated axis: Y-axis	Interactive force	First moving axis: C-axis Second moving axis: -	Movement on rotary axis
Compensated axis: C-axis	Interactive force	First moving axis: X-axis Second moving axis: Y-axis	Movement on linear axes

(Parameter	setting)	
---	-----------	----------	--

Nie	Description	Setting			
NO.	Description	X-axis	Y-axis	C-axis	
No.2292#7	Moving axis specification	1 *1	1 *1	1 *1	
No.2455	Integer part of the number of pulses	0	0	16384	٦
No.2456	Exponent part of the number of pulses	0	0	7	<u>*</u> *2
No.2292#6	Calculation of interactive force from the first moving axis	1	1	1	}*3
No.2606	Servo axis number specification for the first moving axis	6	6	102	*4
No.2292#2	Enabling compensation for interactive force from the first moving axis	1	1	1	
No.2292#1,0	Type of compensation for interactive force from the first moving axis	01	01	00	
No.2478	Compensation gain for interactive force from the first moving axis	Adjusted value	Adjusted value	Adjusted value	
No.2479	Angle data offset for the first moving axis	Adjusted value	Adjusted value	Adjusted value	
No.2293#6	Calculation of interactive force from the second moving axis	0	0	1	
No. 2606	Servo axis number specification for the second moving axis	6	6	102	*5
No.2293#2	Enabling compensation for interactive force from the second moving axis	-	-	1	J
No.2293#1,0	Type of compensation for interactive force from the second moving axis	-	-	00	
No.2480	Compensation gain for interactive force from the second moving axis	-	-	Adjusted value	
No.2481	Angle data offset for the second moving axis	-	-	Adjusted value	

*1) All axes are moving axes. So, set bit 7 of No. 2292 to 1 for all axes.

*2) The X-axis and Y-axis are linear axes. So, set 0 as the number of pulses per revolution. The C-axis is a rotary axis, so the number of pulses per revolution needs to be set. When using αiCZ 1024A, set 16384 in No. 2455, and set 7 in No. 2456.

*3) Considering the C-axis as the first moving axis for the X-axis and Y-axis, and the X-axis as the first moving axis for the C-axis, set the first moving axis for the X-axis, Y-axis, and C-axis.

While the servo axis numbers of the first moving axis and the second moving axis are specified by parameter No. 2606 in 30i-B Series and Power Motion *i*-A, the servo axis numbers of the first moving axis and the second moving axis are specified by bits 5, 4, and 3 of parameter No. 2292 and bits 5, 4, and 3 of parameter No. 2293, respectively, in 30i-A Series.

Example of setting the servo axis numbers of the first moving axis and second moving axis in 30*i*-A Series

	No.2292#5,4,3	No.2293#5,4,3		
Axis	Specification of servo axis number of first moving axis	Specification of servo axis number of second moving axis		
X-axis	101	-		
Y-axis	101	-		
C-axis	000	001		

*4) The linear axes (X-axis and Y-axis) are affected by an interactive force from the rotary axis (C-axis). So, set type R for the X-axis and Y-axis.

The rotary axis (C-axis) is affected by an interactive force from the linear axes (X-axis and Y-axis). So, set type L for the C-axis.

(6) Setting parameters

For interactive force compensation, two parameters, one for angle data offset and the other for compensation gain, need to be adjusted. The method of adjustment is described below.

NOTE

To use the interactive force compensation function, Various parameters need to be set. Before starting parameter adjustment, <u>Set bit 2 of No. 2292 to 0 and set</u> <u>bit 2 of No. 2293 to 0 (to disable interactive force compensation).</u> If these bit parameters are set to 0, interactive force compensation is not actually enabled but calculated compensation data can be observed. At the initial stage of adjustment, disable compensation.

(a) Checking the angle data of a rotary axis

When a rotary axis is to be set as a compensated axis or moving axis, the angle data of the rotary axis is required. Check that the number of pulses per revolution (No. 2455 and No. 2456) is set correctly and the angle data is calculated correctly. For all rotary axes that are used for interactive force compensation, check that phase data is output correctly, by using the method described below.

• Check method

By making a movement on a rotary axis by a certain amount, observe the change in angle data. If the number of pulses per revolution is set correctly, the angle data changes by 4096 when a movement is made on the rotary axis by 360°. Check whether the actual amount of movement matches the change in phase data.

For example, check that when a movement of 90° is made on a rotary axis, the change in phase data is 1024 (= $4096 \times 90/360$).

If the actual amount of movement does not match the change in phase data, recheck the settings of No. 2455 and No. 2456.

• SERVO GUIDE channel setting (angle data: SVPOS2)

0	Channel	?	×
	СН1	н2 сн3 сн4 сн5 сн6 сн7 сн8	
	Axis Kind Unit Conv. Conv. Origin	X (1) PS ??: SVPOS2 Image: Constraint of the system o	
		OK Cancel Help	
Axis	:	Select a target rotary axis.	
Kind	:	Select SVPOS2.	
Unit	:	Select rev.	
Conv. Coef	:	Set 1. (Set 360 when change is observed with 360°/rev.)	
Conv. Base	:	Set 4096.	
Origin value	e :	Set 0.	

(b) Setting angle data (No. 2479 and No. 2481)

Move the eccentric load on a rotary axis to the reference position shown below and observe the value of phase data. Set the observed value in the angle data parameter (No. 2479 or No. 2481).

If the eccentric load cannot be moved to the reference position, find a value by estimation from the angle data at a position to which the eccentric load can be moved.

For example, if a phase data of 2000 is observed when the eccentric load is moved to a position of 90° away from the reference position, the value to be set as angle data is:

2000-4096×90/360 = 976

(If the result of calculation is a negative value, add 4096 to the result to make a value from 0 to 4095.) If the accurate position of the eccentric load is unknown, set an approximate position with the method above then make a fine adjustment according to "(c) Adjusting compensation gain" below.

(c) Adjusting compensation gain (No. 2478 and No. 2480)

The method of compensation gain adjustment is described below.

The example described below uses a rotary table as a moving axis and uses a linear axis as a compensated axis in configuration 1, and uses a waveform produced by making reciprocating motions in the arrow directions. It is supposed that each reciprocating motion is made by 270° through the reference position.

NOTE

The magnitude of interactive force varies, depending on the position (angle) of an eccentric load on the rotary table. Depending on the position of an eccentric load, no interactive force is produced. So, when making a compensation gain adjustment, make a check by making movements fully across the movable range on the rotary axis.

- If acceleration/deceleration is performed on the linear axis in the following figure, no interactive force is produced on the rotary axis at positions A and C.
- At positions A and C, acceleration/deceleration performed on the rotary axis produces no interactive force on the linear axis. However, interactive force due to centrifugal force is produced.
- At positions B and D, interactive force due to the centrifugal force of the rotary axis is not produced on the linear axis. However, acceleration/deceleration performed on the rotary axis produces interactive force.

<1> Checking the influence of interactive force

While making no movement on the compensated axis to which the interactive force compensation function is applied, make a movement on the moving axis. At this time, observe the waveform of the torque command (TCMD) and position feedback (POSF) on the compensated axis with SERVO GUIDE.

The position on the compensated axis varies, depending on movement on the moving axis.

<2> Checking interactive force compensation data

When interactive force compensation is disabled (bit 2 of No. 2292=0, bit 2 of No. 2293=0), adjust the compensation gain (No. 2478, No. 2480).

A torque command change occurring on the compensated axis according to a movement on the moving axis is considered to be a torque produced to cancel the influence of interactive force. Accordingly, the torque command waveform observed at this time is about equal to the interactive force. So, observe the torque command and interactive force compensation data on the compensation axis present when a movement is made on the moving axis (IFCMP1 for the first moving axis/IFCMP2 for the second moving axis), and adjust the compensation gain so that the torque command approximately matches the compensation data.

See the next item for the setting of SERVO GUIDE for observing interactive force compensation data.

If the accurate position of the eccentric load cannot be identified in angle data adjustment of item (b), gain adjustment alone may not produce a waveform match. Make a fine adjustment of the angle data offset (No. 2479, No. 2481).

The timing of a maximum interactive force due to centrifugal force matches, so the angle data offset is considered to be adjusted correctly.

NOTE

1 Be sure to enable feed-forward.

- 2 When the motor rotation direction of a compensated axis (No. 2022) is set to -111 (CW direction), the polarity of compensation data is opposite to that of the torque command. So, make an adjustment so that IFCMPx is TCMD inverted upside down.
- SERVO GUIDE channel setting (Interactive force compensation data: IFCMP1, IFCMP2)

Channel		<u>? ×</u>
СН1 СН2 СН3	з сн4 сн5 сн6 сн	7 СН8
Axis X Kind IF	(1) V CMP1 V	Extended address(E) 0 = Shift(5) 0 =
Conv. Coef.	100 (Physical Val.) 29128 (Raw data Val.)	Explanation Interactive force compensation amount (axis 1)
Origin Value	0	OK Cancel Help

Axis	:	Select a target compensated axis.
Kind	:	Select IFCMP1 or IFCMP2.
Unit	:	Select %.
Conv. Coef	:	Set 100.
Conv. Base	:	Set 29128.
Origin value	:	Set 0.

<3> Checking the effect of interactive force compensation

After adjusting the compensation gain parameter, enable the interactive force compensation function (First moving axis: Bit 2 of No. 2292=1, Second moving axis: Bit 2 of No. 2293=1) then observe the waveform of position feedback (POSF) on the compensated axis.

Check that when a movement is made on the moving axis, the change in position feedback is reduced.

Make a fine adjustment of the compensation gain parameter so that the change in position feedback is minimized.

• Without compensation (Bit 2 of No. 2292=0)

The change in position on the compensated axis is improved.

5.6 FUNCTION FOR REDUCING EFFECTS OF VARIATIONS IN MACHINE CHARACTERISTICS

5.6.1 Inertia Estimation Function

(1) Overview

This function estimates the inertia of the machine. Since various workpieces are attached to the rotary axis and linear axis that drive the workpiece, the inertia varies. In such a case, the estimation of the inertia enables the PMC to set the time constant of acc./dec. or the velocity gain that are appropriate for the inertia that varies. Estimation is started by the PMC signal and the results are indicated on the diagnosis screen (No. 764). There are two estimation methods shown below.

Torque application method

This method is applied to a direct driving axis that uses a linear motor or DD motor.

Velocity application method

This method is applied to a ball screw driving axis that uses a rotary motor with an axis or a linear motor or DD motor with a reducer.

(2) Series and editions of applicable servo software

[Applicable servo software]

CNC		Servo software	Bomorko	
CNC	CNC Series Edition		Remarks	
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	09.0 and subsequent editions		
Power Motion <i>i</i> -A				
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	-		
	90E1	08.0 and subsequent editions		
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	-	HRV4	
Series 0 <i>i</i> -D	90C5	E(05) and subsequent editions		
	90C8	A(01) and subsequent editions		
	90E5	E(05) and subsequent editions		
	90E8	A(01) and subsequent editions		

The following editions support this function, but do not support the velocity application method (bit 3 of parameter No. 2418).

Series 90E0 /30.0 and subsequent editions

Series 90E1 / 04.0 and subsequent editions

In addition, the following editions do not support detection sensitivity improvement (bit 2 of parameter No. 2418) and tandem control.

Series 90E0 /28.0 and subsequent editions

Series 90E1 /03.0 and subsequent editions

010	System software				
CNC	Series	Edition			
Series 30 <i>i</i> -A	G00C,G01C,G02C	27 and subsequent editions			
	G004,G014,G024	01 and subsequent editions			
Series 31 <i>i</i> -A5	G12C,G13C	27 and subsequent editions			
	G124,G134	01 and subsequent editions			
Series 31 <i>i</i> -A	G103,G113	13 and subsequent editions			
	G104,G114	01 and subsequent editions			
Series 32 <i>i</i> -A	G203	13 and subsequent editions			
	G204	01 and subsequent editions			
Series 0 <i>i</i> -MD	D4F1	01 and subsequent editions			

[Applicable system software]

B-65270EN/08

B-65270EN/08

5.SERVO FUNCTION DETAILS

CNC	System software				
CNC	Series	Edition			
Series 0 <i>i</i> -TD	D6F1	01 and subsequent editions			
Series 0 <i>i</i> Mate-MD	D5F1	01 and subsequent editions			
Series 0 <i>i</i> Mate-TD	D7F1	01 and subsequent editions			

For the series 30*i*/31*i*/32*i*/35*i*-B and Power Motion *i*-A, all series and editions support this function.

(3) Caution

- This function estimates inertia by adding a small vibration to a motor. Therefore, this function cannot be applied to the motor that is locked.
- Estimation error becomes large in the case of machines with a spring or backlash or tandem control or feed axis synchronous control with low rigidity.
- The disturbance elimination filter does not operate during estimation of inertia. •
- Since the estimated precision depends on the machine status, make verification sufficiently. •
- If the inertia estimation function is not used (bit 2 of parameter No. 2419 is 0), be sure to set the vibration frequency (parameter No. 2025) and vibration gain (parameter No. 2026) to 0.

(4) Parameter

	#7	#6	#5	#4	#3	#2	#1	#0
2419	INESGH	INESGL	INESFH	INESFL	INESMG	INESFC		
INESEC(#2)	The inertia	estimation	function is:					

The inertia estimation function is:

- 0: Disabled.
- Enabled. 1:

INESMG (#3) The weight on diagnosis screen (No. 764) indication is:

- The standard output value. 0:
- 1: The standard output value divided by 32.

If error "-3" is indicated on the diagnosis screen (No. 764) upon completion of estimation, an overflow occurred in the estimation results. In this case, enable this bit and perform estimation again.

- INESFL (#4) The vibration frequency for inertia estimation is:
 - 0: The standard frequency. (50Hz)
 - 1 : The low frequency. (25Hz)

INESFH (#5) The vibration frequency for inertia estimation is:

- 0: The standard frequency. (50Hz)
 - 1 : The high frequency. (100Hz)
- INESGL (#6) The vibration gain for inertia estimation is:
 - 0: The standard value. (Rated current)
 - 1 : Half the standard value. (Rated current /2)

If an excessive error alarm (SV410) at stop time occurs during estimation of inertia, increase the setting (parameter No. 1829) of the excessive error at stop time or enable this bit and perform estimation again.

If error "-1" is indicated on the diagnosis screen (No. 764) upon completion of estimation, the vibration gain is too large. In this case, also enable this bit and perform estimation again. If the error persists, set the vibration frequency to the low frequency (bit 4 of parameter No. 2419 is 1).

- INESGH (#7) The vibration gain for inertia estimation is:
 - 0: The standard value. (Rated current)
 - 1 : Double the standard value. (Rated current $\times 2$)

If error "-2" is indicated on the diagnosis screen (No. 764) upon completion of estimation, enable this bit and perform estimation again. If the error persists, set the vibration frequency to the high frequency (bit 5 of parameter No. 2419 is 1) or divide the detectable minimum deceleration by 32 (bit 2 of parameter No. 2418 is 1).

	#7	#6	#5	#4	#3	#2	#1	#0
2418					INEVCM	INESHS		
INESHS (#2) The detectable minimum acceleration in inertia estimation is:								

0: The normal value.

1: The normal value divided by 32 (detection sensitivity improvement).

If error "-2" is indicated on the diagnosis screen upon completion of inertia estimation, enable this bit.

- INEVCM (#3) Inertia estimation uses:
 - 0: The torque application method.
 - 1: The velocity application method.

The torque application method is used for a direct driving axis that uses a linear motor or DD motor. The velocity application method is used for a ball screw driving axis that uses a rotary motor with an axis.

The above two bit parameters require the corresponding servo software. See "(2) Series and editions of applicable servo software" above.

Parameter		No.2418			
Bit	INESGH	INESGL	INESFH	INESFL	INESHS
	#1	#0	#3	#4	#2
Vibration frequency: Standard (50Hz)	-	-	0	0	-
Low frequency (25Hz): Against error "-1"	-	-	0	1	-
High frequency (100Hz): Against error "-2"	-	-	1	0	-
Vibration gain: Standard	0	0	-	-	-
Half the rated current: Against error "-1"	0	1	-	-	-
Double the rated current: Against error "-2"	1	0	-	-	-
Minimum acceleration divided by 32: Against error "-2"	-	-	-	-	1

Settings against error (Torque application method)

Settings against error (Velocity application method)

Parameter	No.2025	No.2026	No.2418
Bit			INESHS #2
Vibration frequency: as a guide	5	-	-
Low frequency: Against error "-1"	3	-	-
High frequency: Against error "-2"	10	-	-
Vibration gain: as a guide	-	5000	-
Low velocity: Against error "-1"	-	2500	-
High velocity: Against error "-2"	-	10000	-
Minimum acceleration divided by 32: Against error "-2"			1

2025

Vibration frequency

[Unit of data] Hz [Valid data range] 0 to 200 [Standard setting] 5
Set the vibration frequency for the velocity application method. This parameter is not affected by the settings of bits 4 and 5 of parameter No. 2419. This parameter requires the corresponding servo software. See "(2) Series and editions of applicable servo software" above. When the inertia estimation function is not used, be sure to set this parameter to 0.

2026	Vibration gain
[Unit of data]	0.1 min ⁻¹ (rotary motor), 5 mm/min (linear motor)
[Valid data range]	0 to 30000
[Standard setting]	5000
	Set the vibration gain for the velocity application method. This parameter is not affected by the settings of bits 6 and 7 of parameter No. 2419. This parameter requires the corresponding servo software. See "(2) Series and editions of applicable servo software" above. When the inertia estimation function is not used, be sure to set this parameter to 0.
2086	Rated current value
[Unit of data]	The maximum current of an amplifier is equivalent to 6554.
[Valid data range]	0 to 6554
	The vibration gain used for the torque application method is calculated using this
	parameter and bits 7 and 6 of parameter No. 2419. This value is set according to the motor specification. If the value is 0, error "-2" is indicated.
2345	Friction compensation
[Unit of data]	TCMD unit (The maximum current of an amplifier is equivalent to 7282.)
[Valid data range]	0 to 7282
	This compensation eliminates effects of friction. This parameter sets the absolute value of
	a torque command value (TCMD) during operation at 10min ⁻¹ (rotary motor) or 10mm/s
	(linear motor).
	If the average current during estimation is less than the value of this parameter, error "-2"
	is indicated. In this case, increase the vibration gain.
	NOTE In a multi-winding driving motor, tandem control, and feed axis synchronous control, set all the above parameters on the sub-axis

(5) PMC signal

The start and end of inertia estimation is controlled by PMC signal Gn390. For two seconds after the start of estimation, the motor vibrates slightly. Completion of the estimation is reported by PMC signal Fn371. At the same time, the estimation results are indicated on the diagnosis screen (No. 764). The estimation results on the diagnosis screen (No. 764) are retained until the next estimation starts. The results can be used by the PMC program.

to the same values as in the main axis.

In a multi-winding driving motor or tandem control, turn on only Gn390 for the main axis and check the obtained results from the main axis. On the other hand, in feed axis synchronous control, turn on Gn390 for the main axis and the sub-axis at the same time to obtain the sum of the results from the axes as the inertia of the machine.

Inertia estimation start DI signal

Gn390.0 to Gn390.7 (axis type)

[Classification] Input signal

[Function] Starts and ends inertia estimation.

[Operation] Enabling or disabling this signal starts or ends inertia estimation, respectively.

Inertia estimation start DO signal Fn371.0 to Fn371.7 (axis type)

[Classification] Output signal

[Function] Reports the completion of inertia estimation.

[Operation] When inertia estimation is completed, this signal turns on.

Timing chart

Signal address

(6) Indication of the diagnosis screen

The estimation results are indicated on the diagnosis screen (No. 764). The inertia can be calculated by the following equation based on the values.

Rotary motor

$$Jm = \frac{DGN764 \times (Kt/\sqrt{2}) \times \operatorname{Im} ax \times P}{6.4557 \times 10^{12}}$$

Inertia Jm[kgm²], torque constant Kt[Nm/Arms], amplifier maximum current Imax[Ap], NOTE)

For motor constants such as inertia Jm and torque constant Kt, refer to the specification of the motor.

resolution of built in detectors [pube]	
α <i>i</i> CZ512A	P=2 ¹⁹
α <i>i</i> CZ768A	P=786432
α <i>i</i> Pulsecoder, α <i>i</i> CZ1024A	P=2 ²⁰ (See the following example.)
RCN223, RCN723, RCN727	P=2 ²³
Binary encoder or non-binary encoder	P=(Number λ of sine waves per rotation of detector) × 512
+ High-resolution detection circuit	

Resolution of built-in detectors P[pulse]

NOTE) For the full-closed system, the resolution of the built-in detector needs to be used as P.

Example)

In αi S8/4000, if Kt = 0.72 [Nm/Arms], Imax = 80 [Ap], P = 2²⁰ [pulse], and the estimation result DGN764 = 176, then inertia Jm = 0.00116 [kgm²].

Linear motor

 $M = \frac{DGN764 \times (Kf/\sqrt{2}) \times \mathrm{Im}\,ax}{8.2196 \times 10^6 \times A}$

Weight of object to be moved M[kg], thrust constant Kf[N/Arms], amplifier maximum current Imax[Ap], resolution of detector A[μ m]

Linear incremental detector	A= Signal pitch [µm]/512 (See the following example.)
+ High-resolution detection circuit	
Linear absolute detector	A= Resolution [μm]

Example)

In LiS600A1/4, if Kf=41.1[N/Arms], Imax=40[Ap], A=20[um]/512, and the estimation result DGN764=1358, then weight of object to be moved M=4.9[kg].

The value of inertia to be estimated by this function should satisfy the following expression.

Rotary motor

$$2^{5} \leq \frac{Jm \times 6.4557 \times 10^{12}}{(Kt/\sqrt{2}) \times \mathrm{Im}\, ax \times P} \leq 2^{20}$$

If the stall current is assumed to be Is [Arms]:

$$\frac{0.81 \times Kt \times Is \times P}{\pi \times 10^6 \times 2^{14}} \le Jm \le \frac{0.81 \times Kt \times Is \times P \times 2^2}{\pi^2 \times 10^8}$$

When the detection sensitivity improvement (bit 2 of parameter No. 2418) is enabled:

$$\frac{Kt \times Is \times P}{\pi^2 \times 10^6 \times 2^{13}} \le Jm \le \frac{Kt \times Is \times P \times 2^7}{\pi^2 \times 10^7}$$

Linear motor

$$2^{5} \leq \frac{M \times 8.2196 \times 10^{6} \times A}{(Kf/\sqrt{2}) \times \mathrm{Im} \, ax} \leq 2^{20}$$

If the continuous current is assumed to be Ic [Arms]:

$$\frac{0.81 \times Kf \times Ic}{A \times 2^{14}} \le M \le \frac{0.81 \times Kf \times Ic}{25\pi \times A}$$

When the detection sensitivity improvement (bit 2 of parameter No. 2418) is enabled:

$$\frac{Kf \times Ic}{\pi \times A \times 2^{13}} \le M \le \frac{Kf \times Ic \times 2^7}{\pi \times A \times 10}$$

NOTE) For stall current Is and continuous current Ic, refer to the specifications of the motor.

Error indication and measures

• If an error is indicated, first check whether the conditions of the above expression are satisfied. When the conditions are satisfied, take the following actions.

5.SERVO FUNCTION DETAILS

- If the acceleration is too large to calculate a correct inertia, error "-1" is displayed on diagnosis screen No. 764. In this case, halve the vibration gain (bit 6 of parameter No. 2419 = 1 or parameter No. 2026 = set value/2) and perform estimation again. If the error persists, set the vibration frequency to a low frequency (bit 4 of parameter No. 2419 = 1 or parameter No. 2025 = set value/2).
- If the acceleration is too small to calculate a correct inertia, error "-2" is displayed on diagnosis screen No. 764. In this case, double the standard value of the vibration gain (bit 7 of parameter No. 2419 = 1 or parameter No. 2026 = set value × 2) and perform estimation again. If the error persists, set the vibration frequency to a high frequency (bit 5 of parameter No. 2419 = 1 or parameter No. 2025 = set value × 2) or divide the minimum detectable acceleration by 32 (bit 2 of parameter No. 2418 = 1).
- If an overflow occurs in the calculation results, error "-3" is displayed on diagnosis screen No. 764. In this case, divide the standard value of the indication of the diagnosis screen by 32 (bit 3 of parameter 2419 = 1) and perform estimation again.

(7) How to use

The following describes the preparation and method for applying the inertia estimation function.

- Creation of a PMC ladder Create a PMC ladder with reference to (5) above to start the inertia estimation function. In a multi-winding driving motor or tandem control, input only the inertia estimation start DI signal of the main axis. On the other hand, in feed axis synchronous control, input the inertia estimation start DI signals of the main axis and sub-axis at the same time.
- 2) Measurement of friction
 Measure the friction. Set parameter No. 2345 to the absolute value of the torque command value (TCMD) during operation at 10 min⁻¹ (rotary motor) or 10 mm/s (linear motor). In measurement with the servo guide, if the data type is TCMD and both the conversion coefficient and conversion reference are 1, the displayed value can be read as is. In a machine with small friction, the setting is not necessarily required.
- 3) Confirmation of inertia estimation results Estimate the inertia when the largest workpiece and smallest workpiece whose actual inertia values are known are attached. Confirm that the estimation result indicated on the diagnosis screen matches the actual inertia. If an error (-1, -2, or -3) is indicated on the diagnosis screen upon completion of estimation, see "(6) Error indication and measures" above.
- 4) Method for changing the acc./dec. time constant and the velocity gain Attach a workpiece whose inertia value is known and adjust the acc./dec. time constant and the velocity gain. Then, estimate the inertia and record the estimation result on the diagnosis screen as the initial value. When workpieces with different inertias are attached, estimate the inertia, compare the estimation result with the initial value, and change the acc./dec. time constant and the velocity gain based on the ratio between them. However, since the velocity gain is not necessarily proportional to the change rate of the inertia, give detailed consideration in advance.

5.6.2 Adaptive Resonance Elimination Filter

(1) Overview

An adaptive resonance elimination filter detects changes in the resonance frequency as described below and change the filter characteristics based on the changes.

- Changes in the resonance frequency depending on the machine position
- Changes in the resonance frequency depending on individual differences of machines
- Changes in the resonance frequency across the ages
- Changes in the resonance frequency depending on the rigidity of a workpiece
- 1) Follow-up mode and search mode

The follow-up mode is used for follow-up in a narrow bandwidth and the search mode is used for follow-up in a wide bandwidth.

The follow-up mode is applied when the resonance frequency gradually changes according to the machine position.

The search mode is applied when the resonance frequency greatly changes such as when the workpiece is attached or detached.

2) Application method

In the follow-up mode, follow-up is performed generally during axis feed operation. PMC signal G322 enables follow-up even in a stop state.

In the search mode, PMC signal G324 starts or stops follow-up regardless of whether axis feed operation is in progress or the stop state is entered.

3) Automatic update of parameters

The center frequency of a resonance elimination filter in the follow-up result is lost when the NC power is turned off. The center frequency can be recorded in the parameter (No. 2113) by enabling (bit 1 of parameter No. 2290 = 1) the automatic update of parameters.

Changes in the center frequency during follow-up can be checked at any time on diagnosis screen No. 763.

(2) Series and editions of applicable servo software

		Servo software	Bemerke	
CNC	Series	Edition	Remarks	
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	09.0 and subsequent editions		
Power Motion <i>i</i> -A				
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	S(19) and subsequent editions		
	90E1	01.0 and subsequent editions		
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	S(19) and subsequent editions	HRV4	
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions		
	90C8	A(01) and subsequent editions		
	90E5	A(01) and subsequent editions		
	90E8	A(01) and subsequent editions		

The automatic update of parameters requires the following NC software.

0110	Syste	System software				
CNC	Series	Edition				
Series 30 <i>i</i> -A	G00C,G01C,G02C	27 and subsequent editions				
	G004,G014,G024	01 and subsequent editions				
Series 31 <i>i</i> -A5	G12C,G13C	27 and subsequent editions				
	G124,G134	01 and subsequent editions				
Series 31 <i>i</i> -A	G103,G113	13 and subsequent editions				
	G104,G114	01 and subsequent editions				
Series 32 <i>i</i> -A	G203	13 and subsequent editions				
	G204	01 and subsequent editions				
Series 0 <i>i</i> -MD	D4F1	01 and subsequent editions				
Series 0 <i>i</i> -TD	D6F1	01 and subsequent editions				
Series 0 <i>i</i> Mate-MD	D5F1	01 and subsequent editions				
Series 0 <i>i</i> Mate-TD	D7F1	01 and subsequent editions				

For the series 30i/31i/32i/35i-B and Power Motion *i*-A, all series and editions support this function.

(3) Note

- This function is valid only for resonance elimination filter 1 (parameters Nos. 2113, 2177, and 2359).
- This function is enabled after releasing an emergency stop.
- To measure frequency characteristics with SERVO GUIDE (including the tuning navigator), turn off the adaptive resonance elimination filter.

(4) Setting parameters

			#7	#6	#5	#4	#3	#2	#1	#0
	2270						ACREF			
-	ACREF(#2	3) [The adaptiv	ve resonanc	e eliminatio	on filter is:				
		(): Disabl	led.						
]	l : Enable	ed.						
			47	#6	#E	44	#2	#0	44	#0

	#7	#6	#5	#4	#3	#2	#1	#0
2290			FRFPWE	FRFDES	FRFATE			
FRFATE(#3)	Execution of	condition 1	in the follo	w-up mode	of the adap	tive resona	nce elimina	tion filter:

0: During axis feed operation (handle, rapid traverse, cutting feed)

1: Only during rapid traverse (other than stop/cutting feed)

FRFDES(#4) Execution condition 2 in the follow-up mode of the adaptive resonance elimination filter:

- 0: Executed depending on FRFATE (#3) and PMC signal G322.
- 1: Executed depending on only PMC signal G322.

No.2290#4	No.2290#3	Execution condition of follow-up mode
0	0	Executed when $G322.x = 1$ or during axis feed.
0	1	Executed when $G322.x = 1$ or during rapid traverse.
1	-	Executed only when G322.x = 1.

NOTE

To use only the search mode without using the follow-up mode, set bit 4 (FRFDES) to 1 and G322.x to 0.

- FRFPWE(#5) Parameter No. 2113 of the center frequency of the adaptive resonance elimination filter is:
 - 0: Not updated automatically.
 - 1: Updated automatically.

The follow-up result is lost when the power is turned off. If this bit is set to be enabled, the follow-up result is stored in parameter No. 2113 of the center frequency.

In the follow-up mode, the center frequency is rewritten in the stop state when a change in the resonance frequency is detected. In the search mode, when a change in the resonance frequency is detected, the completion signal of the PMC signal F370 is turned on. In addition, when the search mode is stopped by PMC signal G324, the center frequency is rewritten.

	#7	#6	#5	#4	#3	#2	#1	#0
2291						FRFEBW		

FRFEBW(#2) In the HRV3 and HRV4 control, the maximum follow-up frequency of the adaptive resonance elimination filter is:

- 0: Standard frequency 1.3 kHz.
- 1: Extended frequency 2.0 kHz.
- * The maximum frequency of HRV control is 1.0 kHz and cannot be extended.

- * For an extended frequency, the maximum of the detection time in the search mode is changed from 2 seconds to 3 seconds.
- * This setting can be used by the servo software 90G0/15 and subsequent editions

2113	Resonance elimination filter 1: Center frequency
[Unit of data]	Hz
[Valid data range]	100 to 1 kHz (HRV2), 100 Hz to 2 kHz (HRV3), 100 Hz to 4 kHz (HRV4)
	The follow-up range is 100 Hz to 990 Hz (HKV2) and 100 Hz to 12/0 Hz (HKV3 and HRV4). When the adaptive resonance elimination filter is enabled (No 2270#3 = 1), the
	center frequency needs fall within this range. The adaptive resonance elimination filter
	follows up the resonance frequency with the bandwidth set in the follow-up range
	(parameter No. 2351), centered on the set frequency. If this parameter is rewritten, the
	follow-up result is lost and this parameter is reset to the set value.
2177	Resonance elimination filter 1: Bandwidth
[Unit of data]	Hz
[Valid data range]	10 to Center frequency The handwidth can be set to a value in a range from 10 Hz to the center frequency
	(parameter No. 2113).
2359	Resonance elimination filter 1: Attenuation ratio
[Unit of data]	% 0 (1000 (
[Valid data range]	0 to 100%
2350	Adaptive resonance elimination filter: Allowable acceleration
[Unit of data]	Amount of distribution pulse change per 8 ms
[Valid data range]	0 to 10 0 (A surface of 0 means on interval surface of 2)
[Standard setting]	0 (A value of 0 means an internal value of 2.) Set the allowable acceleration of a command in the follow up mode. If the specified
	acceleration is large. TCMD vibration may occur. Follow-up is not performed unless the
	command becomes the allowable acceleration or less in order to prevent follow-up error
	from occurring in this case.
2351	Adaptive resonance elimination filter: Follow-up range
[Unit of data]	
[Valid data range]	40 to 500 (A setting of 39 or less means an internal value of 40.) 0 (A value of 0 means an internal value of 40.)
[Standard Setting]	Set the follow-up range of the center frequency in the follow-up mode. If this parameter
	is set to 0 follow-up is performed in the range of ± 40 Hz centered on the value of
	parameter No. 2113. The follow-up range is 100 Hz to 1.0 kHz (HRV2) and 100 Hz to
	1.3 kHz (HRV3 and HRV4). However, when the maximum frequency is extended (bit 2
	of parameter No. 2291 is 1) in 90G0/15 or subsequent editions, the follow-up range is
	100 Hz to 2.0 kHz (HRV3 and HRV4).
2352	Adaptive resonance elimination filter: Detection level
[Unit of data]	A value of 7282 in TCMD units corresponds to the maximum amplifier current.
[Valid data range]	0 to 7282 0 (A scalar of 0 means on interval scalar of 1())
[I ypical setting]	U (A value of U means an internal value of 16.)
	NOTE
	It the detection level is too small, accurate detection may be
	prevented by noise. Before application, check if appropriate
	tollow-up is performed using an actual machine.

2353	Adaptive resonance elimination filter: Setting waiting time
[Unit of data]	TCMD unit
[Valid data range]	0 to 32767
[Typical setting]	0 (A value of 0 means an internal value of 25.)
	Set the setting time in the follow-up mode. If the acc./dec. time constant is small, TCMD vibration may occur upon completion of a move command. It is necessary to set the time until follow-up starts after the move command becomes the allowable acceleration or less so as not to receive the vibration. If TCMD vibration by acceleration/deceleration is large, the setting needs to be larger.
2459	Adaptive resonance elimination filter: Search range
[Unit of data]	Hz
[Valid data range]	40 to 890Hz (A setting of 39 or less means an internal value of 40.)
[Standard setting]	0 (A value of 0 means an internal value of 890.)
	Set the search range of the resonance frequency in the search mode.
	A search is made in the range indicated by the center frequency \pm the search range. A
	setting of 0 means a search range of ± 890 Hz. The searchable range is 100 Hz to 1.0 kHz
	(HRV2) and 100 Hz to 1.3 kHz (HRV3 and HRV4) However when the maximum

editions, the searchable range is 100 Hz to 2.0 kHz (HRV3 and HRV4).

B-65270EN/08

(5) PMC signal

Follow-up mode and search mode

Follow-up mode:

Follows up the resonance frequency that moves in the range indicated by the center frequency (parameter No. 2113) \pm the follow-up range (parameter No. 2351). The follow-up mode is used when the width of variations in the resonance frequency is small (within ± 40 Hz) and the velocity of variations is high. (The detection time is approximately 0.4 seconds.)

frequency is extended (bit 2 of parameter No. 2291 is 1) in 90G0/15 or subsequent

Search mode:

Follows up the resonance frequency in the range indicated by the center frequency (parameter No. 2113) \pm the search range (parameter No. 2459). The search mode is used when the resonance frequency varies greatly due to, for example, attachment or detachment of the workpiece. (The detection time is approximately 2 to 3 seconds.)

Follow-up start DI signal of the adaptive resonance elimination filter Gn322.0 to Gn322.7 (axis type)

[Classification] Input signal

[Function] Starts and stops the follow-up mode.

[Operation] Although the follow-up mode is used during axis feed, follow-up is performed even in the stop state if this signal is enabled.

Search start DI signal of the adaptive resonance elimination filter

Gn324.0 to Fn324.7 (axis type)

[Classification] Input signal

[Function] Starts and stops the search mode.

[Operation] Follow-up in the search mode is performed if this signal is enabled.

Search completion DO signal of the adaptive resonance elimination filter Fn370.0 to Fn370.7 (axis type)

[Classification] Output signal

[Function] Reports the completion of the search mode.

[Operation] This signal is turned on when the resonance frequency is detected in the search mode.

NOTE The timing at which Gn322 or Gn324 is turned off depends on the mechanical and machining conditions. However, Gn322 or Gn324 needs to be turned off basically when detection completion signal Fn370 is turned on or before actual machining is performed.

Timing chart

<u>Follow-up mode (1</u>	No.2270#3=1,No.2290#5=	1,#4=0,#3=1)	
		ON	
External signal (Gn32	2)		
	Rapid traverse	Cut	ting feed
Velocity		Stop	
	ON	ON ON	
Follow-up state			
	Detection	Detection	
Resonance movemen	t check		
		7	▼
Update of parameter	(No.2113)		
External signal (Gn324)	ON	OFF	
Velocity	Stop	/	
Search state	ON	/ /	
Resonance movemen	Detection /	,	
Completion signal (Fr	n370)		

Signal addres	SS							
-	#7	#6	#5	#4	#3	#2	#1	#0
Gn322	FRFRQS8	FRFRQS7	FRFRQS6	FRFRQS5	FRFRQS4	FRFRQS3	FRFRQS2	FRFRQS1
	-							
	#7	#6	#5	#4	#3	#2	#1	#0
Gn324	FRFSMD8	FRFSMD7	FRFSMD6	FRFSMD5	FRFSMD4	FRFSMD3	FRFSMD2	FRFSMD1
	#7	#6	#5	#4	#3	#2	#1	#0
Fn370	FRFDET8	FRFDET7	FRFDET6	FRFDET5	FRFDET4	FRFDET3	FRFDET2	FRFDET1

5.7 HIGH-SPEED POSITIONING FUNCTION

High-speed positioning is used in the following cases:

- <1> To perform point-to-point movement quickly, where the composite track of two or more simultaneous axes can be ignored such as, for example, in a punch press
- <2> To speed up positioning in rapid traverse while errors in the shape during cutting must be minimized (reduction of cycle time)

In case <1>, the position gain switching function and the low-speed integral function are effective (\Rightarrow See Subsection 4.3.2, "High-Speed Positioning Adjustment Procedure"). In case <2>, rapid traverse feed-forward is effective.

This section explains these functions.

5.7.1 Position Gain Switching Function

(1) General

An increase in the position gain is an effective means of reducing the positioning time when the machine is about to stop.

An excessively high position gain decreases the tracking ability of the velocity loop, making the position loop unstable. This results in hunting or overshoot. A position gain adjusted in high-speed response mode produces a margin in the position gain when the machine is about to stop.

Increase the position gain in low-speed mode so that both the characteristics in high-speed response mode and a short positioning time are achieved.

NOTE

When this function is used, the error amount in constant-speed feed and the actual position gain indication on the CNC do not match the logical values.

(2) Series and edition of applicable servo software

CNC		Servo software	Bomorko	
CNC	Series	Edition	Remarks	
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions		
Power Motion <i>i</i> -A				
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	A(01) and subsequent editions		
	90E1	01.0		
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	A(01) and subsequent editions	HRV4	
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions		
	90C8	A(01) and subsequent editions		
	90E5	A(01) and subsequent editions		
	90E8	A(01) and subsequent editions		

(3) Setting parameters

<1> This parameter specifies whether to enable the position gain switching function as follows:

<2> This parameter specifies whether to set the velocity at which position gain switching is to occur, as follows:

2028	Limit speed for enabling position gain switching
	The position gain is doubled with a speed lower than or equal to the speed specified
	above.
[Unit of data]	Rotary motor: 0.01 min ⁻¹
	Linear motor: 0.01 mm/min
[Valid data range]	0 to 32767
[Typical setting]	1500 to 5000

REFERENCE

Using the high-speed positioning velocity increment system magnification function (\rightarrow (5) in Subsection 5.7.1) can increase the effective velocity to ten times.

Fig. 5.7.1 (a) shows the relationships between the position error and velocity command.

(4) When the feed-forward function is used at the same time (position gain switching function type 2)

When using the position gain switching function together with the feed-forward function, make the setting below.

(a) Overview

When the conventional position gain switching function is used in conjunction with the feed-forward function, it can cause an overshoot at a relative low feed-forward coefficient, sometimes resulting in a difficulty in adjustment, because also the feed-forward term-based effect is doubled. Position gain switch function type 2 has been improved to make position gain switching independently of the feed-forward function.

(b) Setting parameters

In addition to the parameter of the position gain switching function described earlier, set the following parameter.

	#7	#6	#5	#4	#3	#2	#1	#0		
2204			PGTWN2							
PGTWN2 (#5)	Specifies w	hether to d	louble the f	feed-forwar	d-based ef	fect at posi	tion gain s	witching as		
	follows:									
	0: To do	0: To double								
	1: Not to	1: Not to double								
	NOTE									
	This function is invalid when the VCMD interface is in use.									
	(Wh	en the VC	CMD inter	face is in	use, set l	PGTWN2	= 0.)			

(5) High-speed positioning velocity increment system magnification function (a) Overview

This function increases the velocity increment system for the effective velocity parameter of the high-speed positioning functions (position gain switch and low-speed integral functions) to ten times.

(b) Setting parameters

Using the following parameter can change the increment system for the effective velocity.

5.SERVO FUNCTION DETAILS

	#7	#6	#5	#4	#3	#2	#1	#0
2204							HSTP10	
HSTP10 (#1)	Specifies th	e effective	velocity in	crement sys	stem for the	high-speed	1 positionin	g functions

(#1) Specifies the effective velocity increment system for the high-speed positioning functions (position gain switch and low-speed integral functions) as follows:

- 0: 0.01 min⁻¹ (rotary motor), 0.01 mm/min (linear motor)
- 1: 0.1 min⁻¹ (rotary motor), 0.1 mm/min (linear motor)

NOTE

The value set in this function applies to the increment system of both the "position gain switching function" and "low-speed integral function."

B-65270EN/08

Fig. 5.7.1 (a) Position gain switching

5.7.2 Low-speed Integral Function

(1) Overview

To ensure that the motor responds quickly, a small time constant must be set so that a command enabling quick startup is issued.

If the time constant is too small, vibration or hunting occurs because of the delayed response of the velocity loop integrator, preventing further reduction of the time constant.

With the low-speed integral function, velocity loop integrator calculation is performed in low-speed mode only. This function ensures quick response and high stability while maintaining the positioning characteristics in the low-speed and stop states.

(2) Series and edition of applicable servo software

CNC		Servo software	Demorke		
CNC	Series	Edition	Remarks		
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions			
Power Motion <i>i</i> -A					
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	A(01) and subsequent editions			
	90E1	01.0			
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	A(01) and subsequent editions	HRV4		
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions			
	90C8	A(01) and subsequent editions			
	90E5	A(01) and subsequent editions			
	90E8	A(01) and subsequent editions			

(3) Setting parameters

<1> Specify whether to enable the low-speed integral function.

<2> Specify whether to enable integration at acc./dec. time.

2029	Limit speed for disabling low-speed integral at acceleration
	The integral gain is invalidated during acceleration at a speed higher than or equal to the specified speed
	specified specific and the second specific speci
[Unit of data]	Rotary motor: 0.01 min
	Linear motor: 0.01 mm/min
[Valid data range]	0 to 32767
[Typical setting]	1000
2030	Limit speed for enabling low-speed integral at deceleration
	The integral gain is validated during deceleration at a speed lower than or equal to the
	specified speed.
[Unit of data]	Rotary motor: 0.01 min ⁻¹
	Linear motor: 0.01 mm/min

[Valid data range] 0 to 32767 [Typical setting] 1500

REFERENCE

Using the high-speed positioning velocity increment system magnification function (\rightarrow (5) in Subsection 5.7.1) can increase the effective velocity to ten times.

This function can specify whether to enable the velocity loop integration term for two velocity values, the first for acceleration and the second for deceleration. It works as shown in Fig. 5.7.2 (a).

Fig. 5.7.2 (a) Integration invalid range at low-speed integral

5.8 CONTROL STOP FUNCTIONS

5.8.1 Brake Control Function

(1) Overview

This function prevents the tool from dropping vertically when a servo alarm or emergency stop occurs. The function prevents the motor from being immediately deactivated, instead keeping the motor activated for the period specified in the corresponding parameter, until the mechanical brake is fully applied.

(2) Hardware configuration $_{CNC}$

Fig. 5.8.1 (a) Example of configuration

The numbers of the following descriptions correspond to those in the figure:

- <1> Applicable system software
- Any system soft can be used.
- <2> Applicable servo software

Any system soft can be used.

<3> Servo amplifier

- For the servo amplifiers for the 30*i*-B including 2-axis and 3-axis amplifiers, the brake control function can be set for each axis.
- For other than the servo amplifiers for the 30*i*-B, the use of a 1-axis servo amplifier is recommended since the brake control function cannot be set for each axis when you want to use the function for a 2-axis or 3-axis amplifier.

For an axis to which the brake control function is not applied, any servo amplifier can be used.

NOTE

- 1 If you want to use the brake control function with a 2-axis or 3-axis amplifier other than that for the 30*i*-B, specify the brake control parameters for all axes on the multiaxis amplifier including the target axis. In this case, however, if an alarm is issued for any of the axes connected to the 2-axis or 3-axis amplifier, the brake control function does not operate effectively.
- 2 For the Series 30*i*-A and 0*i*-D, if you want to use the brake control function, quick stop function, or lifting function against gravity at emergency stop with a multiaxis amplifier for which a dummy axis is set, be sure to connect a dummy connector.

<4> Emergency stop signal

With the αi series, a timer for the emergency stop signal is built into the αi SV. While motor activation is kept by brake control, the timer in the αi SV is used to extend the activation time that lasts until the emergency stop signal operates. Motor deactivation can be delayed by the αi SV for 50 ms, 100 ms, 200 ms, and 400 ms. To delay motor deactivation by brake control for 400 or more, insert a timer in the contact signal of the emergency stop signal and +24V, and delay the emergency stop signal to be input to the αi PS, as traditionally done. (For αi SV timer setting, see Item (3) "Setting parameters" below.)

Fig. 5.8.1 (b) α*i* series amplifier

<5> 200/400 VAC

If the 200 VAC or 400 VAC supply to the servo amplifier is cut, the brake control function cannot operate.

To cause the brake control function to work effectively even at a power break, apply the power brake machine protection function.

(3) Setting parameters

<1> Brake control function enable/disable bit

[Valid data range] 0 to 16000

(Example)

To specify an activation delay of 200 ms, set the brake control timer usually with 200 (appropriately). Also set the timer connected to the emergency stop contact with the same value as set in the parameter.

<3> Setting the emergency stop timer built into the αi SV

	#7	#6	#5	#4	#3	#2	#1	#0
2210		ESPTM1	ESPTM0					

ESPTM0 (#5), ESPTM1 (#6)

Set a period of time from the input of the emergency stop signal into the α iPS until emergency stop operation is actually performed in the servo amplifier (α *i* SV).

ESPTM1	ESPTM0	Delay time
0	0	50 ms (default)
0	1	100ms
1	0	200ms
1	1	400ms

When using brake control, set a time longer than the setting of the brake control timer (No. 2083).

NOTE

For those axes that are connected to a 2-axis or 3-axis amplifier other than that for the 30*i*-B, the parameters above need to be set in the same way.

(4) Detailed operation

Suppose that there is a machine having horizontal and vertical axes of motion. If <u>a servo alarm</u>^(NOTE 1) occurs on an axis, the READY signal is turned off for the amplifiers for all axes. If the emergency stop button is pressed, the READY signal is also turned off for the amplifiers for all axes. When the READY signal is turned off for an amplifier, the force to support the tool is lost, so the mechanical brake functions to prevent the tool from dropping vertically.

Since it takes time until the mechanical brake actually function and force is generated, the tool may drop vertically, causing the workpiece or tool to be damaged.

The brake control function delays the timing to turn the READY signal for the amplifiers off to prevent the tool from dropping by making the servo motor support the tool until the mechanical brake functions.

Fig. 5.8.1 (c) When the brake control function is not used

B-65270EN/08

5.SERVO FUNCTION DETAILS

NOTE

- The servo alarm mentioned in the above description refers to a servo alarm detected by the software (OVC alarm, motor overheat alarm, software disconnection alarm, etc.), an alarm detected by the servo amplifier, or a servo alarm detected by the CNC (excessive error).
 If a servo alarm occurs on the axis using this function, no brake control is performed on the axis (except for a motor overheat alarm).
- 2 For brake control, use the SA signal (F0.6, which is common to all axes).

5.8.2 Torque Limit Setting Function during Brake Control

(1) Overview

This function can be used to limit the torque during brake control. The function is useful when you do not want to apply a high torque to the machine or want to set a low torque limit.

(2) Series and editions of applicable servo software

CNC		Servo software	Bomorko
CNC	Series	Edition	Remarks
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions	
Power Motion <i>i</i> -A			
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	A(01) and subsequent editions	
	90E1	01.0 and subsequent editions	
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	A(01) and subsequent editions	HRV4
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions	
	90C8	A(01) and subsequent editions	
	90E5	A(01) and subsequent editions	
	90E8	A(01) and subsequent editions	

(3) Setting pa	rameters								
	#7	#6	#5	#4	#3	#2	#1	#0	
2273	DBTLIM								
DBTLIM (#7)	The torque	limit setting	g function d	luring brak	e control is:				
	0: Disabl	ed.		C					
	1: Enable	ed.							
2375			Torque lim	nit magnificat	ion during bra	ake control			
[Unit of data]	% (The max	kimum torq	ue is assum	ned to be 10	0%.)				
/alid data range]	30 to 100 (I	Default: 709	(0)						
	A CAUTION								
	lfat	oo small y	value is s	necified f	or the tor	nue limit t	he stop		
	dista	nce heco	mes long	or which		se the too	l to collide	o with	
	the	nce beco	r worknig		may cau	se the too	a co comu		
	line i	nachine c	or workpie	ece. Care	iully spec	ny the par	ameterva	aiue.	
	NOTE								
	1 Whe	n a value	of 0 or le	ess is spe	cified for	the torque	limit		
	mag	nification	during br	ake contr	ol, 70% is	s applied.	When a v	alue of	
	100	or greatei	is specif	ied, 100%	6 (maximi	um torque) is applie	ed.	
	2 This	function (cannot be	e used tog	gether wit	h the quic	k stop fur	oction	
	at er	neraencv	stop.		-	-	•		

The following functions are also provided to reduce the motor stop distance and prevent the tool to collide with the machine or workpiece if a disconnection, overheat, or OVC alarm occurs in the separate detector or at emergency stop.

5.8.3 Quick Stop Type 1 at Emergency Stop

(1) Overview

This function reduces the stop distance by resetting the velocity command for a servo motor to 0 at a position where an emergency stop signal is detected for the servo motor. To further reduce the stop distance required for the motor to stop, use quick stop type 2 at emergency stop described in Subsec. 5.8.4.

NOTE

For the Series 30*i*-A and 0*i*-D, if you want to use the brake control function, quick stop function, or lifting function against gravity at emergency stop with a multiaxis amplifier for which a dummy axis is set, be sure to connect a dummy connector.

CNIC .		Servo software	Domorko
CNC	Series	Edition	Remarks
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions	
Power Motion <i>i</i> -A			
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	A(01) and subsequent editions	
	90E1	01.0 and subsequent editions	
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	A(01) and subsequent editions	HRV4
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions	
	90C8	A(01) and subsequent editions	
	90E5	A(01) and subsequent editions	
	90E8	A(01) and subsequent editions	

(2) Series and editions of applicable servo software

(3) Setting parameters

	#7	#6	#5	#4	#3	#2	#1	#0
2017								DBST

DBST (#0) Specifies whether to enable quick stop type 1 at emergency stop as follows:

- 0: To disable
- 1: To enable

To use the quick stop at emergency stop, enable the brake control function to all axes, which use the quick stop function.

(Brake control function)

	#7	#6	#5	#4	#3	#2	#1	#0
2005		BRKC						

BRKC (#6) Specifies whether to enable brake control function as follows:

- 0: To disable
- 1: To enable

NOTE

When only the brake control function is set, a gradual stop occurs with the torque limit set by the torque limit setting function during brake control.

When the quick stop at emergency stop is enabled, a gradual stop occurs with the torque limit set to 100%, so that the stop distance is reduced.

2083

Brake control timer

[Unit of data] ms [Setting value] 50 to 100

(4) Timing diagram

(5) Connection of amplifier

Fig. 5.8.3 (b) αi series amplifier

5.8.4 Quick Stop Type 2 at Emergency Stop

(1) Overview

This function returns a servo motor to a position where an emergency stop signal is detected for the servo motor and stops the motor, thereby assuring a shorter stop distance than with quick stop type 1 at emergency stop.

Fig. 5.8.4 (a) Diagram for comparing stop distances

NOTE

For the Series 30*i*-A and 0*i*-D, if you want to use the brake control function, quick stop function, or lifting function against gravity at emergency stop with a multiaxis amplifier for which a dummy axis is set, be sure to connect a dummy connector.

CNIC		Servo software	Domorko
CNC	Series	Edition	Remarks
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions	
Power Motion <i>i</i> -A			
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	A(01) and subsequent editions	
	90E1	01.0 and subsequent editions	
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	A(01) and subsequent editions	HRV4
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions	
	90C8	A(01) and subsequent editions	
	90E5	A(01) and subsequent editions	
	90E8	A(01) and subsequent editions	

(2) Series and editions of applicable servo software

(3) Setting parameters

	 #7	#6	#5	#4	#3	#2	#1	#0
2204	DBS2							

DBS2 (#7) Specifies whether to enable quick stop type 2 at emergency stop as follows:

- 0: To disable
- 1: To enable

NOTE

- 1 Like type 1, type 2 requires that the brake control parameter be set.
- 2 The method of connecting the amplifier for type 2 is the same as for type 1.
- 3 If both type 1 and type 2 function bits are set, type 2 function is assumed.

5.8.5 Lifting Function Against Gravity at Emergency Stop

NOTE

For the Series 30*i*-A and 0*i*-D, if you want to use the brake control function, quick stop function, or lifting function against gravity at emergency stop with a multiaxis amplifier for which a dummy axis is set, be sure to connect a dummy connector.

5.8.5.1 Lifting function against gravity at emergency stop

(1) Overview

This function is intended to lift and stop the vertical axis (Z-axis) of a vertical machining center when the machine comes to an emergency stop or power failure.

(For details of how the tool is prevented from dropping vertically at a power failure, refer to the description about the "power failure detection function" in the relevant servo amplifier descriptions.)

CNC		Servo software	Domorko
CNC	Series	Edition	Remarks
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions	
Power Motion <i>i</i> -A			
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	A(01) and subsequent editions	
	90E1	01.0 and subsequent editions	
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	A(01) and subsequent editions	HRV4
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions	
	90C8	A(01) and subsequent editions	
	90E5	A(01) and subsequent editions	
	90E8	A(01) and subsequent editions	

(2) Series and editions of applicable servo software

(3) Setting parameters

Because this function uses quick stop at emergency stop type 2, the following function bit must be set to 1 (enable). (Quick stop type 1 at emergency stop (bit 0 of No. 2017 is not needed.)

	#7	#6	#5	#4	#3	#2	#1	#0
2204	DBS2							
DBS2 (#7)	Specifies w	hether to er	nable quick	stop type 2	at emerger	ncy stop as	follows:	
	0: To dis	able						
	1: To ena	able						
2373			1.4 • •	Distanc	to lift		4 TT	1 (1
	This param	leter is for c	letermining	g a distance	to lift at a	n emergeno	cy stop. The	e larger the
	value, the la	arger becom	the distance of the distance o					
[Unit of data]	Detection u	init or $1 \mu m$	$(\rightarrow \text{See Sub})$	osec. 5.8.5.3	5.)			
[Valid data range]	-32/6/ to 3	52767						
[Typical setting]	Detection u	init lµm	: Apj	proximately	500			
	Detection u	init 0.1µm	ı : Apj	proximately	5000			
	NOTE 1 If the lifted. from 1 2 Wheth 3 Using of the a vert direct	brake is in So the di- the setting her the pa ner the ma this funct machine. tical mach ion at an	n use, it s stance th g. achine co tion cause . So, it sh ining cen emergene	starts work rough wh ordinate v es the loa lould be u iter in whi cy stop.	king while ich the ax positive o value is po d to stop sed for th ch an axis	the vertion the vertion the state the state the vertical the vertical the vertical	cal axis is ally lifted of e matches negative. ving it to o axis (Z-a in a fixed	being differs , ne side xis) of single
	ŀ							
2374			• .• ••	Lifting	g time	1.0 1		
	This param stop. The c function is when a vert function ca amplifier st lift. (See the fol	eter determ distortion ea intended to tical axis is in reduce th tops energiz	tines the life asing funct o decrease lifted wher the shock the ting. The ir tre.)	fting time a ion is exec the amount in the machin hat may oc nitial value	as measured uted after t t of machir ne is about cur when t of the funct	I from the the lifting the e elastic s to apply the the axis dro tion is a qu	time of an time has ela train that ca brake. Exc ops because arter of the	emergency apsed. This an increase ecuting this e the servo distance to
[Unit of data]	ms							
FX7 1'1 1 / T	G .C	• 4 1	1 01 (0	· · · ·	CO (C) '	(0, D)		122767

[Valid data range] Specify an integer multiple of 4 (Series 30*i*) or of 8 (Series 0*i*-D) between 8 and 32767.

[Typical setting] Approximately 16 or 24 ms

NOTE

- 1 To use the lifting function against gravity at emergency stop, specify 4 ms or longer (Series 30*i*) or 8 ms or longer (Series 0*i*-D) as the lifting time.
- 2 If the distortion easing function is not used, specify the time longer than or equal to the one set in the brake control timer as the lifting time.
- Velocity command

Fig. 5.8.5.1 (a) Velocity command

Motor position waveform
 Time specified in the brake control timer

Fig. 5.8.5.1 (b) Motor position waveform

Using this function requires specifying the following brake control parameters.

Brake control function bit

NOTE

If the vertical axis (Z-axis) is connected to a multiaxis amplifier other than a servo amplifier for the 30*i*-B, it is necessary to enable the brake control function for all the axes connected to the amplifier.

Set the time from the instant when an emergency stop signal is input to αi PS to the instant when the emergency stop function works in the servo amplifier.

#6	#5	#4	#3	#2	#1	#0
ESPTM1	ESPTM0					

ESPTM1	ESPTM0	Delay time
0	0	50ms (default value)
0	1	100ms
1	0	200ms
1	1	400ms

It is necessary to specify the time longer than or equal to the brake control timer value. If the brake control timer value is 100 ms, for example, specify ESPTM1 (bit 6) and ESPTM2 (bit 5) to be, respectively, 0 and 1 (100 ms).

NOTE

For a multiaxis amplifier other than a servo amplifier for the 30*i*-B, the largest of the values specified for the axes is assumed to be the delay time.

(4) Example of using the parameter

The following example shows the effect of using the lifting function against gravity at emergency stop for the vertical axis (Z-axis). In this example, the distance to lift is 500, and the lifting time is 16 ms. The vertical axis of the graph is graduated $2 \mu m/div$.

Fig. 5.8.5.1 (c) Motor position waveform

As seen from the graph, the motor is lifted through a large distance after an emergency stop signal is input. The graph also shows that the distortion easing function decreased the machine elastic strain and kept the motor from falling when the amplifier stopped energizing. Also as seen from the graph, the position where the motor finally rested is higher than the position where the motor was before the emergency stop signal was input.

NOTE

- 1 In this example, positive coordinates of the machine coordinate system correspond to the direction in which the axis is lifted.
- 2 Variation occurs in the position where the Z-axis stops depending on the direction in which the Z-axis is moving before an emergency stop. When tuning the parameter, it is necessary to take, into account, both the position where the motor rests before the axis is moved up and the position where the motor rests after the axis is moved down.

5.8.5.2 Function based on the DI signal for switching the distance to lift

(1) Overview

With the lifting function against gravity at emergency stop, switching between two types of parameters for specifying a distance to lift is enabled based on the DI signal of the PMC. By setting either parameter to 0, lift operation can be temporarily disabled.

CNC		Servo software	Bomorko
CNC	Series	Edition	Remarks
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions	
Power Motion <i>i</i> -A			
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	P(16) and subsequent editions	
	90E1	01.0 and subsequent editions	
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	P(16) and subsequent editions	HRV4
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions	
	90C8	A(01) and subsequent editions	
	90E5	A(01) and subsequent editions	
	90E8	A(01) and subsequent editions	

(2) Series and editions of applicable servo software

(3) Switching signal

Signal for switching the distance to lift for the lifting function against gravity at emergency stop

	#7	#6	#5	#4	#3	#2	#1	#0
Gn323	SWDBS8	SWDBS7	SWDBS6	SWDBS5	SWDBS4	SWDBS3	SWDBS2	SWDBS1
[Classification]	Input signal	1						
[Function]	This signal	is used to s	witch the d	istance to li	ift when the	lifting fun	ction agains	st gravity at
	emergency	stop is en	abled. A m	umber suff	ixed at the	end of the	e signal rep	resents the
	number of e	each contro	lled axis.					

(Details of operation)

- When this signal (SWDBSx) is set to 0, the distance to lift for the lifting function against gravity at emergency stop follows the value set in No. 2373.
- When this signal (SWDBSx) is set to 1, the distance to lift for the lifting function against gravity at emergency stop follows the value set in No. 2173.

- The distance to lift depends on the state of this signal (SWDBSx) present when the emergency stop command is input. (If this signal is changed during lift operation after the emergency stop command is input, the change does not become effective until the lift operation is completed and the excitation is turned off.)
- Among the parameters related to the lifting function against gravity at emergency stop, the parameters other than those related to the distance to lift are common, regardless of the state of this signal (SWDBSx).

(4) Setting parameters

Set the parameters below in addition to the parameters for the lifting function against gravity at emergency stop.

	2373	Distance to lift (when SWDBSx=0)
		This parameter is for determining a distance to lift at an emergency stop. The larger the
		value, the larger becomes the distance to lift.
	[Unit of data]	Detection unit or $1\mu m$ (\rightarrow See Subsec. 5.8.5.3.)
[Va	lid data range]	-32767 to 32767
[]	[ypical setting]	Detection unit 1µm : Approximately 500 or -500
		Detection unit 0.1µm : Approximately 5000 or -5000
		This parameter is effective only when the signal (SWDBSx) for switching the distance to lift for the lifting function against gravity at emergency stop is set to 0. To disable lift operation when (SWDBSx) = 0, set 0 in this parameter.
	2173	Distance to lift (when SWDBSx=1)
		This parameter is for determining a distance to lift at an emergency stop. The larger the
		value, the larger becomes the distance to lift.
	[Unit of data]	Detection unit or $1\mu m$ (\rightarrow See Subsec. 5.8.5.3.)
[Va	alid data range]	-32767 to 32767
[]	[ypical setting]	Detection unit $1\mu m$: Approximately 500 or -500
		Detection unit 0.1µm : Approximately 5000 or -5000
		This parameter is effective only when the signal (SWDBSx) for switching the distance to lift for the lifting function against gravity at emergency stop is set to 1.

NG 1	DTE When a brake is used, brake application starts during lift operation
	so that the set value does not match the actual lift distance.
2	The parameter polarity matches the polarity of the machine coordinate system.
3	Use this function only when lift operation does not cause a mechanical interference.

5.8.5.3 Method of setting a distance to lift in μ m

(1) Overview

When the servo software below is used with the lifting function against gravity at emergency stop, the parameter for specifying a distance to lift can be set in $[\mu m]$, independently of the detection unit. With this function, a large distance to lift can be used when a small detection unit is used.

(2) Series and editions of applicable servo software

[Applicable servo software]

CNIC		Servo software	Demerika		
CNC	Series	Edition	Remarks		
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions			
Power Motion <i>i</i> -A					
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	P(16) and subsequent editions			
	90E1	01.0 and subsequent editions			
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	P(16) and subsequent editions	HRV4		
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions			
	90C8	A(01) and subsequent editions			
	90E5	A(01) and subsequent editions			
	90E8	A(01) and subsequent editions			

[Applicable system software]

CNC	System software					
CNC	Series	Edition				
Series 30 <i>i</i> -A	G00C,G01C,G02C	27 and subsequent editions				
	G004,G014,G024	01 and subsequent editions				
Series 31 <i>i</i> -A5	G12C,G13C	27 and subsequent editions				
	G124,G134	01 and subsequent editions				
Series 31 <i>i</i> -A	G103,G113	06 and subsequent editions				
	G104,G114	01 and subsequent editions				
Series 32 <i>i</i> -A	G203	06 and subsequent editions				
	G204	01 and subsequent editions				
Series 0 <i>i</i> -MD	D4F1	01 and subsequent editions				
Series 0 <i>i</i> -TD	D6F1	01 and subsequent editions				
Series 0 <i>i</i> Mate-MD	D5F1	01 and subsequent editions				
Series 0 <i>i</i> Mate-TD	D7F1	01 and subsequent editions				

For the series 30i/31i/32i/35i-B and Power Motion *i*-A, all series and editions support this function.

(3) Setting parameters

	-	#7	#6	#5	#4	#3	#2	#1	#0
2298		DUNIT							

DUNIT(#7) When the lifting function against gravity at emergency stop is used, the function that enables the parameter for specifying a distance to lift to be set in μ m, independently of the detection unit, is

0: Not used

1: Used

- When this function is enabled, the parameter (No. 2373 or No. 2173) for specifying a distance to lift for the lifting function against gravity at emergency stop can be set in μ m, independently of the detection unit.
- When this parameter has been set, the power must be turned off before operation is continued.
- If this function is used with a CNC that does not support the function for sending the detection unit to servo software, an illegal parameter setting alarm (detail number 2982) is issued.

(1) Overview

This function reduces the stop distance by resetting the velocity command for a servo motor to 0 when the separate detector for the servo motor encounters a hardware disconnection condition. It also causes the other axes to stop sooner than they would when a usual alarm occurs.

NOTE

For the Series 30*i*-A and 0*i*-D, if you want to use the brake control function, quick stop function, or lifting function against gravity at emergency stop with a multiaxis amplifier for which a dummy axis is set, be sure to connect a dummy connector.

(2) Series and editions of applicable servo software

CNC		Servo software	Bemerke	
CNC	Series	Edition	Remarks	
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions		
Power Motion <i>i</i> -A				
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	A(01) and subsequent editions		
	90E1	01.0 and subsequent editions		
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	A(01) and subsequent editions	HRV4	
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions		
	90C8	A(01) and subsequent editions		
	90E5	A(01) and subsequent editions		
	90E8	A(01) and subsequent editions		

(3) Setting parameters

	#7	#6	#5	#4	#3	#2	#1	#0
2205				HDIS	HD2O			

HD2O (#5) The quick stop function for hardware disconnection of separate detector is:

- Not applied to axes under synchronous control. 0.
- Applied to axes under synchronous control. 1:
- HDIS (#4) Specifies whether to enable quick stop function for hardware disconnection of separate detector as follows:
 - 0: To disable
 - To enable 1:
 - For the Series 30i-B and Power Motion *i*-A, when bit 4 of parameter No. 2205 or bit 5 of parameter No. 2282 is set, the quick stop function for separate detector alarms is enabled.

Satting	Alarms for which to apply the quick stop function							
Setting	FS30 <i>i</i> -A,0 <i>i</i> -D	FS30 <i>i</i> -B, Power Motion <i>i</i> -A						
No.2205#4=1	Hardware disconnection of the phase A/B detector	Hardware disconnection of the phase A/B detector or						
No.2282#5=1	Separate serial detector alarm	separate serial detector alarm						

2083

Brake control timer

[Unit of data] ms [Setting value]

NOTE 1 When applying this function to axes under feed axis synchronization control, follow the steps below:

- Change the servo axis setting (No. 1023) of the two axes under feed axis synchronization to set an odd-numbered axis as the master axis and an even-numbered axis ((master axis number) + 1) as the slave axis.
- 2) Set HD2O (bit 3) to 1 for both axes under synchronous control.
- 2 This function is implemented using part of the "unexpected disturbance torque detection function" option. So, using it requires that option.
- 3 Usually, when a separate detector disconnection alarm occurs for an axis, not only this axis but also the others are brought to an emergency stop. If an unexpected disturbance torque detection group function is set up, however, only the axes in the same group as the axis for which an alarm condition has occurred are brought to an emergency stop.
- 4 If the value (No. 1880) specified as an interval between the detection of an unexpected disturbance torque and the occurrence of an emergency stop is small, it may impossible to keep the sufficient stop time. The value should be at least greater than or equal to the one specified in the brake control timer parameter (there is no problem with a setting value of 0, because it means 200 ms).

5.8.7 Quick Stop Function for Separate Serial Detector Alarms

(1) Overview

This function reduces the stop distance by setting the velocity command for the servo motor to 0 when the separate serial detector is placed in an alarm state indicated below. With this function, motion on the axes other than the axis with which any of the alarms below is issued is also stopped quicker than in the case of an ordinary alarm.

Alarm number	Description
SV0380	BROKEN LED (EXT)
SV0381	ABNORMAL PHASE (EXT)
SV0382	COUNT MISS (EXT)
SV0383	PULSE MISS (EXT)
SV0384	SOFT PHASE ALARM (EXT)
SV0385	SERIAL DATA ERROR (EXT)
SV0386	DATA TRANS. ERROR (EXT)
SV0387	ABNORMAL ENCODER (EXT)

NOTE

For the Series 30*i*-A and 0*i*-D, if you want to use the brake control function, quick stop function, or lifting function against gravity at emergency stop with a multiaxis amplifier for which a dummy axis is set, be sure to connect a dummy connector.

CNC		Servo software	Domonika	
CNC	Series Edition		Remarks	
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions		
Power Motion <i>i</i> -A				
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	L(12) and subsequent editions		
	90E1	01.0 and subsequent editions		
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	L(12) and subsequent editions	HRV4	
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions		
	90C8	A(01) and subsequent editions		
	90E5	A(01) and subsequent editions		
	90E8	A(01) and subsequent editions		

(2) Series and editions of applicable servo software

(3) Setting parameters

	#7	#6	#5	#4	#3	#2	#1	#0
2282			FSAQS					
FSAQS(#5) The quick	stop functio	n for separa	te serial de	tector alarn	ns is:		

- Disabled 0:
- 1: Enabled
- For the Series 30*i*-B and Power Motion *i*-A, when bit 4 of parameter No. 2205 or bit 5 of parameter No. 2282 is set, the quick stop function for separate detector alarms is enabled.

Satting	Alarms for which to apply the quick stop function						
Setting	FS30 <i>i</i> -A,0 <i>i</i> -D	FS30 <i>i</i> -B, Power Motion <i>i</i> -A					
No.2205#4=1	Hardware disconnection of the	Hardware disconnection of the phase A/B					
	phase A/B detector	detector or					
No.2282#5=1	Separate serial detector alarm	separate serial detector alarm					

1: Enabled

*

This parameter can be used with either the quick stop function for hardware disconnection of separate detector (bit 4 of No. 2205=1) or the quick stop function for separate serial detector alarms (bit 5 of No. 2282=1).

5.8.8 Quick Stop Function at OVL and OVC Alarm

(1) Overview

This function reduces the stop distance for a servo motor when an OVL (motor overheat or amplifier overheat) or OVC alarm condition is detected for the servo motor. It also causes the other axes to stop sooner than they would when a usual alarm occurs.

NOTE

For the Series 30*i*-A and 0*i*-D, if you want to use the brake control function, quick stop function, or lifting function against gravity at emergency stop with a multiaxis amplifier for which a dummy axis is set, be sure to connect a dummy connector.

CNIC		Servo software	Domonico		
CNC	Series	Edition	Remarks		
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions			
Power Motion <i>i</i> -A					
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	A(01) and subsequent editions			
	90E1	01.0 and subsequent editions			
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	A(01) and subsequent editions	HRV4		
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions			
	90C8	A(01) and subsequent editions			
	90E5	A(01) and subsequent editions			
	90E8	A(01) and subsequent editions			

(2) Series and editions of applicable servo software

(3) Setting parameters

, 01 		#7	#6	#5	#4	#3	#2	#1	#0
2212		OVQK							
OVQK (#	OVQK (#7) Specifies whether to enable quick stop function at the OVC and OVL alarm as follows:								
	0:	To dis	able						
	1:	To ena	able						
	N	OTF							

The operation of this function is performed by using part of the unexpected disturbance torque detection function. Therefore, to use this function, the option for the "unexpected disturbance torque detection function" is required.

2083

Brake control timer

[Unit of data] ms [Setting value] 100

5.9 UNEXPECTED DISTURBANCE TORQUE DETECTION FUNCTION (OPTIONAL FUNCTION)

5.9.1 Unexpected Disturbance Torque Detection Function

(1) Overview

When a tool collides with the machine or workpiece, or when a tool is faulty or damaged, a load torque greater than that experienced during normal feed is imposed.

This function monitors the load torque to the motor at servo high-speed sampling intervals. If it detects an abnormal torque, it brings the axis to an emergency stop by issuing an alarm, or reverses the motor by an appropriate amount.

In addition, the function enables the PMC to be used to switch the speed at warning occurrence or load fluctuation.

Fig. 5.9.1 (a) Overview of unexpected disturbance torque detection

(2) Series and editions of applicable servo software

CNC		Servo software	Remarks	
CNC	Series	Edition		
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions		
Power Motion <i>i</i> -A				
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	A(01) and subsequent editions		
	90E1	01.0 and subsequent editions		
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	A(01) and subsequent editions	HRV4	
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions		
	90C8	A(01) and subsequent editions		
	90E5	A(01) and subsequent editions		
	90E8	A(01) and subsequent editions		

(3) Parameter adjustment methods

<1> Use SERVO GUIDE to observe the motor speed (SPEED) and estimated disturbance torque (DTRQ).

(Example of channel settings on SERVO GUIDE)

5.SERVO FUNCTION DETAILS

GraphSetting						? >
Detail						
Measure setting Op	eration and Di	splay Scale(Y-Ti	me) Scale(XY) S	cale(Circle)		
Data Points (E) Sampling Cycle (Ser Sampling Cycle (Spir Sampling Cycle (PM Sampling Cycle (I/O Comment <u>1</u> Comment 2	vo) ndle) C) Link)	3000 × Imsec v Imsec v	N1	r <u>C</u> hange	Auto-sca C Non C Alwa	mpatible (SV-SP) Drigin eling e e
Time and Date	<u></u>					
Property	, Origin :	Setting,		Dat	a Shift <u>T</u> ir	ne Shift
Axis	Kind	Unit	Coef	Meaning	Origin	Shift
CH1 🗹 A1 (1)	SPEED	1/min	3750.0000	Motor speed (SPEED)	0.0000000	3
CH2 A2 (2)	DTRQ	A(p)	160.00000	Disturbance torque	0.0000000	0
CH3 CH4 CH5 CH6 CH7 CH8						•
				ОК	Cancel	Help

(See Chapter 7, " SERVO TUNING TOOL SERVO GUIDE " for detailed descriptions about how to use the SERVO GUIDE.)

<2> Switch on the CNC.

<3> Enable the unexpected disturbance torque detection function

Moreover, **be sure to set 1** also the following parameters.

	#7	#6	#5	#4	#3	#2	#1	#0
2200						IQOB		
IQOB (#2)	Specifies w	hether to e	eliminate ir	nfluence of	control vo	ltage satur	ation when	estimating
	disturbance	, as follows	5.					

0: Not to take influence of control voltage saturation when estimating disturbance into consideration

1: To eliminate influence of control voltage saturation when estimating disturbance

<4> Set up the parameters related to the observer.

	2050]	Observer gain
•	When H	IR∖	/1, HRV2, or HRV3 control is used:

[Standard setting value] $956 \rightarrow$ To be changed to 3559.

• When HRV4 control is used:

[Standard setting value] $264 \rightarrow$ To be changed to 1420

5.SERVO FUNCTION DETAILS

B-65270EN/08

2051				
33.71	110171	TIDIA		

• When HRV1, HRV2, or HRV3 control is used: [Standard setting value] $510 \rightarrow$ To be changed to 3329.

• When HRV4 control is used:

[Standard setting value] $35 \rightarrow$ To be changed to 332

NOTE

When using this function together with the observer, do not modify the standard setting of the parameter above. Observer: Bit 2 of No.2003

Observer gain

<5> Make adjustments on the **POA1** observer parameter.

2047

Observer parameter (POA1)

Turn the servo motor to perform linear back and forth operation at a speed equal to about 50% of the rapid traverse rate, and observe the motor speed (SPEED) and the estimated disturbance value (DTRQ). The waveform observed before the adjustment should show one of the following features:

NOTE

When a negative value is set for POA1, it is assumed to be |POA1| \times 10.

Example of measurement: 1000min⁻¹ (when using a rotary motor)

Adjust the value of the observer parameter (POA1) so that neither an overshoot nor an undershoot will not be observed on the estimated disturbance value at acc./dec. After adjustment, the waveforms shown below should be obtained.

(A clear waveform as shown below may not be obtained in some machines. In such machines, find the POA1 parameter value that can minimize the overshoot and undershoot while watching the estimated disturbance waveform at acc./dec.)

(Details)

expressions:

The observer estimates a disturbance torque by subtracting the torque required for acc./dec. from the entire torque. The torque required for acc./dec. is calculated using a motor model. The POA1 parameter corresponds to the inertia of the motor model. If the parameter value differs from the actual value, it is impossible to estimate a correct disturbance torque. To detect an unexpected disturbance torque correctly, therefore, you must adjust the value of this parameter.

An estimated disturbance value when a usual condition is supposed to be related only to frictional torque (for the horizontal axis), and proportional to the velocity. Therefore, a program, like the one used for adjustment, that merely repeats simple acc./dec. is supposed to generate a trapezoidal estimated disturbance torque waveform like a velocity waveform.

<6> <u>For the vertical axis</u>, adjust the torque offset. (This is unnecessary for the horizontal axis.) For the vertical axis, the estimated disturbance value is not centered at level 0. Torque offset adjustment is done to center the estimated disturbance value at level 0.

2087	Torque offset parameter
[Unit of data]	TCMD unit (7282 with the maximum current value of the amplifier)
[Valid data range]	-7282 to 7282
	(Example of torque offset setting)
	Estimated disturbance values for constant-velocity movements in the + direction and
	- direction are read. In the figure below, minimum value A (signed) is read in a
	movement in the + direction, and maximum value B (signed) is read in a movement
	in the - direction. A torque offset parameter setting is given using the following

If you read the minimum value A and maximum value as -8.6 [Ap] and -4.5 [Ap] in the above chart (the amplifier used is rated at 80 [Ap] maximum), the torque offset parameter = $-[(-8.6)+(-4.5)]/80\times3641 = 596$. The following chart applies when the parameter is set with 596.

When the torque offset parameter is set, be sure to set the following parameter to 1.

1: Enabled

NOTE

When using the torque offset canceling function (bit 1 of parameter No. 2215), do not use the function for adding a preload with a time constant (bit 4 of parameter No. 2417).

<7> Compensate for dynamic friction.

- (i) <u>Method of canceling a dynamic friction in proportion to velocity</u>
 - Measure an estimated disturbance value at a constant velocity. Then, by assuming this measured value as a dynamic friction, set the proportional coefficient for a velocity and dynamic friction compensation value.

Dynamic friction compensation coefficient

[Unit of data] See the equation below. [Valid data range] -264 to 264

[Measurement velocity] Rotary motor: 1000 min⁻¹, Linear motor: 1000 mm/s
Measure an estimated disturbance value at a measurement velocity, then set the results of calculations made according to the table below.

Dynamic friction compensation coefficient

Estimated disturbance value [Ap] Maximum amplifier current value [Ap]

NOTE

If the measurement velocity is too high, lower the measurement velocity, and measure the estimated disturbance value. By proportional calculation, obtain the estimated disturbance value at the above measurement velocity.

(Example of setting for a rotary motor)

Suppose that the estimated disturbance value at 1000 min⁻¹ is 1 [Ap] (the maximum amplifier current value is 40 [Ap]).

Dynamic friction compensation coefficient = $1/40 \times 440 = 11$

(ii) <u>Method of setting a dynamic friction as "portion proportional to velocity + constant portion"</u> <u>and imposing a limit</u>

If the compensation value for stop time to low-velocity movement is insufficient in adjustment of (i), set a dynamic friction compensation value in the stop state. If the compensation value for high-speed movement is excessive, a limit is imposed on the compensation value.

<8> Set an unexpected disturbance torque detection alarm level.

Perform several different operations (sample machining program, simultaneous all-axis rapid traverse acc./dec., etc.), and observe estimated disturbance values, and measure the absolute maximum value.

Then, set up an alarm level.

2104

Unexpected disturbance torque detection alarm level

Alarm level conversion uses the following expression.

Unexpected disturbance torque detection ala	rm level =
[Estimated disturbance value [Ap]]	
Maximum amplifier current value [Ap]	× 1282+500 to 1000 approximately

NOTE

- 1 Add some margin (usually about 500 to 1000) to the alarm level to be set.
- 2 If the "unexpected disturbance torque detection alarm level" parameter is 32767, no unexpected disturbance torque alarm detection is performed.
- <9> Set a distance to be retraced at unexpected disturbance torque detection.

If the retrace amount parameter is 0, the motor stops at the point where an unexpected disturbance torque was detected. To retract the tool from the location of collision quickly, set the retrace distance parameter.

2103

Retrace distance

[Unit of data] Detection unit [Setting value] Approximately 3 mm

NOTE
When the tool is moving faster or slower than the velocity listed
below, the tool will not go back even if this parameter is set. It stops
at the location where an unexpected disturbance torque was
detected.
Let the value set in the retrace distance parameter be A:
Minimum retract velocity =
A \times detection unit (μ m) \times 60/512 [mm/min]
Example)
When detection unit = 1 μ m, and retract amount setting = 3000,
the minimum velocity at which the tool is retracted is:
Minimum retract velocity =
3000 × 1 × 60/512 = 352 [mm/min]

[2-axis simultaneous retract function at detection of an unexpected disturbance torque]

Usually, retraction at detection of an unexpected disturbance torque is performed only on the axis with which the unexpected disturbance torque is detected. However, when an unexpected disturbance torque is detected on one position tandem axis, retraction can be performed on the other position tandem axis as well by setting the parameter below.

(Setting parameters)

To use the unexpected disturbance torque detection function, set the following bit to 1 for both the master and slave axes.

	#7	#6	#5	#4	#3	#2	#1	#0
2271						RETR2		
RETR2(#2)	With the ur	nexpected di	sturbance	torque dete	ction functi	on, 2-axis s	imultaneou	s retraction
	is:							
	0: Not pe	erformed						
	1: Perfor	med						
	In the parar	meter for the	e distance t	to retract, sp	becify the s	ame value f	or both the	master and
	slave axes.	If an unexp	ected distu	urbance tor	que is detec	ted on one	of the axes	, both axes
	are retracte	d.			-			

NOTE

- 1 This function can be applied only when position tandem control is used on the same DSP. Do not use this function for any axis that has not been set for position tandem.
- 2 If different values are specified for the master and slave axes, an invalid parameter alarm is issued. (The detail No. of the alarm is 1033.)

<10>Run the machine with the alarm level set up.

If the unexpected disturbance torque detection function works incorrectly, increase the alarm level. <11>Now adjustment is completed.

5.9.2 Cutting/Rapid Unexpected Disturbance Torque Detection Switching Function

(1) Overview

An alarm threshold for unexpected disturbance torque detection is set separately for cutting and rapid traverse.

(2) Series and editions of applicable servo software

CNC		Servo software	Bomarka	
CNC	Series	Edition	Reillarks	
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions		
Power Motion <i>i</i> -A				
Series 30 <i>i/</i> 31 <i>i/</i> 32 <i>i</i> -A	90E0	A(01) and subsequent editions		
	90E1	01.0 and subsequent editions		
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	A(01) and subsequent editions	HRV4	
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions		
	90C8	A(01) and subsequent editions		
	90E5	A(01) and subsequent editions		
	90E8	A(01) and subsequent editions		

(3) Setting parameters

A threshold can be set separately for cutting and rapid traverse by setting the following bit when the unexpected disturbance torque detection function is used:

NOTE

Set the two bits above. (Servo software was revised in type-2 to be able to switch even if you set bit 3 of No.1800 to 1, feed-forward always enable.)

Alarm thresholds for unexpected disturbance torque detection are set in the following parameters:

	2104		Unexpected disturbance torque detection threshold for cutting (This parameter is used both in not switching mode and in switching mode.)
[Va	lid data rang	e]	1 to 7282
	2142		Unexpected disturbance torque detection threshold for rapid traverse
[Va	lid data rang	e]	1 to 7282

NOTE

1 When the alarm level for cutting is 0 or 32767, unexpected disturbance torque detection is not performed during cutting.

NOTE

2 When the alarm level for rapid traverse is 0 or 32767, unexpected disturbance torque detection is not performed during rapid traverse. When both parameters are 32767, unexpected disturbance torque detection is not performed at any time.

5.9.3 Unexpected Disturbance Torque Detection Switching Function Depending on Acc.

(1) Overview

This function separately sets a threshold level for unexpected disturbance torque alarms detected in an acceleration/deceleration zone where the estimated disturbance value tends to fluctuate. This function can protect against erroneous detection of an unexpected disturbance torque alarm in an acceleration/deceleration zone.

- 1. In a zone where acceleration/deceleration is performed (zone where extensive acceleration is applied), a higher alarm level can be set.
- 2. The influence of acceleration after positioning can be avoided by setting a timer when returning to the original alarm level after alarm level switching.

CNC		Servo software	Bemerke
CNC	Series	Edition	Remarks
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions	
Power Motion <i>i</i> -A			
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	P(16) and subsequent editions	
	90E1	01.0 and subsequent editions	
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	P(16) and subsequent editions	HRV4
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions	
	90C8	A(01) and subsequent editions	
	90E5	A(01) and subsequent editions	
	90E8	A(01) and subsequent editions	

(2) Series and editions of applicable servo software

(3) Notes

- When using this function, set the post-acceleration timer (No. 2358).
- This function can be used together with the cutting/rapid unexpected disturbance torque detection switching function.

(4) Setting parameters

(Related param	eters)
2342	Acceleration threshold in unexpected disturbance torque detection
[Unit of data]	Detection unit
[Setting value]	Let α [mm/s ²] be an acceleration rate and let P [mm/pulse] be a detection unit. Then, the
	value to be set in the parameter can be found from the following expression:
	Setting $=\frac{\alpha \times 16}{P \times 10^6}$
[Valid data range]	0 to 32767
-	When 0 is set in this parameter, acceleration-based alarm level switching is disabled.
2343	Alarm level for high acceleration in unexpected disturbance torque detection
[Unit of data]	TCMD (7282 with the maximum current value of the amplifier)

[Valid data range] 0 to 32767

When the absolute value of a specified acceleration rate is equal to or greater than the setting of No. 2342, the setting of No. 2343 is applied as an unexpected disturbance torque detection alarm level.

When 0 is set in this parameter, acceleration-based alarm level switching is disabled.

Fig. 5.9.3 (a) Acceleration-based alarm level switching

5.10 MULTIPLE-MOTOR DRIVING (TANDEM DRIVING)

(1) Overview

If a single motor is not capable of producing sufficient torque to drive a large table or if you want to reduce the backlash between gears, multiple motors can be used to produce movement along one axis. Also, as a special case, a large servo motor (motor with plural windings) may be driven by multiple amplifiers.

For multiple-motor driving, the following three tandem control methods are available according to the control method for the slave or sub axis (position control, velocity control, or torque control). (In this section, to make a distinction between feed axis synchronization control and torque tandem control, the terms master and slave axes are used for the former, while main and sub axes are used for the latter.)

• <u>Position tandem control</u>

Feed axis synchronization control (feed axis synchronization control option (J843) for the Series 30i) is necessary. When even and odd numbers are specified for servo axis arrangement (parameter No. 1023) in this order, in particular, the control applied is called "position tandem control". In this status, the master and slave axes are enabled to perform various types of operation in a coordinated way. For example, the tandem disturbance elimination control option (S660), which suppresses interference between two axes, is available.

In general, position tandem control is used for multiple-motor driving.

NOTE)

With the 30*i*-B or later, the feed axis synchronization control option includes the tandem control option (J733).

Position tandem control is also available for driving linear motors connected in series, motors with two windings ($\alpha i S300/2000$, $\alpha i S500/2000$, and $\alpha i S1000/2000$ HV), and motors with four windings ($\alpha i S1000/3000$ HV, $\alpha i S2000/2000$ HV, and $\alpha i S3000/2000$ HV).

In addition, position tandem control is available for performing tandem control for motors with plural windings.

NOTE)

With the 30i-B or later, a motor with plural windings can be driven without the feed axis synchronization control option.

Fig. 5.10 (a) Block diagram of position tandem control

• <u>Torque tandem control</u>

The tandem control option is necessary. (For the Series 30i-B, the feed axis synchronization control option is necessary.)

Conventional torque tandem control can be replaced with position tandem control + velocity loop integrator copy function using feed axis synchronization control. The position tandem control + velocity loop integrator copy function can control the position and velocity, so can control the sub-motor more stably as compared with torque tandem control.

Fig. 5.10 (b) Block diagram of torque tandem control

<u>Velocity tandem control</u>

The tandem control option is necessary. (For the Series 30i-B, the feed axis synchronization control option is necessary.)

The velocity tandem control + velocity loop integrator copy function can control the velocity, so can control the motors more stably as compared with torque tandem control. Velocity tandem control can be replaced with position tandem control + velocity loop integrator copy function to control the sub-motor more stably than velocity tandem control.

Fig. 5.10 (c) Block diagram of velocity tandem control

The three types of tandem control described above are generally used for two axes. By using the "multiaxis tandem function", these types of tandem control can also be used for four and eight axes. For details, see Subsection 5.10.2, "Multiaxis Tandem".

(2) Series and editions of applicable servo software

CNG		Servo software	Demerika
CNC	Series Edition		Remarks
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions	
Power Motion <i>i</i> -A			
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	A(01) and subsequent editions	
	90E1	01.0 and subsequent editions	
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	A(01) and subsequent editions	HRV4
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions	
	90C8	A(01) and subsequent editions	
	90E5	A(01) and subsequent editions	
	90E8	A(01) and subsequent editions	

NOTE

This function cannot be used together with the servo HRV4 control.

(3) Servo software functions and their corresponding tandem control methods

Function name	Position tandem	Torque tandem	Velocity tandem	Remarks
Feed Axis Synchronization Control	0	-	_	Option
(Simple synchronous control)	0			
Velocity loop integrator copy function	0	-	0	Suppresses interference between axes. Can be turned off and on using Gn321.
Preload function	0	0	0	Suppresses the backlash. With a time constant.
Servo alarm two-axis monitor function	0	0	0	Prevents damage to the machine.
Tandem disturbance elimination control function	0	-	0	Option
Synchronous axes automatic compensation function	0	-	-	
Torque difference alarm function	0	-	-	Prevents damage to the machine.
Full-closed loop feedback sharing function (sub-axis)	0	-	0	One scale
Driving a motor with four windings	O Note 2	-	-	Set automatically.
Driving a motor with two windings	O Note 2	-	-	Set manually.
Tandem control	-	0	0	Option
Damping compensation function	-	0	-	
Tandem speed difference alarm	-	0	-	Prevents damage to the machine.
Velocity feedback average function	-	0	0	
Motor feedback sharing function	0	O Note 1	-	Motor with two windings

NOTE

- 1 With the 30*i*-A or earlier, drive the motor using torque tandem control + motor feedback sharing function.
- 2 With the 30*i*-B, this method is available without the feed axis synchronization control option.

(4) Using the velocity loop integrator copy function and preload function together

The motor for each axis produces almost the same torque as that produced when positioning is performed for the single axis, so double the torque can be obtained with two motors. (Load sharing mode). If interference between axes is caused by driving multiple axes, the velocity loop integrator copy function is useful.

If you want to suppress the backlash between gears of the reducer or the like for each axis, enable the integrator copy function and use the preload function together. By adding a preload torque to the master and slave motors in opposite directions to produce tension, the backlash between gears can be reduced. (Anti-backlash mode)

(5) Using a motor with plural windings and EGB (electric gear box)

To implement the EGB, usually, it is necessary to receive the position feedback signal of the master axis from the entry at the separate detector side of the dummy axis (even-numbered axis) to drive the slave axis (odd-numbered axis). For a motor with two or four windings, however, it is necessary to receive the position feedback signal from the separate detector side of the even-numbered axis, not the dummy axis, since there is an even-numbered axis.

For the EGB (FSSB method), the position feedback signal can also be received from the even-numbered axis side in the same way.

When position tandem control or torque tandem control is used for two-motor driving, the EGB cannot be used together.

Axis No.	Arrange- ment No.1023	Motor with four windings No.2211#7	Separate detector No.1815#1	EGB No.2011#0	Remarks
1	1 (L)	1	x *1	1	1st axis of the motor with four windings
2	2 (M)	1	1	1	2nd axis of the motor with four windings (received from the master axis)
3	3 (J)	1	0	0	3rd axis of the motor with four windings
4	4 (K)	1	0	0	4th axis of the motor with four windings

Example of parameter setting (motor with four windings)

5.SERVO FUNCTION DETAILS

Axis No.	Arrange - ment No.1023	Motor with four windings No.2211#7	Separate detector No.1815#1	FSSB method No.2429#2	EGB No.2011#0	Remarks
1	1 (L)	1	x *1	0	1	1st axis of the motor with four windings
2	2 (M)	1	1	1 *2	1	2nd axis of the motor with four windings (received from the master axis)
3	3 (J)	1	0	0	0	3rd axis of the motor with four windings
4	4 (K)	1	0	0	0	4th axis of the motor with four windings

Example of parameter setting (motor with four windings): FSSB method

Example of parameter setting (motor with two windings)

Axis No.	Arrange- ment No.1023	Motor with two windings No.2211#6	Separate detector No.1815#1	EGB No.2011#0	Remarks
1	1 (L) *3	1	x *1	1	1st axis of the motor with two windings
2	2 (M) *3	1	1	1	2nd axis of the motor with two windings and
					separate detector (received from the master axis)

Example of parameter setting (motor with two windings): FSSB method

Axis No.	Arrange- ment No.1023	Motor with two windings No.2211#6	Separate detector No.1815#1	FSSB method No.2429#2	EGB No.2011#0	Remarks
1	1 (L) *3	1	x *1	0	1	1st axis of the motor with two windings
2	2 (M) *3	1	0	1 *2	1	2nd axis of the motor with two windings (received from the master axis)

NOTE)

For details of setting the EGB ratio (parameters Nos. 7782, 7783, and 2372) and others, refer to the "PARAMETER MANUAL (FUNCTION)".

- *1) Set the parameter for specifying whether to use a separate detector for the master axis of a motor with four or two windings as required.
- *2) With the 30*i*-B or later, the EGB using the FSSB method is available. It is necessary to set parameter No. 4549, bit 0 of parameter No. 24203, and parameter No. 24204.
- *3) For a motor with two windings, combinations of (8n+1, 8n+2), (8n+3, 8n+4), and (8n+5, 8n+6) are allowed.

(NOTE) The following table lists the series and editions of applicable servo software.

		Servo software	Remarks	
CNC	Series	Edition		
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	13.0 and subsequent editions	FSSB method	
Power Motion <i>i</i> -A				
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	-		
	90E1	03.0 and subsequent editions		
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	-	HRV4	
Series 0 <i>i</i> -D	90C5	-		
	90C8	-		
	90E5	-		
	90E8	-		

(6) Function selection flow for multiple motor driving

The following figure shows a function selection flow for multiple motor driving.

5.10.1 Position Tandem

5.10.1.1 Velocity Loop Integrator Copy Function

(1) Overview

If the velocity loop integrator gets unbalanced between the master and slave during feed axis synchronization control or velocity tandem control, the axes may get twisted, leading to an OVC alarm.

In this case, this function copies the velocity loop integrator from the master axis to the slave axis, thereby preventing integrator imbalance between the master and slave.

When the preload function is used together, the backlash can be suppressed by adding a preload torque in opposite directions, in the same way as when the preload function is used in a conventional torque tandem configuration.

Fig. 5.10.1.1 (a) Block diagram of the velocity loop integrator copy function

(2) Series and editions of applicable servo software

CNIC		Servo software	Dormoriko		
CNC	Series	Edition	Remarks		
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions			
Power Motion <i>i</i> -A					
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	A(01) and subsequent editions			
	90E1	01.0 and subsequent editions			
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	A(01) and subsequent editions	HRV4		
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions			
	90C8	A(01) and subsequent editions			
	90E5	A(01) and subsequent editions			
	90E8	A(01) and subsequent editions			

• Dynamic switching between whether to enable or disable the integrator copy function (Series 30*i*/31*i*/32*i*/35*i*-B, Power Motion *i*-A)

Series 90G0 (Series 30*i*/31*i*/32*i*-A) Series 90E0 Series 90E1

03.0 and subsequent editions

Y(25.0) and subsequent editions 01.0 and subsequent editions

(4) Dynamic switching between whether to enable or disable the integrator copy function

If you want to enable the integrator copy function only when two axes are coupled mechanically, you can use external signal Gn321 (coupling signal) to turn the velocity loop integrator copy function off and on. You may not want to operate the velocity loop integrator copy function. For example, for axes along which the workpiece is chucked from both sides, when the workpiece is not chucked, you can set external signal Gn321 to 1 to turn the integrator copy function off.

	#7	#6	#5	#4	#3	#2	#1	#0			
2286				WCCNCK							
	(Set this p	arameter for	the slave a	xis.)							
WCCNCK(#4)	1: When	n external si	gnal Gn321	is set to 0,	the veloci	ty loop inte	grator is co	pied to the			
	slave	axis.	-				-	-			
	0: The	velocity loor	o integrator	is always c	opied to th	e slave axis	s regardless	of whether			
	exter	nal signal G	n321 is set	to 0 or 1	- r		0				
	••	in signin of									
	#7	#6	#5	#4	#3	#2	#1	#0			
Gn321	SVDI18	SVDI17	SVDI16	SVDI15	SVDI14	SVDI13	SVDI12	SVDI11			
	(Input this	signal for th	ne master ai	nd slave axe	s.)						
SVDI1x	1: Unco	1: Uncoupled state									
	0: Coup	0: Coupled state									
	The bit po	sition repres	ents the rel	evant NC ax	kis number	. For examp	ole, bit 0 rep	presents the			
	first NC a	xis.				1					

5.10.1.2 Preload function

(1) Overview

This function can apply torques of opposite directions to the master axis (master motor) and slave axis (slave motor) by applying an offset (preload) torque to the torque command to maintain tension at all times. This function can reduce the backlash between the master and slave axes, caused by the tandem connection of two motors through gears. However, this function does not reduce the backlash between the ball screw and table, which is a feature of the machine system.

For example, set preload +Pre for the master axis and preload -Pre for the slave axis. Then, torques are produced as shown in Fig. 5.10.1.2 (a) below.

5.SERVO FUNCTION DETAILS

If a torque is required during acc./dec., a torque of the same direction is produced with the two motors. (Load sharing mode)

If no torque is required, for example, during stop state, preload torques produce tension between the two axes. (Anti-backlash mode)

The average driving torque for the master and slave motors when this function is used is the value obtained by averaging the driving torques of each motor, which is represented with a dotted line in Fig. 5.10.1.2 (b) below.

Fig. 5.10.1.2 (a) Changes of torque during movement

Fig. 5.10.1.2 (b) Relationships between the average driving torque and torque command for each motor

 2087
 Preload value (PRLOAD)

 [Unit of data]
 TCMD unit (The value 7282 represents the maximum amplifier current.) Set this parameter for the master and slave axes.

 ▲
 CAUTION

 Set a value that is as small as possible but greater than the static friction torque. A set preload torque is applied to each motor at all times. So, set a value that does not exceed the rated torque of each motor. As a guideline, specify a value equal to one-third of the rated torque.

 As shown in Fig. 5.10.1.1 (a) in Subsec. 5.10.1.1, a preload torque is added in any case. So, set the preload torque directions as follows:

 •
 When the rotation directions of the master axis and slave axis

- When the rotation directions of the master axis and slave axis are the same: Different signs
- When the rotation directions of the master axis and slave axis are different: Same sign

Example of setting)

For the αi S8/4000 (Servo amplifier αi SV 80)

 \mathcal{O}

When a preload torque of 5 Nm is to be added, the torque constant is 0.72 Nm/Arms according to the descriptions of the servo motor. So, the peak value is 0.509 Nm/Ap. So, the peak value is 0.368 N·m/Ap. The torque is converted to a current value as follows:

5/0.509 = 9.82 Ap.

The amplifier limit is 80 Ap, so that the value to be set is:

 $9.82/80 \times 7282 = 894$

So, set 894 for the master axis, and -894 for the slave axis (when the directions of rotation of the two motors are the same).

When movement of the table is stopped, check whether the system is in tension. If not, increase this value gradually.

For torque tandem control, when two motors are not connected, always set a preload value of 0.

The sub-axis motor may rotate at extremely high speed, which is very dangerous. (\rightarrow See Subsec. 5.10.4.4 "Tandem speed difference alarm function.")

(2) Preload function with a time constant

With the conventional preload function, since a torque offset is always added to the torque command, a stepwise torque is produced at the moment of activation, which may cause a shock.

When this function is enabled, a torque offset can be applied exponentially. A time constant is determined based on the position gain. For example, when the position loop gain is $Pg = 30 [s^{-1}]$, the preload function starts with a time constant of 33.3 ms. In addition, a function bit can be set to increase the time constant by four times.

The time constant is also applied when activation is turned off or when the parameter value is changed.

Fig. 5.10.1.2 (c) Preload value with a time constant

(2-1) Series and editions of applicable servo software

CNC		Servo software	Demerke		
CNC	Series	Edition	Remarks		
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions			
Power Motion <i>i</i> -A					
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	Y(25) and subsequent editions			
	90E1	01.0 and subsequent editions			
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	-	HRV4		
Series 0 <i>i</i> -D	90C5	-			
	90C8	-			
	90E5	-			
	90E8	-			

(2-2) Parameter

	#7	#6	#5	#4	#3	#2	#1	#0
2417				TIMCAL		TIMPR2		

TIMCAL(#4) Preload time constant calculation is:

- 1: Performed.
- 0: Not performed. (Conventional specification)

NOTE

When using the torque offset canceling function (bit 1 of parameter No. 2215) for the unexpected disturbance torque detection function, do not use this function.

TIMPR2(#2) The exponential time constant of the preload function is:

- 1: Four times of the reciprocal number of the position loop gain.
- 0: Reciprocal number of the position loop gain.

5.10.1.3 Functions for preventing damage between two axes

(1) Overview

In a position tandem or torque tandem configuration, motors are mechanically coupled. To prevent mechanical damage, the following functions are available:

- <1> Function which monitors the torque between the master and slave axes and prevents a large torque from being applied (excessive torque difference alarm)
- <2> Function which turns the activation for the other axis off immediately when an error occurs in one of the axes (servo alarm two-axis monitor function)

CN/C		Servo software	Demerke		
CNC	Series	Edition	Remarks		
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions			
Power Motion <i>i</i> -A					
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	A(01) and subsequent editions			
	90E1	01.0 and subsequent editions			
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	A(01) and subsequent editions	HRV4		
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions			
	90C8	A(01) and subsequent editions			
	90E5	A(01) and subsequent editions			
	90E8	A(01) and subsequent editions			

(2) Series and editions of applicable servo software

(3) Details

(a) Excessive torque difference alarm

2031Excessive torque difference alarm threshold[Unit of data]TCMD unit (The value 7282 represents the maximum amplifier current.) (Set this parameter for the master axis.)

[Valid data range] 0 to 32767 (When a value of 0 is set, this alarm is not detected.)

(b) Servo alarm two-axis monitor function

If an alarm occurs in either of two axis motors used to operate a machine in concert as in position tandem control or torque tandem control, it is necessary to stop the other axis motor immediately so as to prevent the machine from being twisted. This function monitors two axes controlled by the same DSP simultaneously for servo alarms. If an alarm occurs in either of the two axes, the function can promptly turn the activation for the other axis.

This function is not confined to tandem axes. When consecutive (odd and even) servo axis numbers are assigned, the function can be applied and available for feed axis synchronization control and others.

		#7	#6	#5	#4	#3	#2	#1	#0
2007								IGNVRO	ESP2AX
	((Set this pa	arameter for	the master	axis (to v	which an odd	number is	assigned by	/ parameter
		No 1023)			,				*

ESP2AX (#0) 1: The servo alarm two-axis monitor function is enabled.

(Set this parameter for the master axis (to which an odd number is assigned by parameter No. 1023.)

IGNVRO (#1) 1: An alarm condition is released 2 seconds after the servo alarm two-axis monitor function holds the alarm condition.

Some systems have a configuration in which the ESP line of the PS is cut off with an interlocked machine door, independently of the emergency stop button, for safety purposes. In these systems, the amplifier is turned off with an emergency stop not in effect, and therefore, a "V ready off alarm" occurs. This alarm is evaded by using the "VRDY OFF alarm invalidation signal".

Conventionally, it was impossible to use "PS cut-off based on the VRDY OFF alarm invalidation signal" along with the "servo alarm two-axis monitor function", however. This is because the "servo alarm two-axis monitor function" holds an alarm condition in the servo software and will not activate a motor when the ESP line is connected after that.

To avoid this problem, a function has been added which clears information about an alarm condition in the servo software 2 seconds after the alarm is detected. This function enables the simultaneous use of the "servo alarm two-axis monitor function" and " PS cut-off based on the VRDY OFF alarm invalidation signal".

5.10.1.4 Tandem Disturbance Elimination Control (Optional Function)

(1) Overview

This function suppresses vibration caused by interference between the master axis and slave axis in position tandem (feed axis synchronization) control.

Fig. 5.10.1.4 (a) Block diagram of tandem disturbance elimination control

(2) Series and editions of applicable servo software

		Servo software	Remarks	
CNC	Series	Edition		
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	09.0 and subsequent editions		
Power Motion <i>i</i> -A				
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	A(01) and subsequent editions		
	90E1	01.0 and subsequent editions		
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	A(01) and subsequent editions	HRV4	
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions		
	90C8	A(01) and subsequent editions		
	90E5	A(01) and subsequent editions		
	90E8	A(01) and subsequent editions		

(3) Cautions

- 1 This function is optional. (To enable the position tandem function, feed axis synchronization control is additionally needed.)
- 2 This function can be used only for two-axis feed axis synchronization control. It cannot be used for more than two axes.
- 3 In servo axis arrangement (No.1023), the main axis must be an odd-numbered axis, and the sub-axis must be a subsequent even-numbered axis.
- 4 This function cannot be used together with servo HRV4 control.

(4) Setting parameters

This parameter is not used generally, but is used for machines with a large friction. This parameter has the same function as damping compensation gain Kc of the tandem control function. (See Subsec. 5.10.4.1.)

5.SERVO FUNCTION DETAILS

2036	Phase compensation coefficient α
	(Set this parameter for the slave axis only.)
[Valid data range]	51 to 512 (0.1< α <1)
[Typical setting]	0 (512 internally)
	This parameter has the same function as damping compensation of the tandem control
	function. When 512 is specified, the advance amount is 0 degree. (See Subsec. 5.10.4.1.)
2325	Integral gain Ki
2325	(Set this parameter for the master axis only.)
[Valid data range]	0 to 4000
	This parameter compensates for a machine spring element. Set a large value when the
	rigidity is high Set a small value for a motor with a greater torque constant
	rightly is high. Set a shall value for a motor with a greater torque constant.
2325	Phase compensation coefficient 2T/t
	(Set this parameter for the slave axis only.)
[Valid data range]	0 to 32767
[Typical setting]	0 (40 internally)
	This parameter is used with coefficient α to compensate the compensation delay. When
	the resonance frequency is 100 Hz or more, set $\alpha = 100$ and $2T/t = 6$.
2333	Incomplete integral time constant
	(Set this parameter for the master axis only.)
[Valid data range]	0 to 32767
[Typical setting]	0 (30877 internally)
	As integral gain Ki increases, vibration in the low frequency area (10 Hz or less) may
	occur. In such a case, set the incomplete integral time constant to decrease the time
	constant. Set a parameter value listed below.

Table 5.10.1.4 (a) Setting in the incomplete integral time constant parameter (when HRV1,HRV2, HRV3 is used)

Time constant (sec)	Parameter setting
0.1	30887
0.05	29307
0.02	25810

(5) Dynamic switching between whether to enable or disable the tandem disturbance elimination control function

If you want to enable the tandem disturbance elimination control function only when two axes are coupled mechanically, you can use external signal Gn321 (uncoupling flag) to turn the tandem disturbance elimination control function and velocity feedback average function off and on.

You may not want to operate the tandem disturbance elimination control function and velocity feedback average function. For example, for axes along which the workpiece is chucked from both sides, when the workpiece is not chucked, you can set external signal Gn321 to 1 to turn the tandem disturbance elimination control function and velocity feedback average function off.

SUBDEP (#2) The slave axis separation function is:

- 0: Not used. (The tandem disturbance elimination control function is always enabled regardless of whether G321 is set to 0 or 1.)
- 1: Used. (When G321 is set to 1, the tandem disturbance elimination control function is turned off.)

	#7	#6	#5	#4	#3	#2	#1	#0		
Gn321	SVDI18	SVDI17	SVDI16	SVDI15	SVDI14	SVDI13	SVDI12	SVDI11		
	(Input this s	signal for th	ne master ar	nd slave axe	es.)					
SVDI1x	1: Uncou	pled state								
	0: Coupl	ed state								
	The bit pos	ition repres	ents the rel	evant NC a	xis number	. For examp	ole, bit 0 re	presents the		
	first NC ax	is.								
NOTE										
The follo	owing seri	es and ec	ditions of	servo sof	ware sup	port dyna	imic switc	hing		
betweer	n whether	to enable	e or disabl	le the tand	dem distu	rbance el	imination	control		
function	:									
(30 <i>i</i> -B S	Series, Pov	wer Motic	on <i>i-</i> A)							
Serie	es 90G0/0	9.0 and s	ubsequer	nt editions	6					
(30 <i>i</i> -A S	Series)		•							
Serie	es 90É0/J	(10) and s	subseque	nt edition	S.					
Serie	es 90E1/0	1.0 and s	ubsequer	nt editions	- ,					
Serie	Series 90D0/. I(10) and subsequent editions									
(0 <i>i</i> -D Se	$(0i_{-}D \text{ Series})$									
Serie	90C5/0	1.0 and s	ubsequer	nt editions	2					
Soria	Series 00E5/01.0 and subsequent editions,									
Serie		1.0 and a	ubsequer	n cuilions	•					
Serie		1.0 and 5	ubsequel		,					
Serie	35 90E8/0	1.0 and s	ubsequer	it editions						

(6) Adjustment method

- Check the torque commands for the master axis and slave axis and velocity feedback vibration by using a Servo Guide. (See Item (7).)
- If the vibration phase is shifted by 180 degrees, the cause of resonance is assumed to be inter-axis interference.
- Enable tandem disturbance elimination control, and adjust integral gain Ki.
- Increase the value of integral gain Ki gradually from 0, and observe vibration. Ki has an optimal value. When the value of Ki is increased excessively, vibration becomes stronger.
- When the velocity loop gain is changed, the frequency of vibration changes. So, adjust Ki to minimize vibration.
- If the frequency of vibration exceeds 100 Hz, the effect of tandem disturbance elimination control decreases. In such a case, set phase compensation coefficients α and 2T/t or increase the current loop gain with the current 1/2 PI control function.

* Velocity feedback and vibration frequency when the slave axis is vibrated

(7) Method for checking the resonance frequency

With this check, use the disturbance input function for the slave axis, measure the velocity feedback for the master axis, check for interference between the axes, and check and adjust the effect of tandem disturbance elimination control.

The following explains how to use the disturbance input function and how to make settings for data measurement.

(a) Setting parameters related to disturbance input

Parameters related to the disturbance input function are set for the slave axis.

(About the disturbance input function)

The disturbance input function applies vibration to an axis by inputting a sine wave disturbance to the torque command. In the adjustment of tandem disturbance elimination control, this function is used for the slave axis to observe the interference status between the axes when vibration is applied to the slave axis.

For the slave axis, set parameters related to the disturbance input function.

	#7	#6	#5	#4	#3	#2	#1	#0	
2270	DSTIN	DSTTAN	DSTWAV						
DSTIN(#7)	Disturbanc	sturbance input							
	0: Stop								
	1: Start (Disturbance	e input start	s on the ris	ing edge fro	om 0 to 1.)			
DSTTAN(#6)	Set 0.								
DSTWAV(#5)	Set 0.								
2326				Disturbanc	e input gain				
[Setting value]	500								
	(*) Set th	e amplitude	of the app	lied vibrati	on (torque)	. (Value 72	82 is equiva	alent to the	
	maxin	num current	t of the amp	lifier.)					
	First, s	set about 50	0 to apply v	ibration to	the machin	e so that lig	ght sound is	generated.	
	If it	is difficult	to observ	e the vibr	ation statu	s, increase	the param	leter value	
	gradu	ally.							
ı									
2327			Disturbanc	e input funct	ion: Start free	quency (Hz)			
[Setting value]	0								
	(*) If 0 is	set, the def	ault (10 Hz) is assume	d to be the	vibration sta	art frequenc	у.	
2328			Dis	turbance inp	ut end freque	ncy			
[Setting value]	0		1. (200 11	、 ·			1.0		
	(*) If 0 is	set, the def	ault (200 H	z) is assum	ed to be the	vibration e	end frequend	су.	
2329			Number of c	listurbance i	nput measure	ement points			
[Setting value]	0	•	1 0 1 (.	1 4				
	(*) It 0	is set, the	default (.	5) is assu	med as th	e number	of disturba	ance input	
	measu	irement poin	nts.						

[Cautions]

- 1 Disable the functions that operate only in the stop state, such as the variable proportional gain function in the stop state and the overshoot compensation function.
- 2 When characteristics at the time of cutting are measured, cutting/rapid switching functions should be treated carefully.
- 3 Decrease the position gain to about 1000.

(b) Channel setting with SERVO GUIDE

With SERVO GUIDE, make settings for data acquisition.

Two types of data including disturbance frequency data (the slave axis) and velocity feedback data (the master axis) are acquired at the same time.

From the graph window menu of SERVO GUIDE, select [Setting] then [Channel].

Channel 1: Disturbance frequency

• Specify the slave axis as the axis, and set the data type to "FREQ". (The other items are automatically set when FREQ is selected.)

Channel 2: Master axis velocity feedback

- Specify the master axis as the axis, and set the data type to "SPEED".
- Set the conversion coefficient to 1, and set the conversion base data to 1.
- Check the check box of the extended address, and set an address as listed in the table below. (The setting varies depending on the value set in parameter No. 1023.)

Set the shift amount to 0 for Series 90Dx, 90Ex, and 90Cx or to -5 for Series 90Gx.

No.1023 (n:0,1,2,)	4n+1	4n+2	4n+3	4n+4
Series 90D0,C5,C8	596	724	-	-
Series 90E0,E1,E5,E8	596	724	6740	6868

No.1023 (n:0,1,2,)	8n+1	8n+2	8n+3	8n+4	8n+5	8n+6
Series 90G0	5888	9984	14080	18176	22272	26368

(c) Setting for sampling

Set the sampling cycle to 250 μ s.

GraphSettin	g							×
Detail	~							
Measure se	tting Ope	ration and Dis	splay Scale	(Y-Time) Scale(XY) S	icale(Circle)			
Data Point	:s	3000 - 1	Trigger Path,	/Seq.No.	1 -		N compatible	
Sampling (Lycle 25	Ousec 💽	5ampling Cyc	:le(Spindle)	isec 💌	I → Sy I Au	nc.(SV-SP) Jto Origin	
Comment						Auto	o-scaling	
Comment	2						None Once	
Time and [Date					0	Always	
Pro	perty				<u>D</u> ata Shi	ft	<u>T</u> ime Shift	
Axis	s Kin	id Unit	Coef	Meaning	Origin	Shift	Address	
CH1 🗹	(2) FR	EQ Hz	1.000	Vibration Frequency	0.000000	0	Normal	
СН2 🗹	< (1) SPI	EED 1/min	1.000	Motor speed (SPEED)	0.000000	0	596	
СНЗ								
			ОК	Cancel				

(d) Usage

When the rising edge of the disturbance input bit (**DSTIN**) is detected, application of vibration is started. Vibration is automatically stopped after a sine sweep is performed from the start frequency to the end frequency. The operation is stopped by a reset or an emergency stop. After the emergency stop is released, disturbance input is resumed starting with the start frequency by setting the function bit off then on again.

[Example of setting]

No.2326 = 500	\rightarrow	Gain = 500
No.2327 = 0	\rightarrow	Start frequency = 10 Hz
No.2328 = 0	\rightarrow	End frequency = 200 Hz
No.2329 = 0	\rightarrow	Number of measurement points $= 3$

By using SERVO GUIDE, obtain data, and display the frequency (ch1) and velocity feedback (ch2) in the XY-YT mode.

As shown in the above waveform, the envelope of the velocity feedback indicates the gain characteristic at each frequency, and a swell portion in the waveform shows a resonance point. Adjust the tandem disturbance elimination control parameters so that the degree of the gain swell at the

resonance point is reduced.

5.10.1.5 Synchronous axes automatic compensation

(1) Overview

With synchronized axes having a long stroke, a machine twist may occur due to the absolute precision of the scale and thermal expansion of the machine. In such a case, the master motor and slave motor of the synchronized axes pull each other, and if a large current flows for the pull, an overheat problem or OVC alarm is raised.

The fundamental cause of this is a measurement position error. Pitch error compensation can compensate for the scale error but cannot compensate for thermal expansion due to change in temperature.

The synchronous axes automatic compensation function is useful for such cases. The function monitors a torque error between the master and slave and corrects the position on the slave side slowly to reduce the torque error.

Fig. 5.10.1.5 (a) Configuration of the synchronous axes automatic compensation function

(2) Series and editions of applicable servo software

CNIC		Servo software	Demerika		
CNC	Series	Edition	Remarks		
Series 30 <i>i/</i> 31 <i>i/</i> 32 <i>i/</i> 35 <i>i</i> -B Power Motion <i>i</i> -A	90G0	03.0 and subsequent editions			
Series 30 <i>i/</i> 31 <i>i/</i> 32 <i>i</i> -A	90E0 90E1	N(14) and subsequent editions 01.0 and subsequent editions			
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	N(14) and subsequent editions	HRV4		
Series 0 <i>i</i> -D	90C5 90C8	A(01) and subsequent editions A(01) and subsequent editions			
	90E5 90E8	A(01) and subsequent editions A(01) and subsequent editions			

- Supporting the coupling signal and preset function (Series 30i/31i/32i-A)
 Series 90E0/30.0 and subsequent editions
 Series 90E1/05.0 and subsequent editions
 - * Series 0*i*-D does not support them.
- Supporting the compensation amount hold function (Series 30*i*/31*i*/32*i*-A) Series 90E0/U(21) and subsequent editions

Series 90E1/01.0 and subsequent editions

* Series 0*i*-D does not support them.

NOTE

This function cannot be used together with servo HRV4 control.

(3) Setting parameters

• The following parameters are all set for the slave axis (the axis for which an even number is set in parameter No. 1023) only.

From the relationship between the current value generated in the stopped state when this function is disabled and the position error between the synchronized axes, determine the coefficient (K) according to the following expression:

K =	position error/{	current value	$(\%) \times \text{Ir} \times$	7282/6554	} × 4096	 <2>
Ir:	Rated current	in parameter N	lo. 2086		·	

Measure the current value when the problem of a pull is being observed at the release of emergency stop. The position error between the synchronized axes is obtained from the difference in position error between the master axis and slave axis at the time of emergency stop. Normally, the position error of the master axis at the time of emergency stop is 0, so you need to check the position error of the slave axis only. Example)

Suppose that the position error of the slave at the time of emergency stop is 200, the current value at the release of emergency stop is 60% (the percentage to the rating), and 1437 is set in parameter No. 2086 (rated current value):

Settings = $200 / \{ 1437 \times 60/100 \times 7282/6554 \} \times 4096 = 855 \}$

ſ		
	2404	Synchronous axes automatic compensation: Maximum compensation
_	[Unit of da	a] Detection unit
Va	lid data rang	e] 0 to 5000
		Set the maximum compensation amount in synchronous axes automatic compensation.
[2405	Synchronous axes automatic compensation: Filter time constant
	[Unit of da	a] sec
Va	ılid data rang	e] 0 to 10
[T	ypical settir	g] 0 (When a value of 0 is set, 1 second is assumed.)
		Set the time constant for reflecting the twist in position compensation. As a larger time
		constant is set, compensation to release the twist is performed more slowly.
r	-	
ſ	NOTE	
[NOTE 1 This	unction reduces the difference in torque between the master and slave
	NOTE 1 This axes	unction reduces the difference in torque between the master and slave by adding compensation pulses to the slave axis. In the steady state,
	NOTE 1 This axes positi	unction reduces the difference in torque between the master and slave by adding compensation pulses to the slave axis. In the steady state, on error equivalent to the compensation amount is accumulated in the
	NOTE 1 This axes positi slave	unction reduces the difference in torque between the master and slave by adding compensation pulses to the slave axis. In the steady state, on error equivalent to the compensation amount is accumulated in the axis.
	NOTE 1 This axes positi slave 2 This	unction reduces the difference in torque between the master and slave by adding compensation pulses to the slave axis. In the steady state, on error equivalent to the compensation amount is accumulated in the axis. function cannot be used together with the dual position feedback function
ľ	NOTE 1 This axes positi slave 2 This 3 Set p	unction reduces the difference in torque between the master and slave by adding compensation pulses to the slave axis. In the steady state, on error equivalent to the compensation amount is accumulated in the axis. unction cannot be used together with the dual position feedback function.
	NOTE 1 This axes positi slave 2 This 3 Set p 4 When	unction reduces the difference in torque between the master and slave by adding compensation pulses to the slave axis. In the steady state, on error equivalent to the compensation amount is accumulated in the axis. function cannot be used together with the dual position feedback function. arameters on the even-numbered axis side.
	NOTE 1 This axes positi slave 2 This 3 Set p 4 When	function reduces the difference in torque between the master and slave by adding compensation pulses to the slave axis. In the steady state, on error equivalent to the compensation amount is accumulated in the axis. function cannot be used together with the dual position feedback function. arameters on the even-numbered axis side.
	NOTE 1 This axes positi slave 2 This 3 Set p 4 When axes	function reduces the difference in torque between the master and slave by adding compensation pulses to the slave axis. In the steady state, on error equivalent to the compensation amount is accumulated in the axis. function cannot be used together with the dual position feedback function. arameters on the even-numbered axis side. In assigning (No.1023) servo axes to the synchronous master and slave ensure that an odd-numbered axis is assigned to the master axis, and an

Set the following parameter for the odd-numbered axis side (the master axis) only:

2404	Synchronous axes automatic compensation: Dead-band width
[Unit of data]	% unit 100% is equivalent to the rated current.
[Valid data range]	0 to 800
-	If the difference in torque between the master axis and slave axis is within the dead-band
	width, the synchronous axes automatic compensation amount becomes 0.

(4) Signal

• SVDI1n : Coupling signal

	#7	#6	#5	#4	#3	#2	#1	#0
Gn321	SVDI18	SVDI17	SVDI16	SVDI15	SVDI14	SVDI13	SVDI12	SVDI11
[Classification]	Input signal	l						
[Function]	This signal	is used to	disable the	e functions	acting betw	veen synch	ronous axe	s when the
	mechanical	coupling	of the sync	chronous as	kes normall	y driven in	n the coup	led state is
	temporarily	released.						
	This signal	is availab	le also for	the tander	m disturbaı	nce elimina	ation contro	ol, velocity
	feedback av	verage func	tion, and ve	elocity loop	integrator of	copy function	on.	
[Operation]	0: Couple	ed state (Th	e functions	for synchr	onization co	ontrol are tu	urned on.)	
	1: Uncou	pled state (The function	ons for sync	hronization	control are	e turned off	.)

• SVDI5n : Signal for holding the compensation amount in synchronous axes automatic compensation

	#7	#6	#5	#4	#3	#2	#1	#0
Gn325	SVDI58	SVDI57	SVDI56	SVDI55	SVDI54	SVDI53	SVDI52	SVDI51
[Classification]	Input signal	1						
[Function]	This signal	is used to	request the	stop of the	update of t	the synchron	nization co	mpensation
	amount.							
[Oneration]	When the	function t	for holding	the synch	ronization	compensati	on amoun	t (hit 0 of

[Operation] When the function for holding the synchronization compensation amount (bit 0 of parameter No. 2289) is used, setting this signal to "1" stops the update of the synchronization compensation amount.

(4-1)Timing chart

Operation performed when the workpiece is attached and detached (resetting the synchronization compensation amount to 0) * Enabled only when bit 7 of parameter No. 2221 is set to 1.

(5) Application example

The figure below shows how synchronous axes automatic compensation works effectively.

When the master axis and slave axis, which are synchronized axes coupled mechanically, indicate different positions as position B, the master axis and slave axes pull each other, and their TCMD waveforms increase in the opposite directions.

Use of this function allows the position of the slave axis to move slowly to such a position that is balanced with the master axis position, so the problem that the axes pull each other does not occu

5.10.1.6 Functions for sharing a separate detector

If a feedback cable cannot be divided into two as in the case of a serial cable, the following methods are available for sharing one separate position feedback by the main axis and sub-axis.

30 <i>i</i> -A Series, 0 <i>i</i> -D Series	(1) Method for using the full-closed feedback sharing function
30 <i>i</i> -B Series	(2) Method for setting the FSSB

(1) Method for using the full-closed feedback sharing function

<Setting method>

<1> Set bit 1 of parameter No. 2200 to 1 for the slave axis.

<2> Set bit 1 of parameter No. 1815 to 1 and make FSSB setting related to the separate detector for both the master and slave axes. Set the number of the connector to which the separate detector is actually connected for the master axis and the number of an unused connector to which no detector is connected for the slave axis.

(2) Method for setting the FSSB

24099 (FS30 <i>i</i> -B)	Connector number for the fourth separate detector interface unit (1 to 8)				
24104 (FS30 <i>i-</i> B) to 24111 (FS30 <i>i-</i> B)	ATR value corresponding to connector number i on the first separate detector interface unit (No.1023 + 1000)				
24112 (FS30 <i>i-</i> B) to 24119 (FS30 <i>i-</i> B)	ATR value corresponding to connector number i on the second separate detector interface unit (No.1023 + 1000)				
24120 (FS30 <i>i</i> -B) to 24127 (FS30 <i>i</i> -B)	ATR value corresponding to connector number i on the third separate detector interface unit (No.1023 + 1000)				
24128 (FS30 <i>i</i> -B) to 24135 (FS30 <i>i</i> -B)	ATR value corresponding to connector number i on the fourth separate detector interface unit (No.1023 + 1000)				

<Setting method>

- <1> Set bit 0 of parameter No. 1902 to 1 and bit 5 of parameter No. 14476 to 1.
- <2> Set the same connector numbers for the axes sharing the separate detector. (No.24096, No.24097, No.24098, No.24099)
- <3> Set the value of (value of parameter No. 1023 for the axis referencing the connector + 1000) for the ATR value corresponding to the separate detector interface connector number (parameters Nos. 24104 to 24135).

Only one axis can be set for the parameter at a time. So, when multiple axes reference a connector, set the parameter as many times as the number of reference axes. For details, see the example of setting.

Fig. 5.10.1.6 (b) Example of SDU connection

[Setting]

No.1902#0=1, No.14476#5=1

Set 1 for parameter No. 24096 for each axis referencing the separate detector.

Set the value set for parameter No. 1023 for the first axis referencing the separate detector + 1000 for parameter No. 24104.

Set the value set for parameter No. 1023 for the second axis referencing the separate detector + 1000 for parameter No. 24105. Parameters Nos. 24106 and after =1000

5.10.1.7 Examples of position tandem setting

This subsection gives examples of parameter setting.

(1) Full-closed loop system using a 1- μ m increment system, a scale detection unit of 0.5 μ m/P, a linear scale resolution of 0.1 μ m/P, a distance to move per motor revolution of the ball screw of 10 mm, 100000 P per motor revolution for scale feedback, and an α i A1000 Pulsecoder (when the full-closed feedback sharing function is enabled)

Fig. 5.10.1.7 (a) Example of position tandem setting <1>

	Main	Sub
No.1815#1	1	0
No.2200#1	0	1
No.1820	4	4
No.1821	20000	20000
No.2000#0	0	0
No.2023	8192	8192
No.2024	25000	25000
No.2185	4	4
No.2084	1	1
No.2085	5	5
	No.1815#1 No.2200#1 No.1820 No.1821 No.2000#0 No.2023 No.2024 No.2185 No.2084 No.2085	MainNo.1815#11No.2200#10No.18204No.182120000No.2000#00No.20238192No.202425000No.21854No.20841No.20855

(2) Full-closed loop system using a 1-µm increment system, a scale detection unit of 0.5 µm/P, a linear scale detection unit of 0.1 µm/P, a distance to move per motor revolution of the ball screw of 10 mm, 100000 P per motor revolution for scale feedback, an αi A1000 Pulsecoder, an αiSV80 servo amplifier, a torque constant of 0.72Nm/Arms, and a preload torque of 5 Nm (when the full-closed feedback sharing function, velocity loop integrator copy function, and preload function are enabled) For details of the calculation of the preload value, see Subsection 5.10.1.2, "Preload function".

Fig. 5.10.1.7 (b) Example of position tandem setting <2>

		Main	Sub
Full-closed	No.1815#1	1	0
• Full-closed loop feedback sharing function	No.2200#1	0	1
 Velocity loop integrator copy function 	No.2273#1	1	1
• CMR	No.1820	4	4
 Reference counter capacity 	No.1821	20000	20000
 High-resolution Pulsecoder 	No.2000#0	0	0
 Number of velocity pulse 	No.2023	8192	8192
 Number of position pulse 	No.2024	25000	25000
 Position pulse conversion coefficient 	No.2185	4	4
Flexible feed gear	No.2084	1	1
Flexible feed gear	No.2085	5	5
Preload value	No.2087	894	-894

5.10.2 Multiaxis Tandem

(1) Overview

The following methods are available for controlling one axis with two motors: feed axis synchronization control (position tandem control) and torque tandem control. Feed axis synchronization control gives the same command to the master axis and multiple slave axes to control the position. The positions of the master and slave axes are controlled separately. On the other hand, in torque tandem control, the position is controlled only for the main axis^{*1}. Only the torque is controlled for the sub^{*1} axes.

When two or more motors are used for controlling an axis, the multiaxis tandem function is used together with feed axis synchronization control and torque tandem control as shown in the examples below.

^{*}1) When feed axis synchronization control and torque tandem control are used together, to make a distinction between them, the terms master and slave axes are used for the former, while main and sub axes are used for the latter.

Fig. 5.10.2 (b) Example of eight-axis control (tandem control for four axes and synchronization control for four axes)
The multiaxis tandem function can also be used together with feed axis synchronization control with large motors driven by two amplifiers (two-winding motors: $\alpha i S300/2000$, $\alpha i S500/2000$, and $\alpha i S1000/2000$ HV) and those driven by four amplifiers (four-winding motors: $\alpha i S2000/2000$ HV and $\alpha i S3000/2000$ HV).

Fig. 5.10.2 (c) Example of using eight NC axes (four motors with two windings and feed axis synchronization control for four axes)

Fig. 5.10.2 (d) Example of using eight NC axes (two motors with four windings and feed axis synchronization control for two axes)

The multiaxis tandem function enables the velocity loop integrator of the master axis to be copied to two or more slave axes.

When two motors are driven in synchronization, if the rigidity between synchronous axes is high, interference occurs due to a slight difference in the stop position, which may generate torque offset. (An OVC alarm may occur at worst.) To avoid this problem, the velocity loop integrator of the master axis can be copied to the velocity loop integrator of the slave axis to suppress interference between the axes.

A similar problem might occur when a four-axis motor is driven in synchronization or when two pairs of two axes in tandem control are driven in synchronization. To avoid this problem, a function has been added which copies the velocity loop integrator of one of the four axes to the velocity loop integrators of the other axes. (This function is an extension of the conventional velocity loop integrator copy function for two axes that is available for up to four axes.)

Form <1>

One of four axes under feed axis synchronization control is set as the master axis and the integrator of the master axis is copied to the other three axes. (See Fig. 5.10.2 (a))

Form <2>

The integrator is copied between main axes in tandem control for four pairs of tandem control axes. (See Fig. 5.10.2 (b))

Form <3>

There are four motors with two windings. One of the motors with two windings occupies two axes. The torque is copied between the axes. The motor with two windings is used for feed axis synchronization control for the four motors and the integrator is copied between the axes. (See Fig. 5.10.2 (c))

Form <4>

There are two motors with four windings. One of the motors with four windings occupies four axes. The torque is copied among the axes. The motor with four windings is used for feed axis synchronization control for the two motors and the integrator is copied between the axes. (See Fig. 5.10.2 (d))

The same applies when four linear motors are used instead of a motor with four windings.

The multiaxis tandem function can be used together with the simultaneous monitor function to monitor three or more axes simultaneously and stops movement along all axes immediately if a servo alarm occurs or at emergency stop. With this function, the conventional quick stop function and lifting function against gravity can be made available for tandem control for three or more axes.

<u>enc</u>		Servo software	Bomorko		
	Series	Edition	Remarks		
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions			
Power Motion <i>i</i> -A					
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	U(21) and subsequent editions			
	90E1	01.0 and subsequent editions			
Series 30 <i>i/</i> 31 <i>i</i> -A	90D0	-	HRV4		
Series 0 <i>i</i> -D	90C5	-			
	90C8	-			
	90E5	-			
	90E8	-			

(2) Series and editions of applicable servo software

NOTE

This function cannot be used together with HRV4 control.

 (3) Setting parameters
 * In this manual, servo axes are called the axis names respectively according to the setting of parameter No. 1023 for convenience.

30*i*-A 30*i*-B No.1023 =4n+1 : 1 axis =8n+1 : 1 axis =4n+2:2 axes =8n+2:2 axes =4n+3:3 axes =8n+3:3 axes =4n+4:4 axes =8n+4:4 axes =8n+5:5 axes =8n+6:6 axes

<1> Setting for using the integrator copy function for four axes

of Setting 1	#7	#6	#5	#4	#3	#2	#1	#0			
2223		SLTMAS	SLTAN								
SLTAN (#5)	(Set this pa 1: The m	rameter for ultiaxis tan	all of the m dem function	naster and son is enable	lave axes.) ed.	(Power-off	parameter)				
	 * When * When copy f Axis 1 If you to 0. 	this parame this parame function are is used as want to use	eter is chang leter is set enabled fo the master of e the conver	ged, it is ne to 1, the si r three or m of the integ ntional inte	cessary to t multaneous fore axes. rator copy f grator copy	urn the pov monitor f function. function fo	ver to the Cl unction and or two axes,	NC off. integrator set this bit			
	It is necessate. The in	ary to set Sl itegrator co	LTAN = 1 f py function	for all axes is used for	in the confi three or mo	guration whore axes.	nen:				
SLTMAS (#6)	 (Power-off 0: Slave 1: Maste * When * Set this as the parameter 	ower-off parameter) Slave axis of multiaxis tandem Master axis of multiaxis tandem When this parameter is changed, it is necessary to turn the power to the CNC off. Set this parameter to 1 only for the master axis. Only axis 1 on each DSP can be set as the master axis. If an axis other than axis 1 is set as the master axis, an invalid parameter alarm occurs.									
	#7	#6	#5	#4	#3	#2	#1	#0			
2273			-		-		WSVCP				
WSCCP (#1)	 The very (Set 1 This printegra Set the does n When used. 	 The velocity loop integrator of the master axis is copied to the slave axes. (Set 1 for the axes sharing the velocity loop integrator.) This parameter can be used together with SLTAN to enable the velocity loop integrator copy function for three or more axes. Set this parameter to 1 only for the axes sharing the integrator. (The configuration does not contain the sub axis of torque tandem.) When SLTAN is set to 0, the velocity loop integrator copy function for two axes is used. 									
	#7	#6	#5	#4	#3	#2	#1	#0			
2211	PLW4	PLW2	11 0 1		. ~						
PLW4 (#7)	 (Set this parameter for all of the main and sub axes.) (Power-off parameter) 1: A motor with four windings is enabled. * When this parameter is changed, it is necessary to turn the power to the CNC off. * When this parameter is set to 1, the following functions are enabled: • Torque copy for four axes 										

Position feedback sharing for four axes •

* To use this parameter, the tandem control option is necessary. With the Series 30i-B or later, this parameter can be used without the feed axis synchronization control option (tandem control option).

(Set this parameter for the main and sub axes.) (Power-off parameter)

- PLW2 (#6) 1: A motor with two windings is enabled.
 - * When this parameter is changed, it is necessary to turn the power to the CNC off.
 - * When this parameter is set to 1, the following functions are enabled:
 - Torque copy for two axes
 - Position feedback sharing for two axes
 - * To use this parameter, the tandem control option is necessary. With the Series 30i-B or later, this parameter can be used without the feed axis synchronization control option (tandem control option).

For details of parameter setting for a motor with plural windings, see Subsection 2.2.2, "Parameter Setting for the Four-Winding and Two-Winding Modes".

<2> Setting for using velocity tandem

	#7	#6	#5	#4	#3	#2	#1	#0		
2008			VCMDTM				TANDEM			
(Set this parameter for the master axis.)										

- VCMDTM(#5) 1: Velocity tandem control is enabled.
 - * Use this parameter for an axis for which tandem control (option) is enabled.
 - * Feed axis synchronization control is recommended rather than this function.

<3> Setting for using the servo alarm monitor function for four axes

		#7	#6	#5	#4	#3	#2	#1	#0		
2007									ESP2AX		
ESP2AX (#0)	$\frac{1}{1}$ The servo alarm multiaxis monitor function is enabled.										
	*	When	When SLTAN is set to 0, the servo alarm two-axis monitor function is used.								
	*	When	this parar	neter is us	sed togethe	r with SI	LTAN, the	servo ala	rm four-axis		
		monito	or function	is enabled.	C						

 $<\Delta$ > Setting for annihing a preload for more than two axes

-4> Setting for apprying a prefoad for more than two axes											
		#7	#6	#5	#4	#3	#2	#1	#0		
2417					TIMCAL		TIMPR2				
TIM (CAL (#4) Prolocities constant colocities in											

- TIMCAL (#4) Preload time constant calculation is:
 - 0: Not performed. That is, the time constant is 0. (Conventional specification)
 - 1 : Performed.
 - This function reduces a mechanical shock because a preload multiplied by a time constant is applied at the activation of the motor. For the time constant, see the description of TIMPR2 below.
- TIMPR2 (#2) The exponential time constant of the preload function is:
 - 0: Reciprocal number of the position gain (1/s).
 - 1: Four times of the reciprocal number of the position gain (1/s).

2087	Preload value (PRLOAD)							
	A torque offset can be added to the master and slave tandem axes in opposite directions to reduce the backlash between axes.							
	If you want to a preload value for more than two axes, set preload values so that the total value is 0.							
	For details of the preload function, see Subsection 5.10.1.2 "Preload function".							
	[Example of setting 1] Four axes are used. Tension is produced between two axes, and between pairs of two axes.							

5.SERVO FUNCTION DETAILS

Axis No.	Arrange- ment No.1023	Multiaxis tandem No.2223#5	Multiaxis tandem: Master No.2223#6	Integrator copy No.2273#1	Preload No.2087	Remarks
1	1	1	1	1	+600	Master of feed axis synchronization
2	2	1	0	1	-300	Slave of axis 1
3	3	1	0	1	+300	Slave of axis 1
4	4	1	0	1	-600	Slave of axis 1

(4) Example of parameter setting

(4-1) Driving four axes with feed axis synchronization control and using the integrator copy function for the four axes (Form <1>)

Axis No.	Arrange- ment No.1023	Tandem No.1817#6	Multiaxis tandem No.2223#5	Multiaxis tandem: Master No.2223#6	Integrator copy No.2273#1	Multiaxis monitor No.2007#0	Remarks
1	1	0	1	1	1	1	Master of feed axis synchronization
2	2	0	1	0	1	1	Slave of axis 1
3	3	0	1	0	1	1	Slave of axis 1
4	4	0	1	0	1	1	Slave of axis 1

*1) Set feed axis synchronization control for axes 1 to 4.

*2) To use the alarm multiaxis monitor function for axes 1 to 4, set bit 5 of parameter No. 2223 (multiaxis tandem) to 1 and bit 0 of parameter No. 2007 (multiaxis monitor) to 1.

5.SERVO FUNCTION DETAILS

(4-2) Driving four axes with feed axis synchronization control and copying the integrator between axes 1 and 2 and that between axes 3 and 4 (Form <1>)

Axis No.	Arrange- ment No.1023	Tandem No.1817#6	Multiaxis tandem No.2223#5	Multiaxis tandem: Master No.2223#6	Integrator copy No.2273#1	Multiaxis monitor No.2007#0	Remarks
1	1	0	1	1	1	1	Master of feed axis synchronization
2	2	0	0	0	1	1	Slave of axis 1
3	3	0	1	0	0*2	1	Slave of axis 1
4	4	0	0	0	1	1	Slave of axis 1

- *1) Set feed axis synchronization control for axes 1 to 4.
- *2) Set bit 1 of parameter No. 2273 to 0 for axis 3 (3) so that the integrator of axis 1 is not copied to axis 3.
- *3) To use the alarm multiaxis monitor function for axes 1 to 4, set bit 0 of parameter No. 2007 (multiaxis monitor) to 1 and bit 5 of parameter No. 2223 (multiaxis tandem) to 1 for axes 1 and 3.
- (4-3) Driving two axes with feed axis synchronization control, setting tandem control (velocity tandem) for the two axes under feed axis synchronization control, and copying the integrator between the axes under feed axis synchronization control (Form <2>)

Axis No.	Arrange- ment No.1023	Tandem No.1817#6	Velocity tandem No.2008#5	Multiaxis tandem No.2223#5	Multiaxis tandem: Master No.2223#6	Integrator copy No.2273#1	Remarks
1	1	1	1	1	1	1	Master of feed axis synchronization (Main of tandem pair 1)
2	3	1	1	1	0	1	Slave of axis 1 (Main of tandem pair 2)
3	2	1	0	1	0	1	Sub of tandem pair 1
4	4	1	0	1	0	1	Sub of tandem pair 2

*1) Tandem control (velocity tandem) is set for axes 1 and 3, and axes 2 and 4.

*2) Set feed axis synchronization control for axes 1 and 2.

(4-4) Driving four motors with two windings, setting four-axis feed axis synchronization control, and using the integrator copy function for the axes under feed axis synchronization control (Form <3>)

Axis No.	Arrange- ment No.1023	Tandem No.1817#6	Position FB copy No.2018#7	Multiaxis tandem No.2223#5	Multiaxis tandem: Master No.2223#6	Integrator copy No.2273#1	Remarks
1	1 (1-1)	1	0	1	1	1	Master of feed axis synchronization (Main of tandem pair 1)
2	3 (1-3)	1	0	1	0	1	Slave of axis 1 (Main of tandem pair 2)
3	5 (2-1) ^{*4}	1	0	1	0	1	Slave of axis 1 (Main of tandem pair 3)
4	7 (2-3) ^{*4}	1	0	1	0	1	Slave of axis 1 (Main of tandem pair 4)
5	2 (1-2)	1	1	1	0	0	Sub of tandem pair 1
6	4 (1-4)	1	1	1	0	0	Sub of tandem pair 2
7	6 (2-2) *4	1	1	1	0	0	Sub of tandem pair 3
8	8 (2-4) *4	1	1	1	0	0	Sub of tandem pair 4

*1) Set feed axis synchronization control for axes 1 to 4.

*2) The integrator of axis 1 is copied to axes 2 to 4.

*3) Tandem control is set for axes 1 and 5, axes 2 and 6, axes 3 and 7, and axes 4 and 8.

*4) With the Series 30*i*-B, values 9 to 16 must be set for parameter No. 1023 for the second DSP. Therefore, set 9 (2-1) for axis 3, 11 (2-3) for axis 4, 10 (2-2) for axis 7, and 12 (2-4) for axis 8.

Example of setting with the 30*i*-B)

Axis No.	Arrange- ment No.1023	Motor with two windings No.2211#6	Multiaxis tandem No.2223#5	Multiaxis tandem: Master No.2223#6	Integrator copy No.2273#1	Remarks
1	1 (1-1)	1	1	1	1	Master of feed axis synchronization (Main of tandem pair 1)
2	3 (1-3)	1	1	0	1	Slave of axis 1 (Main of tandem pair 2)
3	9 (2-1)	1	1	0	1	Slave of axis 1 (Main of tandem pair 3)
4	11 (2-3)	1	1	0	1	Slave of axis 1 (Main of tandem pair 4)
5	2 (1-2)	1	1	0	0	Sub of tandem pair 1
6	4 (1-4)	1	1	0	0	Sub of tandem pair 2
7	10 (2-2)	1	1	0	0	Sub of tandem pair 3
8	12 (2-4)	1	1	0	0	Sub of tandem pair 4

- *1) Set feed axis synchronization control for axes 1 to 4.
- *2) The integrator of axis 1 is copied to axes 2 to 4.
- *3) Each motor with two windings corresponds to axes 1 and 5, axes 2 and 6, axes 3 and 7, or axes 4 and 8.
- (4-5) Driving two motor with four windings, setting two-axis feed axis synchronization control, and using the integrator copy function for the axes under feed axis synchronization control (Form <4>)

Axis No.	Arrange- ment No.1023	Second axis name No.1025 ^{*4}	Tandem No.1817#6	Motor with four windings 2211#7	Multiaxis tandem No.2223#5	Multiaxis tandem: Master No.2223#6	Integrator copy No.2273#1	Remarks
1	1 (1-1)	49 (_1)	0	1	1	1	1	Master of synchronization
2	5 (2-1) ^{*5}	50 (_2)	0	1	1	0	1	Slave of synchronization
3	2 (1-2)	51 (_3)	0	1	1	0	0	Sub of axis 1
4	3 (1-3)	52 (_4)	0	1	1	0	0	Sub of axis 1
5	4 (1-4)	53 (_5)	0	1	1	0	0	Sub of axis 1
6	6 (2-2) *5	54 (_6)	0	1	1	0	0	Sub of axis 2
7	7 (2-3) *5	55 (_7)	0	1	1	0	0	Sub of axis 2
8	8 (2-4) *5	56 (_8)	0	1	1	0	0	Sub of axis 2

*1) Set feed axis synchronization control for axes 1 and 2.

*2) The integrator of axis 1 is copied to axis 2.

- *3) The four-winding motor function is used to copy the position feedback and torque command from axis 1 to axes 3 to 5 and from axis 2 to axes 6 to 8.For each sub-axis, the position feedback sharing function (bit 7 of parameter No. 2018) is not
- required.*4) In this case, use axis names different from those assigned to axes 1 and 2 for axes other than axes 1 and 2, master and slave axes of synchronization (axes 3 to 8) If the same axis name is used, the actual feedrate becomes lower than the specified speed.
 - Set the bit 0 of parameter No. 1000 (extended axis name function) to 1 so that the setting for parameter No. 1025 for axes 3 to 8 is not the same as that for parameter No. 1025 for axes 1 and 2.
- *5) With the Series 30*i*-B, values 9 to 16 must be set for parameter No. 1023 for the second DSP. Therefore, set 9 (2-1) for axis 2, 10 (2-2) for axis 6, 11 (2-3) for axis 7, and 12 (2-4) for axis 8.

5.10.3 **Turning Functions On and Off Using a PMC Signal**

(1) Overview

PMC signal G321 (coupling flag) can be used to turn the following functions on and off dynamically:

- Integrator copy function
- \Rightarrow See the Item (4) of Subsection 5.10.1.1.
- Tandem disturbance elimination control function \Rightarrow See the Item (5) of Subsection 5.10.1.4. • Synchronous axes automatic compensation
- Velocity feedback average function
- \Rightarrow See the Item (4) of Subsection 5.10.1.5. \Rightarrow See the Item (4) of Subsection 5.10.4.2.

(2) Signal

•

SVDI1n : Coupling signal

	#7	#6	#5	#4	#3	#2	#1	#0
Gn321	SVDI18	SVDI17	SVDI16	SVDI15	SVDI14	SVDI13	SVDI12	SVDI11
[Classification]	Input signal	1						
[Function]	This signal	is used to	disable the	e functions	acting betw	veen synch	ronous axe	s when the
	mechanical	coupling	of the sync	chronous az	kes normall	ly driven in	n the coup	led state is
	temporarily released.							
	This signal	is available	e for the ve	locity loop	integrator c	opy function	on, tandem	disturbance
	elimination	control, s	ynchronous	s axes auto	matic com	pensation f	function, a	nd velocity
	feedback av	verage func	tion.					

- [Operation] 0: Coupled state (The functions are turned on.)
 - 1: Uncoupled state (The functions are turned off.)

(3) Example of using this signal

- <1> The relevant functions are turned off when the workpiece is attached and detached.
 - * Depends on the relevant function bit.

5.10.4 **Torque Tandem Control (Optional Function)**

(1) Overview

This function can copy the torque command for the main axis to the sub-axis to drive the motors for both axes with the same torque command. Therefore, double the torque can be obtained as compared when one axis is driven by a single motor.

(Load sharing mode)

In torque tandem control, however, only the main motor is responsible for positioning. The sub-motor only produces a torque.

By applying a preload torque to produce tension between the main motor and sub-motor, the backlash between gears can be reduced.

(Anti-backlash mode)

Tandem control can also be used together with the motor feedback sharing function to drive linear motors connected in series and motors with plural windings ($\alpha i S300/2000$, $\alpha i S500/2000$, $\alpha i S1000/2000$ HV, $\alpha i S1000/2000$ HV, and $\alpha i S3000/2000$ HV).

Fig. 5.10.4 (a) Block diagram of torque tandem control (usual case)

🕂 WARNING

When torque tandem control is used, position control and velocity control are not exercised on the sub-motor side. Use care.

When two motors are not connected with each other, applying a force to the main motor side is very dangerous, because the sub-motor may make an extremely high-speed rotation.

(2) Series and editions of applicable servo software

CNC		Servo software	Bemerke	
CNC	Series	Edition	Remarks	
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions		
Power Motion <i>i</i> -A				
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	A(01) and subsequent editions		
	90E1	01.0 and subsequent editions		
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	A(01) and subsequent editions	HRV4	
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions		
	90C8	A(01) and subsequent editions		
	90E5	A(01) and subsequent editions		
	90E8	A(01) and subsequent editions		

NOTE

This function cannot be used together with servo HRV4 control.

(3) Start-up procedure

To start tandem control, follow the procedure below.

Fig. 5.10.4 (b) Start-up procedure flowchart

<1> Tandem axis setting

Tandem control is an <u>optional function</u>. (When the NC is not the Series 30*i*-B, the "tandem control" option is necessary. With the Series 30*i*-B, the "feed axis synchronization control" option is necessary.)

Refer to the Parameter Manual of CNC for details.

(\star indicates a tandem axis.)

Number of controlled axes = 6

	Axis No.	Axis name	Servo axis arrangement No.1023	Tandem No.1817#6	Position display No.3115#0	Remarks
★	1	Х	1	1	0	CNC axis (main axis)
★	2	Y	3	1	0	CNC axis (main axis)
	3	Z	5	0	0	CNC axis
★	4	А	2	1	1	Tandem control sub-axis (sub-X-axis)
*	5	В	4	1	1	Tandem control sub-axis (sub-Y-axis)
	6	С	6	0	0	PMC axis

<2> Direction of motor rotation

2022		Direction of motor rotation (DIRCT)						
 Main axis	3: 1	With a forward direction specified, 111 specifies that the main axis motor rotates						
	((counterclockwise as viewed from the motor shaft side, while -111 specifies the opposite lirection.						
Sub avia	· · ·	To cause the sub axis motor to rotate in the same direction as for the main axis specify						

Sub-axis: To cause the sub-axis motor to rotate in the same direction as for the main axis, specify the same value for both the sub-axis and the main axis because of their mechanical structure. To cause the sub-axis motor to reverse, specify a value whose sign is opposite to that for the normal direction. For winding tandem, be sure to specify the values with the same sign.

<3> Position feedback setting

Specify position feedback for both main axis and sub-axis. (See Subsec. 5.10.4.5 for a concrete example.)

* Assume position feedback shown in Fig. 5.10.4.5 (a) not only for the main axis but also for the sub-axis.

 Semi-closed or full-closed loop setting 	No.1815#1
• CMR setting No.1820	
• Setting the reference counter capacity	No.1821
• Setting the high-resolution Pulsecoder	No.2000#0
• Setting the number of velocity pulses	No.2023
• Setting the number of position pulses	No.2024
• Flexible feed gear (numerator) setting	No.2084
• Flexible feed gear (denominator) setting	No.2085

(4) Descriptions of servo parameters for adjustment

The load inertia ratio to be specified for axes subjected to tandem control differs from that for ordinary axes.

	2021		Load inertia ratio (LDINT)
[St	andard setting	g] (Load inertia/motor inertia) × 256
	(NOTI	Ē) Ii	n typical tandem control, the total load inertia of the machine is borne by two motors. So,
		(calculate the load inertia for the above formula as follows:
		(Load inertia) = (Total load inertia of machine)/2
Exa	ample of setti	ng	The example shown in Fig. 5.10 (a) is used. Assume that the inertia of each section
		6	applied to the motor shaft as follows:
			Inertias of the reducers of the main- and sub-axes: J1m, J1s
			Inertias of the pinions of the main- and sub-axes: J _{2m} , J _{2s}
		•	Inertia of the rack: J ₃
			(Total load inertia of the machine) = $J_{1m} + J_{2m} + J_3 + J_{1s} + J_{2s}$
			When the total load inertia of the machine is double that of the motor inertia, for

When typical tandem control is used: (Load inertia ratio) = $(2/2) \times 256 = 256$ The result obtained from the above formula may cause oscillation due to the mechanical structure. In such a case, set a smaller value.

• Notes on stable tandem control operation

To ensure stable tandem control operation, the machine must be capable of performing back-feed. "Back-feed" means the feasibility that the axis can be driven not only from the motor side, but also from the machine side. In this description, when the sub-axis can be moved from the main axis and the main axis can be moved from the sub-axis through the connected transmission feature, it is assumed that the axis can also be driven from the machine and back-feed is enabled. If back-feed is disabled, operation becomes unstable and it is necessary to adjust the machine.

The user can check whether the back-feed capability is enabled. To make this check in the case of the example shown in Figs. 5.10 (a) and (b), turn the main motor with the power line for the sub-motor disconnected, and check that the main motor can be turned with one-third or less of the rated torque of the motor (See (2) in Subsec. 5.10.4.5). If the sub-motor cannot be turned due to a mechanical cause, the axis cannot be moved from the machine. In this case, a higher torque than necessary is produced on the main motor.

5.10.4.1 Damping compensation function

To enable more stable tandem control, a torque offset can be applied to the sub-axis, or to both the mainand sub-axes to eliminate a difference in speed, if any, between the main- and sub-axes.

This function is particularly useful for controlling the vibration (with a frequency of several Hz to 30 or 40 Hz) that may occur in a machine system with low spring rigidity.

1: Enables the damping compensation function for the main- and sub-axes. Usually, set this bit to 0.

2036	Damping compensation gain Kc (ABPGL)
	(Set this parameter for the main axis only.)
[Valid data range]	0 to 16384
[Setting method]	$Kc \times 32768 \ (0 \le Kc < 0.5)$
	A function bit is not supported for the damping compensation function; the damping
	compensation function is enabled at all times. When 0 is set in this parameter, the
	damping compensation function is ineffective.
2036	Damping compensation phase coefficient α (ABPHL)
	(Set this parameter for the sub-axis only.)
[Valid data range]	51 to 512
[Setting method]	$\alpha \times 512 \ (0.1 \le \alpha \le 1.0)$
	When 0 is set in this parameter, this setting is internally handled as 512 ($\alpha = 1$), When α
	= 1, phase compensation is not performed. Instead, the set value is output to Kc as is.
(Example of adjust	ment)
	The speeds of the motors are checked using the Servo Guide (when the motors rotate in
	the same direction).
	This function may be useful when the oscillation frequencies (several Hz to 30 or 40 Hz)
	are the same, and the phases are opposite as shown below.
	NOTE
	NOTE 1. When the directions of rotation of the main motor and sub-motor
	are different, the phase relationship is reversed
	2 When the phase difference is not 180° the phase coefficient α
	\sim when the phase difference is not roo, the phase coefficient α
	aradually
	graddany.
Motor spe	red (main)
	\wedge
	a fan se hen se fan se hen fan se hen se fan se
ų.	

Fig. 5.10.4.1 (b) Motor speed vibration

- Adjustment procedure for damping compensation

- 1 When the dual-position feedback function is used, set a time constant (parameter No. 2080) of 200 and adjust the setting to ensure stable axis movement.
- 2 Set 0 or 512 as phase coefficient α . [Sub-axis No. 2036]

If 512 is set, the value may have to be reduced when the vibration phase difference between the motors is other than 180° .

- Set a damping gain of 3277.
 [Main axis No. 2036]
 To reduce the vibration, this value must be increased or decreased.
 Be careful not to increase this value excessively. Otherwise, high-frequency vibration will occur.
 When adjusting this parameter, apply the maximum axis load.
- 4 Repeat steps 2 through 4 until smooth movement is achieved.

NOTE

To observe the motor speeds along the main axis and sub-axis using SERVO GUIDE, select ABS (absolute position detected by the detector built into the motor) on the Channel dialog and Diff1(VT) on the Operation and Display page, and display a graph. When POSF (position feedback) is selected, the motor position is assumed in the semi-closed mode and the machine position is assumed in the full-closed mode.

5.10.4.2 Velocity feedback average function

As can be seen from the tandem control block diagram shown in Fig. 5.10.4.6 in Subsec. 5.10.4.6, velocity control is not applied to the sub-axis motor. For this reason, the sub-axis may vibrate and become unstable due to a backlash such as, for example, in the gears, in a machine with a large backlash. In such a case, the machine can be made stable by applying velocity control to the sub-axis as well. This function is referred to as the velocity feedback average function.

PMC signal Gn321 can be set to 1 to turn the velocity feedback average function off during NC program operation. For details, see Subsection 5.10.3, "Turning Functions On and Off Using a PMC Signal".

5.10.4.3 Motor feedback sharing function

To achieve improved thrust, two linear motors may be connected in series.

When linear motors are connected in series, one position feedback signal, which is originally available for the main axis, is to be shared by the sub-axis as well. In this case, the motor feedback sharing function can be used

This function can also be used when a motor with plural windings (αi S300/2000, αi S500/2000, αi S1000/2000HV, αi S1000/2000HV, αi S1000/2000HV, αi S2000/2000HV, or αi S3000/2000HV) is used.

NOTE

When using this function in a full-closed loop system, the main axis shares its separate detector feedback loop with the sub-axis.

5.SERVO FUNCTION DETAILS

B-65270EN/08

sub-axis.

5.10.4.4 Tandem speed difference alarm function

(1) Overview

Torque tandem control is a method of control for driving a rigidly connected machine by using two motors. The speed of the sub-axis side is not controlled. This means that if the mechanical connection is canceled and a force is applied to the main axis side, the sub-axis can rotate at an unnecessarily high speed. This function monitors the speed difference between the main axis and sub-axis, and when the parameter-set threshold is exceeded, "SV0641 SPEED DIFFERENCE ALARM" is detected.

CNC		Servo software	Remarks	
CNC	Series	Edition		
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions		
Power Motion <i>i</i> -A				
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	L(12) and subsequent editions		
	90E1	01.0 and subsequent editions		
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	L(12) and subsequent editions	HRV4	
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions		
	90C8	A(01) and subsequent editions		
	90E5	A(01) and subsequent editions		
	90E8	A(01) and subsequent editions		

(2) Series and editions of applicable servo software

The following table lists the series and editions of system software that support the message display of "SV0641 SPEED DIFFERENCE ALARM". Note that if NC software that does not support the message display of alarm SV0641 is used, the message "SV0448 UNMATCHED FEEDBACK ALARM" is displayed when this alarm is issued.

B-65270EN/08

5.SERVO FUNCTION DETAILS

CNC	System software				
CNC	Series	Edition			
Series 30 <i>i</i> -A	G00C,G01C,G02C	27 and subsequent editions			
	G004,G014,G024	01 and subsequent editions			
Series 31 <i>i</i> -A5	G12C,G13C	27 and subsequent editions			
	G124,G134	01 and subsequent editions			
Series 31 <i>i</i> -A	G103,G113	04 and subsequent editions			
	G104,G114	01 and subsequent editions			
Series 32 <i>i</i> -A	G203	04 and subsequent editions			
	G204	01 and subsequent editions			
Series 0 <i>i</i> -MD	G4F1	01 and subsequent editions			
Series 0 <i>i</i> -TD	D6F1	01 and subsequent editions			
Series 0 <i>i</i> Mate-MD	G5F1	01 and subsequent editions			
Series 0 <i>i</i> Mate-TD	D7F1	01 and subsequent editions			

For the series 30*i*/31*i*/32*i*/35*i*-B and Power Motion *i*-A, all series and editions support this function.

(3) Setting parameters

Set new parameters only with the sub-axis of tandem control.

	#7	#6	#5	#4	#3	#2	#1	#0	
2007				VLDALM					
VLDALM (#4)	The tandem	speed diff	erence alarr	n function	is:				
	0: Used.	Used. (The tandem speed difference alarm function is enabled by default.)							
	1: Not us	1: Not used.							
2357			Maximum	permitted ta	ndem speed	difference			
[Valid data range]	0 to 2000								
[Unit of data]	min^{-1} (10 m	m/min whe	en a linear n	notor is use	d)				
	When 0 is	set in this	parameter	, the thresh	hold for the	e tandem s	peed differe	ence alarm	
	function is	set to 1000	by default.	~					

5.10.4.5 Example of torque tandem setting

(1) Examples of parameter setting

This section gives examples of parameter setting.

(a) Semi-closed loop system using a command unit of 1/1000 deg, a detection unit of 1/1000 deg, a rotary axis with a gear reduction ratio of 1/984, and an αi A1000 Pulsecoder

Fig. 5.10.4.5 (a) Example of torque tandem setting <1>

		Main	Sub
Tandem axis	No.1817#6	1	1
Semi-closed loop	No.1815#1	0	0
CMR	No.1820	2	2
Reference counter capacity	No.1821	15000	15000
• Reference counter capacity (denominator)	No.2179	41	41
High-resolution Pulsecoder	No.2000#0	0	0
Number of velocity pulses	No.2023	8192	8192
Number of position pulses	No.2024	12500	12500
Flexible feed gear	No.2084	3	3
Flexible feed gear	No.2085	8200	8200
(NOTE) $\frac{360000/984}{1000000} = \frac{36}{98400} = \frac{3}{8200}$	$\frac{360000}{984} = \frac{15000}{41}$		

- 1000000 984 98400 8200
- (b) Semi-closed loop system using a command unit of $0.1 \,\mu\text{m}$, a detection unit of $0.1 \,\mu\text{m}$, 10 mm stroke per motor revolution, and an αi S300 motor (winding tandem)

Fig. 5.10.4.5 (b) Example of torque tandem setting <2>

			Main	Sub
•	Tandem axis	No.1817#6	1	1
•	CMR	No.1820	2	2
•	Reference counter capacity	No.1821	100000	100000
•	High-resolution Pulsecoder	No.2000#0	0	0
•	Motor feedback sharing function	No.2018#7	0	1
•	Number of velocity detection pulses	No.2023	8190	8190
•	Number of position detection pulses	No.2024	12500	12500
•	Flexible feed gear	No.2084	1	1
•	Flexible feed gear	No.2085	10	10

(2) Back-feed confirmation method

"Back-feed" means the feasibility that the axis can be driven not only from motor side but also from machine table side. In this description, when the sub-axis can be moved from the main axis and the main axis can be moved from the sub-axis through the connected transmission feature, it is assumed that the axis can also be driven from the machine and back-feed is enabled.

- Check whether back-feed is possible when the machine is connected and the power line is removed. (a) If back-feed is impossible, unstable control will result, and machine adjustment such as a gear box adjustment will be necessary.
 - <1> Making a check manually

First, turn the shaft of the main motor manually to check that the sub-motor turns. Next, turn the shaft of the sub-motor manually to check that the main motor turns. If these checks are successful, back-feed is possible.

<2> Making a check using NC commands

After checking (b) and (c) below, remove the sub-motor power line. Then, enter a plus (+) command or minus (-) command to rotate the main motor. Check that the main motor can be turned with one-third or less of its rated static torque. When this check is successful, back-feed is possible.

When inertia is low and the motor shaft can be turned manually, whether back-feed is possible can be determined using method <1>. If inertia is large or the machine has a complex configuration, whether back-feed is possible cannot be determined by turning the shaft manually. In this case, use method <2>.

(b) With the machine connected, activate the motors. At this time, release the emergency stop state after reducing the torque limit by a factor of about 10. Check the motor current on the servo adjustment screen. If the current increases gradually, the

directions of rotation of the main- and sub-motors may not be set correctly.(c) Check the operation by entering a plus (+) command and minus (-) command.

If the error persists due to friction load, increase the torque limit.

(d) If the operation is normal, return the torque limit to its original value, and then set a preload value.

(3) Adjustment items

If vibration occurs:

- Check the position feedback setting (<3> in Subsec. 5.10.4 (3)).
- With SERVO GUIDE, check TCMD, ABS(VT display), and POSF(VT display). (With the check board, check the Vcmd, Tcmd, and SPEED signals.)
- (a) A higher gear reduction ratio tends to produce more backlash, such that unstable operation will result from the sub-axis running between backlashes.
 - \rightarrow Enable the velocity feedback average function. (Bit 2 of No.2008 = 1)
- (b) The main axis and sub-axis vibrate at the same frequency (several Hz to 30 or 40 Hz) as a result of the spring rigidity being low.

(The twist rigidity is proportional to the second power of the gear reduction ratio, so that the frequency is probably a lower resonant frequency.)

 \rightarrow Enable damping compensation.

(See the adjustment procedure described in Subsec. 5.10.4.1.) (Bit 2 of No.2008 = 1)

- (c) The operation of a full-closed-loop system is unstable.
 - \rightarrow Check the position feedback setting (<3> in Subsec. 5.10.4.) If the parameters are set correctly, place the system in semi-closed loop mode, then adjust the system to achieve stable operation. Then, return the system to full-closed loop mode. If the operation is still unstable, apply a function such as the dual position feedback function.
- (d) In the stop state, no tension is established between the main axis and sub-axis.
 - → Set a preload value of 0, and check the torque in the stop state. Then, set a preload value greater than the stop-state torque. (No.2087)
- (e) Position-dependent vibration occurs.
 - \rightarrow Change the feedrate to determine whether the vibration frequency is constant or proportional to the feedrate.

If the vibration frequency is proportional to the feedrate, position-dependent vibration is occurring. Check position-related items such as the number of gear teeth.

5.10.4.6 Block Diagrams

(1) Tandem control

5.10.5 **Velocity Tandem Control**

The tandem control option is necessary.

With torque tandem control, the position and velocity of the slave side tend to be unstable because they are not controlled. In this case, the velocity tandem control + velocity loop integrator control function can be used to make them stable. They can be controlled stably as compared with tandem control. The preload function can also be used together.

The use of the position tandem control + velocity loop integrator copy function together with the feed axis synchronization control is recommended. Position tandem control can control the position of the slave side to allow driving with higher precision as compared with velocity tandem control.

Set this parameter for both the master and slave axes.

5.11 TORQUE CONTROL FUNCTION

(1) Overview

In PMC axis control, control according to the torque command can be used. The servo motor produces a torque as specified by the NC. Note that the user can switch between position control and torque control.

(2) Control types

Two types of torque control are supported: type 1 and type 2. Generally, use type 2. The two types are explained below.

Torque control type 1 (i)

The motor produces a torque according to a torque command specified by the PMC. A servo alarm SV0422, "EXCESS VELOCITY IN TORQUE" is issued if the speed of the motor exceeds the maximum feed rate specified by the PMC.

A block diagram of torque control type 1 is shown below.

Fig. 5.11 (a) Torque control type 1

(ii) Torque control type 2

The motor produces a torque according to a torque command specified by the PMC.

When the motor is loaded, it produces a torque according to a torque command. When it is not loaded, it rotates at a constant speed (maximum feed rate).

Fig. 5.11 (b) Torque control type 2

* Basically, torque control type 2 performs speed control to cause the limiter to operate on a command from the speed controller according to a torque command specified by the PMC. This causes the motor to produce a torque that matches the torque command when it is loaded and to rotate at a constant speed (maximum feed rate) when it is not loaded.

(3) Series and editions of applicable servo software

CNC		Servo software	Demerke	
CNC	Series	Edition	Remarks	
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions		
Power Motion <i>i</i> -A				
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	A(01) and subsequent editions		
	90E1	01.0 and subsequent editions		
Series 30 <i>i/</i> 31 <i>i</i> -A	90D0	A(01) and subsequent editions	HRV4	
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions		
	90C8	A(01) and subsequent editions		
	90E5	A(01) and subsequent editions		
	90E8	A(01) and subsequent editions		

(4) Setting parameters

This manual describes servo-related parameters only.

NOTE

For details about the setting of the torque control function for each CNC, refer to "PMC Axis Control" in the respective CNC Connection Manual (Function).

2105

Torque constant

This parameter is used to specify a motor-specific torque constant. The units are as follows:

0.00001 N·m/(torque command) for a rotary motor

0.001 N·m/(torque command) for a linear motor

NOTE

- 1 When the initial parameter setting function (Sec. 2.1) is used, a motor-specific value is set automatically.
- 2 When torque control is set, the following functions are disabled:
 - Velocity loop high cycle management function
 - Acceleration feedback function
- 3 To use torque control type 2, disable the variable proportional gain function in the stop state.
- 4 Multiaxis tandem and torque control cannot be used simultaneously.

5.12 USING A SERVO MOTOR FOR SPINDLE CONTROL

(1) Overview

The spindle control function by a servo motor can be used to perform spindle speed functions including the spindle speed command and rigid tapping with a servo motor. This section explains the speed arrival signal, and zero-speed detecting signal, and load meter display when a servo motor is used as a spindle. For details of the spindle speed functions by a servo motor, refer to the "Connection Manual (Function)" for the relevant CNC (Series 30*i*/31*i*/32*i*-A: B-63943EN-1, Series 30*i*/31*i*/32*i*-B: B-64483EN-1, Series 35*i*-B: B-64523EN-1, Series 0*i*-D: B-64303EN-1).

5.12.1 Speed Arrival Signal and Zero-Speed Detecting Signal

(1) Overview

The speed arrival signal (SVSAR) and zero-speed detecting signal (SVSST) are available in the same way as for spindle control.

This function is enabled when the spindle control function by a servo motor is used. For details of the spindle speed functions by a servo motor, refer to the "Connection Manual (Function)" for the relevant CNC (Series 30i/31i/32i-A: B-63943EN-1, Series 30i/31i/32i-B: B-64483EN-1, Series 35i-B: B-64523EN-1, Series 0i-D: B-64303EN-1).

(2) Series and editions of applicable servo software

Supporting the speed arrival signal and zero-speed detecting signal

CNC		Servo software	Pomarke	
CNC	Series	Edition	Remarks	
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions		
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	T(20) and subsequent editions		
	90E1	01.0 and subsequent editions		
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	T(20) and subsequent editions	HRV4	
Series 0 <i>i</i> -D	90C5	-		
	90C8	D(04) and subsequent editions		
	90E5	-		
	90E8	D(04) and subsequent editions		

CNC		Servo software	Remarks	
CNC	Series	Edition		
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	20.0 and subsequent editions		
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	33.0 and subsequent editions		
	90E1	08.0 and subsequent editions		
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	-	HRV4	
Series 0 <i>i</i> -D	90C5	-		
	90C8	D(04) and subsequent editions		
	90E5	-		
	90E8	D(04) and subsequent editions		

• Supporting the speed arrival signal in low speed mode

To use the speed arrival signal (SVSAR) and zero-speed detecting signal (SVSST), the following series and edition of system software are necessary.

CNC	System software				
CNC	Series	Edition			
Power Motion <i>i</i> -A	88H0	-			
Series 30 <i>i</i> -A	G00C,G01C,G02C	30 and subsequent editions			
	G004,G014,G024	01 and subsequent editions			
Series 31 <i>i</i> -A5	G12C,G13C	30 and subsequent editions			
	G124,G134	01 and subsequent editions			
Series 31 <i>i</i> -A	G103,G113	30 and subsequent editions			
	G104,G114	01 and subsequent editions			
Series 32 <i>i</i> -A	G203	30 and subsequent editions			
	G204	01 and subsequent editions			
Series 0 <i>i</i> -MD	D4F1	25 and subsequent editions			
Series 0 <i>i</i> -TD	D6F1	25 and subsequent editions			
Series 0 <i>i</i> Mate-MD	-	-			
Series 0 <i>i</i> Mate-TD	D7F1	25 and subsequent editions			

For the series 30*i*/31*i*/32*i*/35*i*-B, all series and editions support this function.

(4) Setting parameters

• Detection of the speed arrival signal

2482

Detection level of speed arrival (SARTLV)

[Valid data range] 0 to 1000

[Unit of data] 0.1%

[Standard setting] 0 (Set value 0 means 15% internally.)

The detection level of speed arrival means the ratio to the specified speed. When the difference between the specified speed and actual speed becomes lower than (specified speed \times detection level of speed arrival (parameter No. 2482)), it is assumed that the specified speed is reached and the speed arrival signal SVSARn is set to 1.

• Support of the speed arrival signal in low speed mode An offset speed can be set so that the detection level of speed arrival becomes too low in low speed mode. This allows the stable detection of the speed arrival signal. A hysteresis speed can also be set to prevent the fluctuation of the speed arrival signal.

	#7	#6	#5	#4	#3	#2	#1	#0
2422(FS30 <i>i</i>)							SVSAR1	SVSAR2
SVSAR1	Coefficient	for the dete	ection level	of speed an	rrival 1			
SVSAR2	Coefficient	for the dete	ection level	of speed an	rrival 2			

Relationships between the offset speed and hysteresis speed

SVSAR1	SVSAR2	Offset speed	Hysteresis speed	Remarks
0	0	50min⁻¹	20min ⁻¹	Recommended (αi , βi motor)
0	1	10min ⁻¹	5min ⁻¹	
1	0	5min⁻¹	2min ⁻¹	Recommended (DiS motor)
1	1	2min ⁻¹	1min ⁻¹	

Operation of the speed arrival signal (details)

A hysteresis speed is set to prevent the fluctuation of the spindle arrival signal.

• Detection of the zero-speed detecting signal

```
2483
```

Detection level of speed zero (SSTLV)

[Valid data range] 0 to 10000

[Unit of data] min⁻¹

[Standard setting] 0 (Set value 0 means 45 min⁻¹ internally.)

The detection level of speed zero means the speed (min^{-1}) at which the motor is determined to stop. When the actual speed becomes lower than the detection level of speed zero, it is assumed that the motor stops and the zero-speed detecting signal SVSSTn is set to 1.

(5) Signal

Speed arrival signal SVSAR1 to SVSAR8<Fn377>

[Classification] Output signal

[Function] This signal notifies that the actual speed of the servo motor reaches the range specified in advance for the speed specified in spindle control by the servo motor.

- [Output cond.] This signal is set to "1" when the specified speed is reached.
 - This signal is set to "0" when the specified speed is not reached.

Zero-speed detecting signal SVSST1 to SVSST8<Fn376>

[Classification] Output signal

[Function] This signal notifies that the speed of the servo motor in spindle control by a servo motor becomes lower than or equal to the detection level of speed zero.

- [Output cond.] This signal is set to "1" when the actual speed becomes lower than or equal to the detection level of speed zero.
 - This signal is set to "0" when the actual speed is higher than the detection level of speed zero.

#7	#6	#5	#4	#3	#2	#1	#0
SVSST8	SVSST7	SVSST6	SVSST5	SVSST4	SVSST3	SVSST2	SVSST1
#7	#6	#5	#4	#3	#2	#1	#0
SVSAR8	SVSAR7	SVSAR6	SVSAR5	SVSAR4	SVSAR3	SVSAR2	SVSAR1
	#7 SVSST8 #7 SVSAR8	#7 #6 SVSST8 SVSST7 #7 #6 SVSAR8 SVSAR7	#7 #6 #5 SVSST8 SVSST7 SVSST6 #7 #6 #5 SVSAR8 SVSAR7 SVSAR6	#7 #6 #5 #4 SVSST8 SVSST7 SVSST6 SVSST5 #7 #6 #5 #4 SVSAR8 SVSAR7 SVSAR6 SVSAR5	#7 #6 #5 #4 #3 SVSST8 SVSST7 SVSST6 SVSST5 SVSST4 #7 #6 #5 #4 #3 SVSAR8 SVSAR7 SVSAR6 SVSAR5 SVSAR4	#7 #6 #5 #4 #3 #2 SVSST8 SVSST7 SVSST6 SVSST5 SVSST4 SVSST3 #7 #6 #5 #4 #3 #2 SVSAR8 SVSAR7 SVSAR6 SVSAR5 SVSAR4 SVSAR3	#7 #6 #5 #4 #3 #2 #1 SVSST8 SVSST7 SVSST6 SVSST5 SVSST4 SVSST3 SVSST2 #7 #6 #5 #4 #3 #2 #1 SVSAR8 SVSAR7 SVSAR6 SVSAR5 SVSAR4 SVSAR3 SVSAR2

* In the emergency stop state, speed arrival signal SVSARn is set to 0. This signal is set to 0 when the servo software recognizes emergency stop. When an emergency stop is applied during rotation or the DB stops after an alarm occurs, SVSARn is set to 0 even in the speed arrival state.

- * When the servo off signal is input, speed arrival signal SVSARn is also set to 0.
- * Zero-speed detecting signal SVSSTn is a status signal, which is always monitored. So, the signal status changes according to the actual motor speed. (Emergency stop, alarm, servo-off, and other conditions do not affect this signal.)
- * If an alarm occurs in the detector built into the motor, such as when the feedback cable is broken, however, feedback data becomes unpredictable, and the output of the signal may be invalid.

These two signals cannot be used as a function (safety function) for protecting operators from danger due to machine operation.

5.12.2 Control Stop Judgment in the Quick Stop Function at Emergency Stop

(1) Overview

When a large servo motor is used for a spindle, it may take at least several seconds until the motor stops even by deceleration with the maximum torque since inertia is large. If you want to apply the quick stop function at emergency stop for such an axis, it is necessary to set at least several seconds for the timer for the emergency stop signal to secure the time required for control stop. Since it is difficult to estimate the time precisely, however, excitation may be cut off before the completion of control stop. To prevent this problem, a longer time is set for the timer and excitation is cut off when the motor is determined to be in the stopped state according to the zero-speed detecting signal (SVSSTn) to stop the motor surely.

(2) Series and editions of applicable servo software

		Servo software	Remarks	
CNC	Series	Edition		
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions		
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	Y(25) and subsequent editions		
	90E1	01.0 and subsequent editions		
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	Y(25) and subsequent editions	HRV4	
Series 0 <i>i</i> -D	90C5	-		
	90C8	-		
	90E5	-		
	90E8	-		

To use the zero-speed detecting signal (SVSST), the following series and edition of system software are necessary.

5.SERVO FUNCTION DETAILS

CNC	System software				
CNC	Series	Edition			
Power Motion <i>i</i> -A	88H0	-			
Series 30 <i>i</i> -A	G00C,G01C,G02C	30 and subsequent editions			
	G004,G014,G024	01 and subsequent editions			
Series 31 <i>i</i> -A5	G12C,G13C	30 and subsequent editions			
	G124,G134	01 and subsequent editions			
Series 31 <i>i</i> -A	G103,G113	30 and subsequent editions			
	G104,G114	01 and subsequent editions			
Series 32 <i>i</i> -A	G203	30 and subsequent editions			
	G204	01 and subsequent editions			
Series 0 <i>i</i> -MD	D4F1	25 and subsequent editions			
Series 0 <i>i</i> -TD	D6F1	25 and subsequent editions			
Series 0 <i>i</i> Mate-MD	-	-			
Series 0 <i>i</i> Mate-TD	D7F1	25 and subsequent editions			

For the series 30i/31i/32i/35i-B, all series and editions support this function.

(3) Parameter To enable this function, set SSTMCC to 1.

	#7	#6	#5	#4	#3	#2	#1	#0
2422(FS30 <i>i</i>)				SSTMCC				
SSTMCC(#4)	When the c	quick stop f	unction at	emergency	stop is ena	bled and th	e zero-spee	d detecting
	signal (SVS	SSTn) is set	to 1, the ex	citation of	the amplifi	er is:		
	0: Not cu	ut off.						
	1: Cut of	f.						
2483(FS30 <i>i</i>)			Detec	tion level of s	speed zero (S	STLV)		
[Valid data range]	0 to 10000							
[Unit of data]	min ⁻¹		1					
[Standard setting]	0 (Set value	e 0 means 4	5 min ⁻¹ inte	ernally.)		1		
	The detect	ion level of	of speed z	ero means	the speed	$l (min^{-1})$ at	t which th	e motor is
	determined	to stop. W	when the ad	ctual speed	becomes	lower than	the detection	on level of
	speed zero	, it is assu	umed that	the motor	stops and	the zero-s	peed detec	ting signal
	SVSSTn is	set to 1.						
T 1		1 0 1				1.0.1	• •	
To set at least s	several seco	nds for the	timer for t	he emerger	icy stop sig	gnal for the	quick stop	function at
emergency stop	, it is necess	sary to set a	longer per	riod not onl	y for the bi	ake control	timer, but	also for the
emergency stop	signal of th	$\alpha i PS$. For	r the emerg	ency stop ti	imer of the	$\alpha i PS$, up to	400 ms car	n be set. To
set a longer value	ue, prepare a	an external	timer.					
(For details, see	e Section 5.8	3, "CONTR	OL STOP I	FUNCTION	VS".)			
								i
2083(FS30 <i>i</i>)				Brake co	ntrol timer			
[Unit of data]	ms							
[Valid data range]	0 to 32000r	ns						
	#7	#6	#5	#4	#3	#2	#1	#0
2210(FS30 <i>i</i>)		ESPTM1	ESPTM0		-			
	L	1	1	1	1	L	1	

ESPTM1	ESPTM0	Delay time
0	0	50ms (Default value)
0	1	100ms
1	0	200ms
1	1	400ms

havilt into the . • 1.0 .

5.12.3 Load Meter Display

(1) Overview

In the same way as when a spindle motor is used, the motor output can be displayed in POWER (%) in the servo tuning screen of the NC, using the rated current as the reference value (100%) in the constant motor torque area or the actual torque to the continuous rated output as the reference value (100%) in the constant output area.

This function is set with the motor standard parameter values. You do not need to change the values. According to whether torque characteristic switching (bit 5 of parameter No. 2014) is enabled or disabled, however, the display on the servo tuning screen is changed from CURRENT (%) to POWER (%), regardless of whether the spindle control function by a servo motor is enabled or disabled. When bit 5 of parameter No. 2014 is set to disable the function, CURRENT (%) is displayed, for which the rated current is used as the reference value (100%) as conventional.

For details of the load meter display of servo motor, refer to the " Operator's Manual (Common to Lathe System/Machining Center System)" for the relevant CNC (Series 30i/31i/32i-A: B-63944EN, Series 30*i*/31*i*/32*i*-B: B-64484EN, Series 35*i*-B: B-64524EN, Series 0*i*-D: B-64304EN).

5.SERVO FUNCTION DETAILS

(2) Series and editions of applicable servo software

CNC		Servo software	Demerika	
CNC	Series	Edition	Remarks	
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	09.0 and subsequent editions		
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	-		
	90E1	04.0 and subsequent editions		
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	-	HRV4	
Series 0 <i>i</i> -D	90C5	D(04) and subsequent editions		
	90C8	A(01) and subsequent editions		
	90E5	D(04) and subsequent editions		
	90E8	A(01) and subsequent editions		

5.13 COMPENSATION FOR REVERSE OPERATION IN HIGH-SPEED FSSB RIGID TAPPING

(1) Overview

When the high-speed FSSB rigid tapping function is used, synchronization error may be generated due to delay of reverse operation of the servo motor at the start of tapping and at the hole bottom. Compensation for reverse operation in high-speed FSSB rigid tapping can be used to decrease synchronization error at the start of tapping and at the hole bottom.

* For setting of the high-speed FSSB rigid tapping, refer to the "Connection Manual (Function)" for the CNC (B-64483EN-1).

(2) Series and editions of applicable servo software

CNC		Servo software	Domosko
CNC	Series	Edition	Remarks
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0 12.0 and subsequent editions		

(3) Setting parameters

To use compensation for reverse operation in high-speed FSSB rigid tapping, set the following parameters.

	#7	#6	#5	#4	#3	#2	#1	#0
2423					RGDFRC	RGDBLA		
RGDBLA (#2)	Compensati	ion for reve	erse operatio	on and at th	e start of hi	gh-speed F	SSB rigid ta	apping is:
	0: Disabl	ed.	_				-	
	1: Enable	ed.						
RGDFRC (#3)	Compensat	ion for reve	erse operati	on and at the	he start of	high-speed	FSSB rigid	l tapping is
	enabled:		_				-	
	0: Only f	for reverse	operation.					
	1: For re-	verse opera	tion and at	the start of	tapping.			

2613	Compensation amount for reverse operation in high-speed FSSB rigid tapping
[Unit of data]	0.01% (Set value 10000 is equivalent to the maximum current of the amplifier.)
	Set the compensation amount for reverse operation in the high-speed FSSB rigid tapping
	mode.

(4) Caution

* When compensation for reverse operation and at the start is enabled (bit 2 of parameter No. 2423 is set to 1), the backlash acceleration function and static friction compensation are disabled.

(5) Standard compensation amount

Observe the TCMD (torque command) waveform during reverse operation (at the hole bottom) and use the difference between TCMD immediately before reverse operation and TCMD immediately after reverse operation as the standard compensation amount.

5.14 FUNCTION FOR OBTAINING CURRENT OFFSETS AT EMERGENCY STOP

(1) Overview

The current offset is a current feedback offset value arising from the analog offset voltage of the current detector. If the current offset is measured incorrectly, motor current feedback can be adversely affected, resulting in very small motor rotation fluctuations (four components per motor revolution).

A current offset measurement is made when the power is turned on.

This function performs a current offset measurement not only at power-on time but also in each emergency stop state.

		Servo software	Demerile	
CNC	Series	Edition	Remarks	
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions		
Power Motion <i>i</i> -A				
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	A(01) and subsequent editions		
	90E1	01.0 and subsequent editions		
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	A(01) and subsequent editions	HRV4	
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions		
	90C8	A(01) and subsequent editions		
	90E5	A(01) and subsequent editions		
	90E8	A(01) and subsequent editions		

(2) Series and editions of applicable servo software

(3) Setting parameters

Set the following parameter to obtain current offsets at emergency stop again.

1: Enabled.

6

LEARNING CONTROL FUNCTIONS (OPTIONAL FUNCTION)

(1) Overview

Learning control is used to minimize the effect of follow-up delay and disturbance for cyclic commands and disturbance. This control allows control deviation to be automatically reduced by repeating the same movement. The compensation data (learning data) for reducing control deviation is generated in the volatile memory for learning (learning memory). The learning data generated in the learning memory can be transferred from the servo to CNC memory or external memory (learning data transfer) to save and reuse the data. In this case, learning operation for reducing control deviation becomes unnecessary and it is possible to realize high-precision machining from the beginning.

Learning control is used for cam and crank-pin grinding machines, gear cutting machines, and other machines that require high speed and high precision. The following learning control functions are also available: learning control for rigid tapping, learning control available only for parts with the same shape, and others. (See the table below.)

To use learning control, it is necessary to select the following options according to the application.

"High precision learning control A (preview repetitive control) and high precision learning control B (learning control)" are options applicable to repetitive commands (G05) using high-speed cycle machining and high-speed binary program operation. To use these options with a 30i-A series CNC, a servo card with large-capacity memory is required. Multiple learning data items corresponding to each workpiece can be saved in the learning memory and these learning data items generated in the learning memory can be transferred to the CNC memory and an external memory. These options are applied to cam and crank-pin grinding, and others. For machining in which the value specified in the repetitive command gradually changes, such as piston lathing, high precision learning control. A can be applied to follow the change in the value in the command.

"High precision learning control C (compact learning control)" is an option applicable to a repetitive command written in normal NC statements. For high precision learning control C, not the time, but the position or angle is used as the cycle used as the base of learning, so learning control can be implemented with small-capacity learning memory. Even with a 30i-A series CNC, a standard servo card can be used. However, it is impossible to save multiple learning data items or transfer learning data. This option is applied to Arc. Complement (oscillation cutting) used with a grinding machine and gear cutting.

"Learning control for parts cutting A (learning control for parts cutting)" is an option applied specifically for parts cutting for machining a large amount of parts with the same shape. "Learning control for parts cutting B (learning control for rigid tapping)" is an option applied specifically for rigid tapping.

6.LEARNING CONTROL FUNCTIONS (OPTIONAL FUNCTION)

	Main application	CNC	Option	Servo card
	Cam grinding Crank-pin grinding Piston lathing	20; D / 21; D	High precision learning control A	Standard servo card
		301-В / 3 I1-В	High precision learning control B	(A11,A12,A13,A24,A26)
Conorol	Lens cutting	20: 1 / 21: 1	Preview repetitive control	Servo card specifically
General		301-A / 3 11-A	Learning control	for learning control (L24)
	Gear cutting Jig grinding Oscillation cutting	30 <i>і</i> -В / 31 <i>і-</i> В	High precision learning control C	Standard servo card
		30 <i>i</i> -A / 31 <i>i</i> -A	Compact learning control	Standard servo card (B11,B12,B13,B24,B26)
Part: Limitation	Dorto outting	30 <i>і</i> -В / 31 <i>і-</i> В / 32 <i>і-</i> В	Learning control for parts cutting A	Standard servo card
		30 <i>i</i> -A / 31 <i>i</i> -A / 32 <i>i</i> -A	Learning control for parts cutting	Servo card specifically for learning control(L24)
	Rigid tapping	30 <i>і</i> -В / 31 <i>і-</i> В / 32 <i>і-</i> В	Learning control for parts cutting B	Standard servo card
		30 <i>i</i> -A / 31 <i>i-</i> A / 32 <i>i-</i> A	Learning control for rigid tapping	Standard servo card

(2) Series of applicable servo software

The following table lists series of servo software applicable to learning control (series for learning control) and standard series of servo software (standard series).

Standard series		Series for le		
Series of servo software	CNC	Series of servo software	CNC	Remarks
90D0		90D3		HRV2 to HRV4 (Note)
	30 <i>i</i> -A / 31 <i>i</i> -A	0057	30 <i>i</i> -A / 31 <i>i</i> -A	supported
		90L7		(2 axes / 1DSP)
0050 0051	30; A / 31; A / 32; A	0052	30; 1 / 31; 1 / 32; 1	HRV2 to HRV3
90EU, 90ET	JUI-A / JII-A / JZI-A	90E3	JUI-A / JII-A / JZI-A	supported
0000	30 <i>i</i> -B / 31 <i>i</i> -B / 32 <i>i</i> -B /	90G3	30 <i>i-</i> B / 31 <i>i-</i> B / 32 <i>i-</i> B	HRV2 to HRV4
90G0	35 <i>i</i> -B			supported

NOTE

When angle based learning control is used with HRV4, refer to "90G3 Series LEARNING CONTROL OPERATOR'S MANUAL (ANGLE BASED LEARNING CONTROL)" (A-63639E-204).

When selecting any of the following options, carefully check the series and editions of applicable servo software:

- Compact learning control(30*i*-A) Series 90E3/05 and subsequent editions
- Learning control for rigid tapping(30*i*-A) Series 90D3/03 and subsequent editions
- High precision learning control A(30*i*-B) Series 90G3/02 and subsequent editions

(3) Number of controlled axes

The maximum number of controlled axes in a CNC system depends on the used servo card type and HRV control type. In addition, when learning control is used, the number of available controlled axes may be decreased according to the number of learning controlled axes. The following table lists the number of available controlled axes when learning control is used.

NOTE

With a Series 30*i*-B or later CNC, learning control is also available for an axis on an additional-axis board. When servo card A26 and an additional-axis board are used together, learning control is available for up to ten axes.

Option		CNC	Number of controlled axes
High precision learning control A	(J706)	20; D / 21; D	
High precision learning control B	(J705)	JUI-D / J II-D	(Maximum number of controlled axes) -
Preview repetitive control	(J706)	20: 1 / 21: 1	(number of learning controlled axes)
Learning control	(J705)	301-A / 3 11-A	
High precision learning control C	(R692)	30 <i>i</i> -B / 31 <i>i</i> -B	(Maximum number of controlled axes) -
Compact learning control	(R692)	30 <i>i</i> -A / 31 <i>i</i> -A	(number of learning controlled axes)
Learning control for parts cutting A	(R510)	30 <i>i</i> -В / 31 <i>i</i> -В / 32 <i>i</i> -В	Maximum number of controlled axes
Learning control for parts cutting	(R510)	30 <i>i-</i> A / 31 <i>i-</i> A / 32 <i>i-</i> A	(independent of the number of learning controlled axes)
Learning control for parts cutting B	(R539)	30 <i>i</i> -B / 31 <i>i</i> -B / 32 <i>i</i> -B	Maximum number of controlled axes
Learning control for rigid tapping	(R539)	30 <i>i-</i> A / 31 <i>i-</i> A / 32 <i>i-</i> A	(independent of the number of learning controlled axes)

Example 1)

Suppose that the 31*i*-A is used, the learning control option is enabled, and servo software of series 90E3, servo card L24, and HRV3 control are used together. In this case, the maximum number of controlled axes is 12. When four of these controlled axes are used for learning control, the number of available controlled axes is 12 - 4 = 8 axes.

Example 2)

Suppose that the 30*i*-B is used, the learning control option is enabled, and servo software of series 90G3, servo card A26, and HRV3 control are used together. In this case, the maximum number of controlled axes is 24. When six of these controlled axes are used for learning control, the number of available controlled axes is 24 - 6 = 18 axes.

(4) Order specification

1) Options and hardware

03xx (middle four digits) of the specification differs depending on the CNC.

Option	CNC	CPU card	Servo card
High precision learning control A (A02B-032x-J706)	30; P / 31; P		Standard servo card
High precision learning control B (A02B-032x-J705)	<i>301-</i> Б / 31 <i>1-</i> Б	B2 (A02B-0323-H010)	(A11,A12,A13,A24,A26)
High precision learning control C (A02B-032x- R692)	30 <i>і-</i> В / 31 <i>і-</i> В	All types	Standard servo card
Learning control for parts cutting A (A02B-032x-R510)	30 <i>i</i> -B / 31 <i>i</i> -B / 32 <i>i</i> -B	B2 (A02B-0323-H010) A2 (A02B-0323-H013) C2 (A02B-0323-H016)	Standard servo card
Learning control for parts cutting B (A02B-032x-R539)	30 <i>i-</i> B / 31 <i>i-</i> B / 32 <i>i-</i> B	B2 (A02B-0323-H010) A2 (A02B-0323-H013) C2 (A02B-0323-H016)	Standard servo card
6.LEARNING CONTROL FUNCTIONS (OPTIONAL FUNCTION)

Option	CNC	CPU card	Servo card
Preview repetitive control (A02B-030x-J706) Learning control	- 30 <i>i-</i> A / 31 <i>i-</i> A	D3 (A02B-0303-H010)	Servo card specifically for learning control (L24)
(A02B-032x-J705)			
Compact learning control (A02B-030x- R692)	30 <i>i-</i> A / 31 <i>i-</i> A	All types	Standard servo card (B11,B12,B13,B24,B26)
Learning control for parts cutting (A02B-030x-R510)	30i-A / 31i-A / 32i-A	A6 (A02B-0303-H013) C6 (A02B-0308-H016) D3 (A02B-0303-H010)	Servo card specifically for learning control (L24)
Learning control for rigid tapping (A02B-030x-R539)	30i-A / 31i-A / 32i-A	A6 (A02B-0303-H013) C6 (A02B-0308-H016) D3 (A02B-0303-H010)	Standard servo card

2) Software options

B-65270EN/08

When the high precision learning control A (preview repetitive control) or high precision learning control B (learning control) option is selected, either of the following options related to high-speed cycle machining is required:

•	High-speed cycle machining	A02B-03xx-J832
•	High-speed binary program operation	A02B-03xx-R516

When high-speed cycle machining or high-speed binary program operation above is used, select the following related options as required:

High-speed cycle machining skip function	A02B-03xx-S662		
High-speed cycle machining retract function	A02B-03xx-J663		
• High-speed cycle cutting additional variables A/B	A02B-03xx-J745/J746		
• High-speed cycle cutting additional variables C/D	A02B-03xx-S640/R513		
High-speed binary program operation retract function	A02B-03xx-S658		
Superimposed control for high-speed cycle machining	A02B-03xx-R554		
Superimposed Control	A02B-03xx-S818		
(Required to use superimposed control for high-speed cycle machini	ng)		
• High-speed cycle machining operation information output function	A02B-03xx-R609		
• Spindle control switching function for High-speed cycle machining	A02B-03xx-R608		
For cam or crank-pin grinding using multiple profiles, the following option is required:			

Learning memory expanded function A02B-03xx-J976

NOTE

To use this option, the high precision learning control A (preview repetitive control) or high precision learning control B (learning control) option is required.

For oscillation cutting used with, for example, a jig grinder, the following option is required: A02B-03xx-R662

High precision oscillation function •

NOTE

03xx (middle four digits) of the specification is determined as follows: 30*i*-A: 0303, 31*i*-A5: 0306, 31*i*-A: 0307, 32*i*-A: 0308 30i-B: 0323, 31i-B5: 0326, 31i-B: 0327, 32i-B: 0328

(5) Axis allocation

Learning control is applied only to the first axis of each DSP. Reference the table below and set parameter No. 1023.

CNC	Series of servo software	No.1023
30 <i>i-</i> B / 31 <i>i-</i> B / 32 <i>i-</i> B	90G3	1, 9, 17, 25, 33, 41 49, 57, 65, 73 (additional axis)
	90D3	1, 3, 5, 7, …
30 <i>i</i> -A / 31 <i>i</i> -A / 32 <i>i</i> -A	90E7	1, 5, 9, 13, …
	90E3	1, 5, 9, 13, …

(6) Related documents

To use learning control, various settings and operations are required. For details of them, refer to the following documents:

- High precision learning control A (Preview repetitive control) / High precision learning control B (Learning control)
 "FANUC AC SERVO SOFTWARE 90G3 Series LEARNING CONTROL Operator's Manual (Time based Learning control)" (A-63639E-200)
 "FANUC AC SERVO SOFTWARE 90G3 Series LEARNING CONTROL Operator's Manual (Angle Based Learning Control)" (A-63639E-204)
 "FANUC AC SERVO SOFTWARE 90D3/90E3 Series LEARNING FUNCTION Operator's Manual (Time based Learning control)" (A-63639E-108)
- High precision learning control C (Compact learning control)
 "FANUC AC SERVO SOFTWARE 90G3 Series LEARNING CONTROL Operator's Manual (Angle Based Learning Control)" (A-63639E-204)
 "FANUC AC SERVO SOFTWARE 90E3 Series COMPACT LEARNING CONTROL Operator's Manual" (A-63639E-188)
- Learning control for parts cutting A (Learning control for parts cutting)
 "FANUC AC SERVO SOFTWARE 90G3 Series Learning control for Parts cutting A Operator's Manual" (A-63639E-201)
 "FANUC AC SERVO SOFTWARE 90D3/90E3 Series Learning control for Parts cutting Operator's Manual" (A-63639E-115)
- Learning control for parts cutting B (Learning control for rigid tapping)
 "FANUC AC SERVO SOFTWARE 90G3 Series Learning control for Parts cutting B Operator's Manual" (A-63639E-202)
 "FANUC AC SERVO SOFTWARE 90D3/90E3 Series Learning Control for Rigid Tap Operator's Manual" (A-63639E-131)

Reference)

Spindle learning control (option) A02B-03xx-S635 "Spindle learning control" is applied to spindle motor control. This is used with, for example, gear cutting using an electric gear box (EGB). When the high precision learning control A (preview repetitive control) or high precision learning control B (learning control) option is enabled, the spindle learning control option is not required.

<u>Spindle learning control</u>
 "FANUC AC SPINDLE MOTOR α*i* series Spindle learning control DESCRIPTIONS" (A-63639E-132)

(1) Overview

Servo tuning tool "SERVO GUIDE" is an integrated tuning tool for servo and spindle axes that runs on a PC. This tool can be connected to the CNC to observe operation of servo and spindle axes with waveforms. The automatic tuning feature called "Tuning Navigator" extensively supports you to enable serve tuning with simple operations.

[Order specification of the package for new purchase] A08B-9010-J900 (Supplied on one CD-ROM disk)

[Order specification of the package for upgrade]

A08B-9010-J901 (Supplied on one CD-ROM disk)

To install SERVO GUIDE supplied on the CD for upgrade, a previous version of SERVO GUIDE must have been installed on your PC.

[Order specification of the package for 3-D View Function] A08B-9010-J904 (Supplied on one CD-ROM disk and one hardware key)

NOTE

3-D View Function (option) comes with a CD for upgrade (A08B-9010-J901).

(2) Operating environment

■ Applicable SERVO GUIDE editions

010	SERVO GUIDE	Remarks	
CNC	Edition		
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	7.30 and subsequent editions		
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	3.00 and subsequent editions		
Series 0 <i>i</i> -D	6.00 and subsequent editions		
Power Motion <i>i</i> -A	8.00 and subsequent editions		

■ Necessary hardware and software configuration

Operating this software requires the hardware and software configuration below.

Necessary hardware and software configuration

Item	Description		
Computer	IBM PC/AT COMPATIBLE,		
	or		
	CNC display unit with PC functions (PANEL i)		
OS	Microsoft Windows 2000/XP/Vista(32bit), Windows 7(32bit, 64bit) (Note 1,	2)	
	Supported language: Japanese, English, Chinese versions (Simplified, Traditional)		
CPU	Windows 7 : Pentium III 1GHz or higher recommended		
	Windows Vista : Pentium III 1GHz or higher recommended		
	Windows XP : Pentium III 500MHz or higher recommended		
	Windows 2000 : Pentium 200MHz or higher recommended		
Memory	Windows 7 : 512MBytes or more (1GB or more recommended)		
-	Windows Vista : 512MBytes or more (1GB or more recommended)	ļ	
	Windows XP : 256MBytes or more (512MB or more recommended)		
	Windows 2000 : 128MBytes or more (256MB or more recommended)		
Hard-disk space	50MBytes or more (Note	e 3)	
	(100MBytes on installing)		

Item	Description	
Display resolution	SVGA (800*600) or higher	(Note 4)
	(XGA (1024*768) or higher is recommended)	(Note 5)
Others	Port of Ethernet (LAN) (in case of Ethernet connection)	
	A pointing device such as a mouse is required.	
	For browsing online help, Internet Explore 4.01 or later is required.	

* Microsoft and Windows are trademarks of Microsoft Corporation in the United States.

* Other company and products name are either registered trademark or trademarks of each company.

NOTE	
When opening multiple screens, allocate memory as large as possible.	

(Note 1) Windows 95/98/Me/NT4.0 are not supported.

- (Note 2) If 3-D View Function (option) is to be used, OpenGL1.4 or later is required. A USB port is required to attach an OpenGL-compliant graphic card and a hardware key.
- (Note 3) In addition, the space for storing measurement data is required.
- (Note 4) Although SVGA also can be used, when two or more windows are opened simultaneously, it becomes hard to see by window overlap.
- (Note 5) If 3-D View Function (option) is to be used, 2-D and 3-D graphs cannot be viewed simultaneously unless XGA or higher is used.

Apart from the above	the hardware	configuration	below may	be required
		• on Bar and on	core may	

ltem	Description	Description	
PCMCIA LAN card	Used for an Ethernet connection.	(Note 1, 2)	
	Use the FANUC-designated one (A02B-0281-K710).		
Coupler	Used for an Ethernet connection.	(Note 1)	
	It is commercially available, and can be obtained from a PC sho	op, etc.	
Ethernet cable (cross)	Used for an Ethernet connection.	(Note 1)	
	It is commercially available, and can be obtained from a PC sho	op, etc.	
Ethernet cable (straight)	Used for an Ethernet connection.	(Note 1)	
	It is commercially available, and can be obtained from a PC sho	op, etc.	
Hub	Used for an Ethernet connection.	(Note 1)	
	It is commercially available, and can be obtained from a PC sho	It is commercially available, and can be obtained from a PC shop, etc.	
HSSB board	Required for an HSSB connection.	(Note 1)	
	Use a FANUC-made HSSB board.		
	If Panel i is used, Panel i is provided with an HSSB function.		
Printer	Required to print acquired waveforms.		

Other hardware configuration

(Note 1)

[Ethernet connection (if not using a hub)]

The FANUC-supplied PCMCIA-LAN card comes with a dedicated connector on the card side and a 1.5-m straight cable with an RJ45 male connector on the PC side. The PC and the CNC are connected directly as shown below.

Gross type Gable Straight type cable

(The cross type cable and coupler are commercially available from ordinary stores dealing in personal computers.)

[Ethernet connection (if using a hub)]

When the PC and the CNC are connected via a hub, they are connected as shown in the figure below. In this case, the coupler becomes unnecessary, but a straight type cable must be prepared.

Straight type cable Straight type cable

* If using the built-in Ethernet port, do not use a PCMCIA-LAN card but the RJ45 female connector on the CNC.

[HSSB connection]

When HSSB is used, the CNC and the PC are connected using an optical cable as shown in the figure below. So, no special connection must be added to use SERVO GUIDE.

* Also when a CNC display unit with a PC function is used, no special connection is required.

Related software series / edition list

The operation of SERVO GUIDE is guaranteed with the combinations below.

(a) System software

CNC	Syster	m software
	Series	Edition
Series 30 <i>i</i> -B	G301,G311,G321,G331	01 or later
Series 31 <i>i</i> -B5	G421,G431	01 or later
Series 31 <i>i</i> -B	G401,G411	01 or later
Series 32 <i>i</i> -B	G501,G511	01 or later
Series 35 <i>i</i> -B	G601,G611	01 or later

CNC	System software		
CNC	Series	Edition	
Series 30 <i>i</i> -A	G004,G014,G024	01 or later	
	G003,G013,G023	01 or later	
	G002,G012,G022	01 or later	
	G00C,G01C,G02C	01 or later	
	G00A,G01A,G02A	01 or later	
	G001,G011,G021	23 or later	
Series 31 <i>i</i> -A5	G124,G134	01 or later	
	G123,G133	01 or later	
	G121,G131	01 or later	
	G12C,G13C	01 or later	
Series 31 <i>i</i> -A	G104,G114	01 or later	
	G103,G113	01 or later	
	G101,G111	01 or later	
Series 32 <i>i</i> -A	G201,G203,G204	01 or later	
Series 0 <i>i</i> -MD	D4F1	01 or later	
Series 0 <i>i</i> -TD	D6F1	01 or later	
Series 0 <i>i</i> Mate-MD	D5F1	01 or later	
Series 0 <i>i</i> Mate-TD	D7F1	01 or later	
Power Motion <i>i</i> -A	88H0	01 or later	

* For system software series/editions supporting I/O Link β*i*, refer to the function correspondence table in an appendix in "FANUC SERVO GUIDE OPERATOR'S MANUAL (B-65404EN)" or online help.

(b) FOCAS1/2-related software

CNC models and series / edition of FOCAS1/2-related software

FOCAS1/2-related software	CNC models	Specification	Series / Edition	
Control cofficient for	Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B. Power Motion <i>i</i> -A	A02B-0323-J571#658M	658M/01 or later	
control software for	Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	A02B-0303-J571#656E	656E/06 or later	
function	Series 0 <i>i</i> -D	A02B-0319-J571#656E	658E/01 or later 658E/02 or later (support stand-alone type)	
Software for Ethernet	Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	A02B-0303-J572#656F	656F/07 or later	
communication management	Series 0 <i>i</i> -D	A02B-0319-J572#658F	658F/01 or later	
Software for 15" LCD			60VB/1.3 or later	
control (if using a 15"	Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	A02B-0207-3393#00VB	60VB/1.7 or later (supports I/O Link βi)	
LCD)		A02B-0207-J903#60VF	60VF1.0 or later (supports I/O Link βi)	
Windows CE.NET customized OS		A02B-0207-J594	1.2 or later	
Windows CE.NET	Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	A02D 0207 1000	1.5 or later	
FOCAS2/HSSB	(When personal	AUZD-UZU7-J000	1.7 or later (supports I/O Link βi)	
library	computer function option	A02B-0207-J875	1.0 or later	
Windows CE.NET	with WindowsCE is used)			
standard application/ library		A02B-0207-J809	1.2 or later	

* For software series/editions related to FOCAS1/2 supporting I/O Link β*i*, refer to the function correspondence table in an appendix in "FANUC SERVO GUIDE OPERATOR'S MANUAL (B-65404EN)" or online help on SERVO GUIDE.

(c) Servo software

			-	
<u>enc</u>		Servo software	Demender	
CNC	Series	Edition	Remarks	
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions		
Power Motion <i>i</i> -A				
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	C(03) and subsequent editions		
	90E1	01.0		
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	C(03) and subsequent editions	HRV4	
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions		
	90C8	A(01) and subsequent editions		
	90E5	A(01) and subsequent editions		
	90E8	A(01) and subsequent editions		

CNC models and series / edition of servo software

* For system software series/editions supporting each function of Tuning Navigator, refer to the function correspondence table in an appendix in "FANUC SERVO GUIDE OPERATOR'S MANUAL (B-65404EN)" or Help page.

(3) Outline of software specifications

Servo tuning tool, "SERVO GUIDE" consists of four software functions including three types of window, which are the Parameter Window, the Graph Window, and the Program Window, and a tuning support wizard called Tuning Navigator.

The following outlines the specifications of these software functions.

(a) Parameter Window

- Parameters on the CNC are read and can be changed on the personal computer.
- Servo and spindle parameters are classified and displayed for each function.
- Automatic acceleration/deceleration functions for high speed and high-precision are supported
- CNC parameters can be changed on the personal computer.

Details of function groups that can be set in the Parameter Window

Group	Description
System setting	CNC options related to servo systems are extracted and displayed.
Servo axis setting	Use of separate detector, rotary motor/linear motor/synchronous built-in servo motor (DD motor), CMR, flexible feed gear, setting of AMR, and setting of acceleration sensor, etc.
Acceleration/ deceleration	Time constant of Acc./Dec. before interpolation and time constant of Acc./Dec. after interpolation, speed difference in automatic corner deceleration, setting for arc radius-based feed rate clamp, setting for acceleration-based deceleration, Jerk control (Normal control, advanced preview control, Al advanced preview control, Al contour control, Al nano contour control, high precision contour control, Al high precision contour control, Al nano high precision contour control, Al contour control I and II)
Current control	HRV, HRV2, HRV3, and HRV4 control, and setting of current gain
Velocity control	Velocity loop gain setting, setting of the function of vibration suppression in the stop state, setting of filters for eliminating machine resonance, vibration damping control, setting of dual position feedback, and setting of the full-closed loop function, etc.
Position control	Position gain
Contour error suppression	Feed-forward, backlash acceleration, interactive force compensation, and fine Acc./Dec. (16 <i>i</i> series only)
Improvement in overshoot	Setting of overshoot compensation function

[Servo]

Group	Description				
High-speed positioning function	Setting of position gain switching function, etc.				
Stop	Setting of brake control, quick stop., and lifting function against gravity, etc.				
Unexpected disturbance torque	Adjustment of estimated disturbance value, alarm detection level				
detection					
Linear motor	Setting of feedback, setting of AMR, and setting of smoothing compensation				
DD motor	Setting of feedback, setting of AMR, and setting of smoothing compensation				
Tandem control axes	Setting of tandem control axes				
Pole position detection	Setting of pole position detection functions				

[Spindle]

Group	Description
System setting	CNC options related to spindle systems are extracted and displayed.
Spindle system configuration	Motor end sensor (main and sub) setting, spindle end sensor (main and sub) setting, gear ratio (main and sub)
Normal mode velocity control	Velocity loop gain setting, and setting of filters (main and sub) for eliminating vibration, resonance elimination filter
Orientation	Stop position setting, velocity control setting (main and sub), position control setting (main and sub), acceleration setting (optimum orientation, high-speed orientation), resonance elimination filters
Rigid tapping	Command setting, velocity control setting (main and sub), position control setting, fine Acc./Dec. (16 <i>i</i> series only)
Cs contour control	Command setting, velocity control setting, position control setting, fine Acc./Dec. (16 <i>i</i> series only), resonance elimination filters
Spindle synchronous control	Velocity control setting, position control setting, resonance elimination filters
Synchronous spindle	Pole position detection, setting of AMR, current pattern, alarm detection level

Parameter Window (example)

(b) Graph Window

- Data measurement display function
 - Horizontal axis time mode
 - Normal mode, first order differential mode, second order differential mode, third order differential mode (YT mode)

Feed smoothness measurement mode (DXDY mode)

Tangent speed display mode (XTVT mode)

Synchronous error measurement mode (Synchro mode)

- XY mode (Polar coordinates conversion and angular axis conversion also available)
- Arc path error zoom mode (Circle mode)
- Contour path error zoom mode (Contour mode)
- Frequency spectrum analysis mode (Fourier mode)
- Velocity loop and position loop frequency response mode (Bode mode)

For servo and spindle axes, data measurement is possible. (Data of both servo and spindle axes can also be measured at the same time.)

	Maximum number of channels that can be measured simultaneously
Total	8 channels
Per two servo axes	4 channels (*)
Per spindle	4 channels (*)
PMC	Up to 16 PMC signals can be measured simultaneously on one channel. (*)
I/O Link β <i>i</i>	2 channels (*)

- * Up to four channels can be measured for servo axes that have successive numbers set in parameter No. 1023, 2n-1,2n (n: Non-negative integer).
- * Up to four channels can be measured for an αi spindle axis connected to the FSSB. (Up to two channels can be measured for a conventional spindle axis.)
- * With the Series 0*i*-D, up to eight PMC signals can be measured simultaneously.
- * Only one I/O Link βi axis can be measured at a time.
- * Different I/O Link βi axes cannot be measured simultaneously.
- * An I/O Link βi axis and another CNC axes cannot be measured simultaneously.
- Display data can be printed out.
- * Bit map data can be read via the clip board.

The highest-speed sampling period equals the current control period or $62.5 \ \mu s$, whichever longer. (Servo axis only)

Example of contour error measurement in Cs contour axis control

Example of velocity loop frequency response

• Smoothness compensation setting support functions

With this function, parameters of the smoothing compensation function, which improves the smoothness of linear motor or synchronous built-in servo motor feed, can be determined easily.

(Screen example)

LinearMotor Smoothness	Compensation		
Display target waveforms a press [Add] button to calcu Add(<u>A)</u>	and then ulate	ange(P) Clear param. Set param.	Close Setting
Normal direction	Del Calc(<u>N</u>)	-27478 7128	2988
data 2/span	4/span	6/span	
✓ 1 (148: 170)	(27: 216)	(11: 173)	
2 (148:170)	(27: 216)	(11: 173)	
✓ 3 (148: 170)	(27: 216)	(10: 170)	
☐ 4 ☐ 5			
Reverse direction	Del Calc(<u>R</u>)	-30040 6116	2438
data 2/span	4/span	6/span	
✓ 1 (138: 168)	(23: 227)	(9: 135)	
2 (138:168)	(24: 228)	(9: 134)	
✓ 3 (139:168)	(23: 228)	(9: 134)	
□ 4 □ 5			
4-power compensation			

• Spindle Tuning functions

These functions support the automatic acquisition of data during the acceleration/deceleration of the spindle, data during orientation, and data for frequency response.

(Acquired data examples)

Measurement of acceleration/deceleration performance (Speed - Acceleration characteristics)

Measurement of orientation (Orientation time)

Frequency response measurement

Cursor function

By using the horizontal and vertical cursors, a waveform measurement can be made. The type of possible measurement depends on the display mode as described below:

- YT mode: Inter-cursor differential measurement (time measurement)
- Measurements of a maximum value (Max), minimum value (Min), average (Ave), and root-mean-square (RMS) value in an inter-cursor area
- XY mode: Inter-cursor differential measurement
- Fourier mode: Frequency, magnitude, phase
- Bode mode: Frequency, gain, phase
- Area expansion function

In the area expansion mode, a rectangular area can be selected by dragging the left mouse button within the graph display area. By left-clicking in the selected area, the selected area can be enlarged.

(c) Program Window

- Test program creation support function
 - Linear acceleration/deceleration for one axis
 - Circle
 - Square
 - Square with rounded corners
 - Rigid tapping
 - Cs contour
- Display of test program path
- Sending a test program to CNC memory and executing it (The operator needs to press the start button.)
- Selecting a program in CNC memory and executing it (The operator needs to press the start button.)
- Printing of a created program
- * The multipath system is supported by Version 3.00 or later.

Program Window (example)

(d) Tuning Navigator

- Automatic tuning functions (servo tuning support functions)
 - Automatic tuning of velocity loop gain and filters
 - Support of high-speed and high-precision function setting
 - Tuning for time constant at rapid traverse
 - Tuning for Automatic Backlash Acceleration function
 - Tuning support of unexpected disturbance torque detection function
 - Tuning support of interactive force compensation function
 - Automatic tuning of spindle filters

NOTE

Some functions cannot be used depending on the version of SERVO GUIDE and the series and editions of the CNC and servo software.

[Automatic tuning of velocity loop gain and filters]

By measuring the frequency response of velocity control loop with moving axis, and the parameters of the velocity loop gain and resonance elimination filters are determined automatically. It is also possible to fine-tune the indicated parameter values and check the effect of the fine-tuning.

Filter adjustment (example)

[Support of high-speed and high-precision function setting]

In a program of a square with rounded corners, the high-speed and high-precision function parameters are tuned while overshoots are checked. There are tuning parameters for the high-speed and high-precision function. FANUC provides recommended parameter sets (for speed priority and precision priority), and an intermediate value between recommended parameter values can be selected easily just by using a slider.

Tuning of the high-speed and high-precision function (example)

[Tuning for time constant at rapid traverse] (Version 4.00 or later)

By measuring the velocity and torque while moving the axis at rapid traverse, the rapid traverse time constant is determined automatically. With this function, a rapid traverse time constant can be determined quickly and easily.

😝 Tuning of time constant for rapid trave	se		\times
	Tuning of time constant for rapid trav The recommended time constant valu shown at the first step. If you want t change following time constant by me See the tool tip hint to know the tunin constant. Linear type time constant for rapid traverse Bell type time constant for rapid traverse Max. TCMD Max. acceleration	erse e for linear acc./dec. will be o tune it more, please inual. ing point for every time 32 m ms 32 m ms 10 % 3.18 m/s^2 I sit O.K.?	
	< <u>B</u> ack	Next > Cancel	

Example of tuning

[Tuning for Automatic Backlash Acceleration function] (Version 4.00 or later)

By making several circular motions, this function automatically determines the parameters for the quadrant protrusion compensation function for Tuning Navigator. With this function, quadrant protrusion tuning on an arc can be performed quickly and easily. For details, see Appendix M, "QUADRANT PROTRUSION TUNING USING SERVO GUIDE".

Example of tuning

<1> Make circular motions until the quadrant protrusion becomes sufficiently small to let the function learn the optimum compensation.

<2> Let the function calculate the compensation based on the result of learning.

- <3> Perform steps <1> and <2> at three different feedrates.
- <4> Make a circular motion based on the finally determined parameters and check the effect after the application of these parameters.

(Apply the compensation parameters to the horizontal axis.)

[Tuning support of unexpected disturbance torque detection function] (Version 6.20 or later)

The unexpected disturbance torque detection function monitors the load torque applied to the motor, and if detecting an unexpected disturbance torque, it issues an alarm, and brings the axis to an emergency stop. Tuning Navigator can automatically determine the parameters of the unexpected disturbance torque detection function by estimating the disturbance during back-and-forth acceleration/deceleration operation. Example of tuning

<1> Let the function automatically calculate the recommended values of the observer gain (POA1), dynamic friction compensation coefficient, and dynamic friction compensation in the stopped state.

<2> Perform back-and-forth acceleration/deceleration operation based on the recommended values and let the function automatically calculate the unexpected disturbance torque detection alarm level.

B-65270EN/08

[Tuning support of interactive force compensation function] (Version 6.20 or later)

The interactive force compensation function suppresses the effect of the interactive force generated when the rotary axis with eccentric load is moved. Tuning Navigator can automatically determine the parameters of the interactive force compensation function by performing round trip operation on the moving axis and estimating the interactive force acting between the two axes, the compensated and moving axes. Example of tuning

<1> Select compensated and moving axes.

TIO Bain- Laume	
Econtris Load Compensated United a ratis (+ direction)	Axis selection Select compensated axis and moving axis. Compensated axis Axis selection X(1) V Kind of axis : Lineer axis Moving axis Axis selection C(2) V Kind of axis : Rotary axis

<2> Perform round trip operation on the moving axis and let the function automatically calculate the recommended compensation gain.

[Automatic tuning of spindle filters] (Version 6.00 or later)

This function calculates an ideal frequency response with no resonance based on the frequency characteristics of the velocity loop violated in the velocity control mode, find the resonation point in comparison with this ideal response, and automatically calculates an optimum filter value.

(4) Outline of the tuning procedure

- <1> Set required parameters in the Parameter Window.
- <2> Create, send, and execute test programs in the Program Window.
- <3> Measure data in the Graph Window.
- <4> Repeat steps <1> to <3> while checking graph data to make optimum tunings.

For details of using SERVO GUIDE, refer to "FANUC SERVO GUIDE OPERATOR'S MANUAL (B-65404EN)" or online help after installing the software.

8

DETAILS OF PARAMETERS

This chapter gives details of servo parameters.

For parameters for which no specification method is described, do not change the values automatically set up during servo parameter initialization.

Specify the AMR value according to the Pulsecoder model for the motor.

8.DETAILS OF PARAMETERS

	AMR											
	6	5	4	3	2	1	0	1				
	0	0	0	1	0	0	0	16-pole s α <i>i</i> S2000	servo /2000	o motors 0HV, α <i>i</i> S300	0/2000HV	
	0	0	0	0	0	0	0	Other tha	an 16 ervo	S-pole servo	motor	
										motorsy		
[Ref	ference	item	Sub	osectio	ons 2.2	2.4, 3.′	1.1, and 3.	2.1.1			
	#7	,	#6		#5		#4	#3		#2	#1	#0
2002								PFS	E			
PFSE (#3) 4	A sepa 0: N 1: U In the	rate der ot used sed. 30 <i>i</i> Se	tector i eries an specifi	s: nd 0i-l	D Se	ries <i>i</i> ,	, setti	ng bit 1	(OI	PT) of para	meter No.	1815 to 1
·	autoni	uncurry	speen		, puru	inteter	•					
2003	#7 VOE		#6		#5		#4	#3	u a	#2 OBEN	#1 TGAI	#0
TGAL (#1)	The so	ftware	discon	nection	n alar	m det	ection	level is:	N	OBEN	TOAL	
	0 : Si 1 : So	tandard et by a	setting	g (dete eter (de	etected	by 1/3 ed by t	32rev) the va	lue set fo	or pa	rameter No	. 2064/32re	ev).
OBEN (#2)	The ve 0 : N 1 : U	locity of the lo	control	observ	ver fu	inction	n is:					
[Ref	ference	item	Sub	osectio	on 5.4.	6					
PIEN (#3)	The velocity control method to be used is: 0: I-P 1: PI											
111 DI (#+)	0: N	ot used	l.	51011 10	incin	JII 15.						
	1: U	sed.			0							
BLEN (#5)	The ba	cklash	accele	ration	funct	10n 1s:						
	1: U	sed.										
]	Re	ference	item	Sub	osectio	ons 5.5	5.4 and	1 5.5.5				
OVSC (#6)	OVSC (#6) The overshoot compensation function is: 0: Not used. 1: Used.											
	Reference item Subsection 5.5.8											
VOFS (#7)	VOFS (#7) The VCMD offset function is: 0: Not used. 1: Used.											
	#7	,	#6		#5		#4	#3		#2	#1	#0
2004 TIA0 (#0), TIB0 (#	1), TR	W0 (#2	2), TRV	W1 (#3	5)			TRW	/1	TRW0	TIB0	TIA0
r.	The set	tting of	these	bits va	ries a	accord	ing to	the HRV	/ coi	ntrol metho	d.	
	TF	<u>2W1</u>	T	RW0		TIB0)	TIA0				
		0	+	1		1		0			OUTLOI	1 control
	L	U		U		I		I		µ 0I I IKV∠, I	IIXV3, FRV4	

·	#7	#6	#5	#4	#3	#2	#1	#0
2005	SFCM	BRKC					FEED	
FEED $(#1)$	The feed-fo	orward fund	ction is:					
	0. Not us	seu.						
	Reference item Subsections 5.5.1 and 5.5.2							
	Referen		Oubsection	5 0.0.1 and 0	.0.2			
BRKC (#6)	The brake c	control fund	ction is:					
	0: Not us	sed.						
	1 : Used.							
	Referen	ce item	Subsection	5.8.1				
SFCM (#7)	The static f	riction com	pensation f	unction is:				
	0: Not us	sed.	-r					
	1 : Used.							
	Referen	ce item	Subsection	5.5.6				
	#7	#6	#5	#4	#3	#2	#1	#0
2006	<i>π</i>	#0	#5	ACCF	#5	PKVE	#1	FCBL
FCBL (#0)	During full	-closed fee	dback, back	lash compe	nsation is:			
()	0: Applie	ed to the po	sition.	1				
	1: Not ap	plied to th	e position.					
	Referen	ce item	Subsection	s 5.5.4 and 5	.5.5			
DVVE $(#2)$	Speed dope	ndont our	ont loon and	n voriabla f	unation is:			
PKVE (#2)	Speed-depe 0 · Not us	rident curre	ent loop gan	n variable n	unction is.			
	1 · Used	icu.	★· D) o not chang	<i>e</i>			
ACCF (#4)	Specifies th	e amount o	of velocity f	eedback dat	a to be use	d as follows	s:	
	0: Veloci	ity feedbac	k for the lat	est 2 ms.				
	1: Veloci	ity feedbac	k for the lat	est 1 ms.				
	#7	#6	#5	#4	#3	#2	#1	#0
2007	FRCAXS			VLDALM		SUBDEP	IGNVRO	ESP2AX
ESP2AX (#0)	The servo a	larm 2-axi	s simultaned	ous monitor	function is	5:		
	0: Not us	sed.						
	I: Used.	!!	Outrantian					
	Referen	ce item	Subsection	s 5.10.1.3 an	d 5.10.2			
IGNVRO (#1)	An alarm co	ondition is:						
	0: Not re	leased 2 se	econds after	the servo a	larm 2-axe	es simultane	eous monito	or holds the
	alarm condition.							
	I: Releas	sed 2 seco	nds after th	ie servo ala	arm 2-axes	simultaneo	ous monito	r holds the
	alarm	condition.	Subsection	5 10 1 2				
	Reieren	ceitem	Subsection	5.10.1.3				
SUBDEP (#2)	The slave a	xis separat	ion function	(set for the	master ax	is) is:		
	0: Not us	sed.						
	1 : Used.		1					
	Referen	ce item	Subsection	5.10.1.4				
VLDALM (#4)	TT1 (1	1 1.0						
	I he fandem	n speed diff	erence alarr	n function i	s.			
	0 : Used.	speed diff	erence alarr	n function i	S:			

Not used.	
Reference item	Subsection 5.10.4.4

FRCAXS (#7)	The torque	control fur	nction is:							
	0 : Not us	sed.								
	1 : Used.									
	Referen	ice item	Section 5.1	1						
	#7	#6	#5	#4	#2	#2	#1	#0		
2008		#0 PFBSWC	#5 VCMDTM	#4 SPPCHG	#3 SPPRI D	#2 VFBAVE		#0		
TNDM (#1)	This bit is a	automatical	llv set to 1 v	when hit 6 (tandem avi	s) of parame	eter No. 18	17 is set to		
111DM (#1)	1	automatica	II y 500 10 1			s) of parallix	<i></i>	17 15 500 10		
	This bit car	nnot he set	directly							
VFBAVE (#2)	1 · Enable	es the velo	city feedbac	k average fi	inction					
(12)	(Usually se	et this bit to	o 1 Set this	narameter f	or the mair	axis only)				
	Referen	ice item	Subsection	s 5 10 1 4 an	d 5 10 4 2	unio enij.)				
	Keleren		Cubacction	5 0. 10. 1. 4 an	u 0.10.4.2					
SPPRLD (#3)	1: Enabl	es the full r	oreload fund	tion. (Set th	is paramet	er for the ma	ain axis onl	v.)		
SPPCHG (#4)	The motor	output torg	ue polaritie	s are as follo	ows:			5 /		
	0: Outpu	its only the	e positive p	olarity to th	e main ax	is, and outp	uts only th	e negative		
	polarity to the sub-axis.									
	1: Outputs only the negative polarity to the main axis, and outputs only the positive									
	polarity to the sub-axis.									
	(Set this parameter for the main axis only.)									
VCMDTM (#5)	1 : Enables velocity command tandem control.									
	(Set this parameter for the main axis only.)									
	Reference item Subsection 5.10.2									
PFBSWC (#6)	1 : Switcl	hes position	n feedback a	according to	the directi	on of a torqu	ie comman	d.		
	(Set this pa	rameter for	r the main a	xis only.)						
LAXDMP (#7)	0 : Enabl	es damping	g compensat	ion for the s	ub-axis on	ly.				
	1 : Enables damping compensation with both the main axis and sub-axis.									
	Usually, set this bit to 1. (Set this parameter for the main axis only.)							1		
	Referen	ice item	Subsection	5.10.4.1						
	#7	#6	#5	#4	#3	#2	#1	#0		
2009	BLST	BLCU		ANALOG				DMY		
DMY (#0)	The serial f	feedback du	ummy funct	ion is:						
	0: Not us	sed.								
	1 : Used.									
	Referen	ice item	Appendix H	1.1						
ANALOG (#4)	Analog ser	vo interface	e function is	5:						
	0: Not us	sed.								
	1: Used.									
	Referen	ice item	Appendix A							
$\mathbf{DI} \mathbf{CII}(\#6)$	The function	on that valu	datas tha ha	aldach agaal	aration fun	ation only a	t outting is			
BLCU(#0)		dated	uales the Da			ction only a	i cutting is.			
	1 · Valida	uaicu. ated								
	Poforon	ncu.	Subsection	s 5 5 1 and 5	5.5					
	IVEIGI GI			3 J.J.H anu J						
BLST (#7)	The backla	sh accelera	tion ston fu	nction is.						
	0: Not us	sed.	non stop iu							
	1: Used									
	Referen	ice item	Subsection	s 5.5.4 and 5	.5.6					

8.DETAILS OF PARAMETERS

	#7	#6	#5	#4	#3	#2	#1	#0			
2010	POLE		HBBL	HBPE	BLTE	LINEAR					
LINEAR (#2)	Linear moto	or control is	S:								
	0: Not ex	ercised.									
	1 : Exerci	sed.									
	This bit is s	et automati	ically when	the parame	ters of the	inear motor	r are initiali	zed. Check			
	that this bit	is set befor	re the linear	motor is di	riven.						
	When using	g a set of a	non-binary	detector an	nd synchror	nous built-ir	n servo mot	or position			
	detection ci	rcuit, set L	INEAR to 1	l.							
	Referen	ce item	Subsection	s 3.1.1 and 3	3.2.2						
BLTE (#3)	The functio	n to multip	ly the back	lash acceler	ation amou	nt by 10 is:					
	1: Valida	ited.									
HBPE (#4)) When the dual position feedback function is used, a pitch error compensation is added										
	the error counter of										
	0 : Full-cl	losed loop.	\leftarrow Standard	d setting							
	1 · Semi-	closed loop									
	* For th	e 30 <i>i</i> -B Se	ries when	the dual po	sition feed	back functi	on is enabl	ed a pitch			
	error of	compensati	on is added	to the erro	or counters	of both the	full- and s	emi-closed			
	loon s	vstems reg	ardless of w	hether this	hit is set to	0 or 1 A h	acklash co	mensation			
	amoun	amount is added as usual however.									
	Reference item Subsection 5.4.9										
	Referen	ce item	Subsection	5.4.0							
HRRI (#5)	When the	tual positic	on feedback	r function i	e ucod a b	acklash co	mnoncation	amount is			
IIDDL (πJ)	added to the	added to the error counter of:									
	audeu to the effort coullier of.										
		logad loop	. ← Standa	rd setting							
		iosed loop.		5.4.0							
	Referen	ce item	Subsection	5.4.8							
POLE (#7)	The punch/ 0 : Not us 1 : Used.	laser switcl sed.	ning functio	on is:							
2014	#7	#6	#5	#4	#3	#2	#1	#0			
2011 ECD (#0)	The ECD 6		RUUL				FFAL	EGB			
EGB (#0)											
	0: Not us	sea.									
	I: Used.										
	F 1.0										
FFAL (#1)	Feed-forwa	rd control a	always is:								
	1: Enable	ed in all mo	odes.								
	Referen	ce item	Subsection	5.5.1							
RCCL (#5)	The actual of	current torc	ue limit va	riable funct	ion is:						
	0: Not us	sed.	-								
	1 : Used.		★: D	o not chan	ge.						
TMPABS (#7)	Temporary	absolute co	ordination	setting fund	ction is:						
	0: Not us	ed.									
	1 · Used										
	i. 0500.										

	#7	#6	#5	#4	#3	#2	#1	#0		
2012	STNG		VCM2	VCM1			MSFE			
MSFE (#1) The machine speed feedback function is:										
	0: Not used.									
	1 : Used.									
	Referen	ce item	Subsection	s 4.3.5 and 5	.4.9					

VCM1 (#4) The VCMD waveform signal conversion on the check board is switched.

VCM2 (#5) Switches the VCMD waveform conversion value according to the following list: For rotary type motor

VCM2	VCM1	Number of velocity commandrevolution/5V
0	0	0.9155 min⁻¹
0	1	14 min⁻¹
1	0	234 min ⁻¹
1	1	3750 min⁻¹

For linear motor (P in the table below represents a scale signal pitch[µm].)

VCM2	VCM1	Number of velocity commandrevolution/5V
0	0	0.00375 × P m/min
0	1	0.06 × P m/min
1	0	0.96 × P m/min
1	1	15.36 × P m/min

	Reference item	Appendix F
--	----------------	------------

STNG (#7) In velocity command mode, a software disconnection alarm is:

- 0: Detected.
- 1: Ignored.

	#7	#6	#5	#4	#3	#2	#1	#0
2013	APTG							HR3
HR3 (#	0) HRV3 curre	ent control	is:					
	0: Not us	sed.						
	1 : Used.							
			Subsection 5.1.2					
	Referen	ce item	Subsection	15.1.2				
	Referen	ce item	Subsection	5.1.2				
APTG (#	Referen 7) The α Pulse	ce item ecoder soft	Subsection ware discor	15.1.2	nitor is:			
APTG (#	Referen 7) The α Pulse 0 : Not ig	ce item ecoder soft nored.	Subsection ware discor	15.1.2 nnection mo	nitor is:			

1 : Ignored .	
Reference item	Section 4.2

	#7	#6	#5	#4	#3	#2	#1	#0		
2014			SPF					HR4		
HR4 (#0) HRV4 current control is:										
	0: Not used.									
	1: Used.	1 : Used.								
	Referen	ce item	Subsection	5.1.3						

SPF (#5) The servo motor torque characteristic is used for:

0: Feed axis control.

1: Spindle control.

* When spindle control is selected, the current value (%) in the servo tuning screen is displayed in the load meter mode.

8.DETAILS OF PARAMETERS

	#7	#6	#5	#4	#3	#2	#1	#0	
2015	BZNG	BLAT	TDOUT				SSG1	PGTW	
PGTW (#0)	The position 0: Not us 1: Used.	n gain swit ed.	ching funct	ion is:					
	Reference	ce item	Subsection	5.7.1					
SSG1 (#1)	The low-spe 0: Not us 1: Used.	eed integra ed.	l function is	5:					
	Reference	ce item	Subsection	5.7.2					
TDOU (#5)	Switches the 0 : TCME 1 : Estima	e check bo is output. ted load to	ard output o	lata as follo out.	WS:				
	Reference item Appendix F								
BLAT (#6)	The two-sta 0 : Not us <u>1 : Used.</u>	ge backlas ed.	h accelerati	on function	is:				
	Referen	ce item	Subsection	5.5.5					
BZNG (#7)	When a separate when a separate when a separate of the separat	arate detec nored. d.	etor is used,	the battery	alarm for th	e built-in F	Pulsecoder	is:	
	#7	#6	#5	#4	#3	#2	#1	#0	
2016					PK2VDN			ABNT	
ABNT (#0)	The unexpe 0: Not us 1: Used.	cted distur ed.	bance torqu	e detection	function (oj	ption) is:			
	Referen	ce item	Subsection	5.9.1					
PK2VDN (#3)	 The variable proportional gain function in the stop state is: 0: Not used. 1: Used. 								
	Reference	ce item	Subsection	5.3.3					
	<i>µ</i> –		<i>,,_</i>	<i></i>					
2017	#7 DK2\/25	#6	#5 BISOEE	#4	#3	#2	#1	#0	
DRST (#0)	The quick of	ton tune 1	at emergen	ev ston is:	CONSKC		<u> </u>	ופסת	
DD31 (#0)	0 : Not us 1 : Used.	ed.	at emergent	<i>y</i> stop is.					
	Reference	ce item	Subsection	5.8.3					
COMSRC(#3)	The detecto 0 : Autom 1 : $\alpha i/\beta i$ P	r on the se atically id Pulsecoder	mi-closed si entified. at all times.	ide is:					
	Reference	ce item	Subsection	2.1.10					

B-65270EN/08

HTNG (#4) In velocity command mode, the hardware disconnection alarm of a separate detector is:

- 0: Detected.
- 1: Ignored.

RISCFF (#5)	0: When 1: When	RISC is us RISC is us	ed, the feed	-forward re	esponse cha	racteristics	remain as is are improve	d.	
	Referen	ce item	Appendix G	.2			•		
PK2V25 (#7)	Velocity loo 0 : Not us 1 : Used.	op high cyo ed.	cle managen	nent function	on is:				
	Referen	ce item	Subsection	5.3.1					
	#7	#6	#5	#4	#3	#2	#1	#0	
2018	PFBCPY	#0	#0	<i>n</i> - 1	#5	OVR8	MOVOBS	RVRSE	
RVRSE (#0)	The signal of 0 : Not re 1 : Revers	direction fo versed. sed.	or the separa	te detector	is:		·		
	Referen	ce item	Subsection	2.1.3 and S	ection 4.2				
MOVOBS (#1)	The disable 0 : Not us 1 : Used.	function f	or observer	in the stop	state is:				
	Referen	ce item	Subsection	5.4.6					
OVR8 (#2)	The stage-2 0: 4096. 1: 256.	accelerati	on amount o	verride for	rmat is on th	ne basis of:			
	Referen	ce item	Subsection	5.5.5					
PFBCPY (#7)	1 : The motor feedback signal for the main axis is shared by the sub-axis. (Set this parameter for the sub-axis only.)								
	Referen	ce item	Subsections 2.2.3 and 5.10.4.3						
	#7	#6	#5	#4	#3	#2	#1	#0	
2019	DPFB						TANDMP		
TANDMP (#1)	The tandem disturbance elimination control function (option) is: 0 : Not used. 1 : Used.								
	Referen	ce item	Subsections	s 5.10.1.4 ai	nd 5.10.4.3				
DPFB (#7)	The dual position feedback function (option) is: 0: Not used. 1: Used.								
	Referen	ce item	Subsection	5.4.8					
	#7	#6	#5	#4	#3	#2	#1	#0	
2200		P2EX	RISCMC		ABG0	IQOB	FULLCP	OVSP	
OVSP (#0) FULLCP (#2)	A feedback 0 : Detect 1 : Not de 1 : A sepa	mismatch ed. etected. arate positio	alarm is: on feedback	is shared b	by the maste	er and slave	e axes.		
	(Set this par	rameter for	the sub-axi	s only.)					
	Poforon	ca itam	Subsection	51016					

IQOB (#2) 1: Eliminates the effect of voltage saturation on unexpected disturbance torque detection.

8.DETAILS OF PARAMETERS B-65270EN/08 Subsection 5.9.1 **Reference item** ABG0 (#3) 1: When an unexpected disturbance torque is detected, a threshold is set separately for cutting and rapid traverse. Reference item Subsection 5.9.2 RISCMC (#5) When a RISC processor is used: The response to a positioning command is the same as before. 0: The response to a positioning command is improved. 1: Reference item Appendix G.2 P2EX (#6) The velocity loop proportional gain (PK2V) format is: 0: Standard format. 1 : Converted format. **Reference item** 2.1.9 補足, 5, 3.1.1(7)項 #7 #6 #5 #4 #3 #2 #1 #0 2201 CPEE RNLV CROFS CROFS (#0) The function for obtaining current offsets upon an emergency stop is: 0: Not used. 1 : Used. Reference item Section 5.14 RNLV (#1) Specifies the detection level for the feedback mismatch alarm as follows: 0 : 600 min^{-1} 1 : 1000 min^{-1} CPEE (#6) The actual current display peak hold function is: 0: Not used. 1 · Used Reference item Subsection 4.1.3 #7 #6 #5 #4 #3 #2 #0 #1 DUAL0W 2202 OVS1 PIAL VGCCR VGCCR (#1) The cutting/rapid velocity loop gain switching function is: 0: Not used. 1: Used. **Reference item** Section 5.2 and Subsection 5.3.4 PIAL (#2) When rapid traverse is selected by the cutting/rapid velocity loop gain switching function, the 1/2 PI control function is: 0: Automatically disabled. 1: Always enabled. Reference item Subsection 5.3.4 OVS1 (#3) 1: Overshoot compensation is valid only once after the termination of a move command. Reference item Subsection 5.5.8 DUAL0W (#4) For zero-width judgment:

- 0: Semi-full error only is used.
- 1 : Both of a position error and semi-full error are used.
- Reference item Subsection 5.4.8

L1	#7	#6	#5	#4	#3	#2	#1	#0	
2203		1 1/ 2 T		FRCAX2	VFFINE	CRPI			
CRPI (#2)	The current	100p 1/2 F	'I control fu	nction is:					
	0. Not us	eu.							
	Poforon	co itom	Subsection	534					
	Keleren	ce item	Subsection	5.5.4					
VFFINE (#3)	The precision	on of the v	elocity feed	-forward co	efficient is				
(111(2)(10))	0: As usual.								
	1: Improved by a factor of 16.								
	With the improvement of the precision, an overflow may occur with one-sixteenth the								
	current setti	ing. If an o	verflow occ	urs, return	the setting t	to 0.			
FRCAX2 (#4)	Torque con	trol type 2	is:						
	0: Not exercised.								
	1 : Exercised.								
	Referen	ce item	Section 5.1	1					
	Th 1 1 1		-4 14		Nata 11				
ICMD4X (#5)	The check t	board outp	ut voltage of	t the TCMI) signal is:				
	0: As ust 1: Multir	lai (default	.).						
	Poforon	co itom	Appondix E						
	Referen		Аррениіх Г						
	#7	#6	#5	#4	#3	#2	#1	#0	
2204	DBS2		PGTWN2				HSTP10		
HSTP10 (#1)	The valid sp	peed increi	nent system	for the hig	h-speed pos	sitioning fu	nction is:		
	$0: 0.01 \text{ mm}^{-1}$ (rotary motor), 0.01 mm/min (linear motor).								
	1: 0.1mm ⁻¹ (rotary motor), 0.1mm/min (linear motor).								
	Referen	ce item	Subsection	5.7.1					
	D								
PGTWN2 (#5)	Position gain switching type 2 is:								
	0: Not used.								
	1: Used.								
	Referen	ce item	Subsection	5.7.1					
DBS2 (#7)	Quick stop	tuna ? at a	marganov st	on is:					
DD32(#7)	$0 \cdot Not us$	ed	incigency si	op 18.					
	1 : Used.	iou.							
	Referen	ce item	Subsection	5.8.4					
	#7	#6	#5	#4	#3	#2	#1	#0	
2205				HDIS	HD2O	FULDMY			
FULDMY (#2)	The dummy	v separate o	detector fund	ction is:					
	0: Not us	ed.							
	I: Used.								
	Referen	ce item	Appendix H	.1					
	The avial -	ton for at	n for hard-	ara diasar	nation of -	onorata dat	ator is:		
HD20 (#3)	The quick s	top function	on for hardw	are disconi	ection of s	eparate dete	ector is:		
	1 · Applie	d to aver	under synch	ronous con	trol				
	Poforon	co itom	Subsection						
	Reieren		Subsections	5 0.0 0 010 5	0.0.1				

HDIS (#4) The quick stop function for hardware disconnection of separate detector is: 0: Disabled.

- 1 : Enabled.
- For the 30*i*-B Series and Power Motion *i*-A, when bit 4 of parameter No. 2205 or bit * 5 of parameter No. 2282 is set, the quick stop function for separate detector alarms is enabled.

	Satting		Alarms for which to apply the quick stop function							
	Setting		FS30 <i>i</i>	-A,0 <i>i-</i> D		FS30 <i>i</i> -B, Power Motion <i>i</i> -A				
	No.2205#4	4=1 Ha	rdware disco	onnection of B detector	the Har	Hardware disconnection of the phase A detector or				
	No.2282#	5=1 Se	parate seria	I detector ala	ırm	separate serial detector alarm				
					I			-		
	Referen	ce item	Subsection	5.8.6						
	#7	#6	#5	#4	#3	#2	#1	#0		
2206				HBSF						
HBSF (#4)	The backlas	sh compens	ation amou	int and pitcl	n error cor	npensation a	mount are	added:		
	U: Selecti	vely accord	aing to the	convention	al parame	ter No. 2010 d sides				
	If this parameter is set to 1 (enabled) the settings bits 5 and 4 of parameter No. 2010 are									
	ignored	110101 15 501		icu), ille sei	ungs ons			0. 2010 ale		
	* For the 30 <i>i</i> -B Series, when the dual position feedback function is enabled, a pitch									
	error compensation is added to the error counters of both the full- and semi-closed									
	loop systems regardless of whether this bit is set to 0 or 1. A backlash compensation									
	amount is added as usual, however.									
	Referen	ce item	Subsection	5.4.8						
	<i>μ</i> -	#0	<i>#=</i>	م بد	# 0	#0	د بر	#^		
2207	#/	#6	#5	#4	#3 PK2D50	#2	#1	#U NEGSHC		
NEGSHC (#0)	Overcurrent	t alarm (sof	tware) is:	I	112000		1			
	0: Not ig	nored.								
	1 : Ignore	d .								
	<u> </u>									
		JTION								
	If the	e emerge	ncy stop s	state is re	leased v	vithout cor	necting t	ne		
	powe	er line in a	a test suc	ch as a tes	st for ma	chine star	t-up, the			
	over	current al	arm dete	cted by th	ne servo	software r	nay be is	sued. In		
	such	a case, t	he alarm	can be a	voided to	emporarily	by setting	g this		
	bit pa	arameter	to 1. Hov	vever, be	sure to	return the	bit param	eter to		
	0 before starting up in the normal operation state after completion									
	of a test.									
	Referen	ce item	Section 4.2	<u> </u>						
-										
PK2D50 (#3)	Specifies a	variable pro	oportional g	gain functio	on in the st	op state as f	ollows:			
	0 : 75% down.									
1	1 : 50% down.									
	Referen	ce item	Subsection	5.3.3						
	#7	#6	#5	#4	#3	#2	#1	#0		
2208	TQMNT									
				•	•			·		

TQMNT (#7) Fine torque sensing data is: 0 : Estimated disturbance value.

1 : TCMD.

For details of fine torque sensing data, refer to the description of the window function in a PMC programming manual (including B-64513EN).

8.DETAILS OF PARAMETERS

i	#7	#6	#5	#4	#3	#2	#1	#0
2213	ОСМ				PK1VDN			
PK1VDN (#3)	The variabl	e integral g	gain function	n in the stop	o state is:			
	0: Disabl	led.						
	The variable	eu. La integral (nain functio	n in the sto	n state is u	sed when	lacrossing r	ot only the
	proportiona	le integrar g il gain but	also the inte	eoral gain c	an suppress	the vibrat	ion in the st	onned state
	more efficie	ently.		Serur Sunn C	un suppress		ion in the st	opped state
OCM (#7)	Pole position	on detection	n function (optional) is:				
	0: Disabl	led.						
	1: Enable	ed.						
	Referen	ce item	Subsection	3.2.1.2				
	#7	#6	#5	#4	#2	#2	#1	#0
2214	#1	#0	#5	FFCHG	#5	#2	#1	#0
FFCHG (#4)	The cutting	/rapid feed	-forward sw	vitching fun	ction is:			
	0: Not us	sed.						
	1: Used.							
	Referen	ce item	Section 5.2	and Subsec	tion 5.5.2			
	47	#6	#5	#4	#2	#0	#4	#0
2215	#/	#0	#5	#4	#3	#2	TCPCLR	#0 PK1D50
PK1D50(# 0)	The magnif	fication in	the stopped	state for th	ne variable	inteoral oa	in function	in the stop
1 K1D50 (# 0)	state is:	incution in	ine stopped	State 101 ti		integrai ge		in the stop
	0: 75%							
	1: 50%							
TCPCLR (#1)	A function	of setting	the velocit	y loop inte	egrator with	n a value	for cancelin	ig a torque
	offset at an	emergency	stop is:					
	0: Disabl	led.						
	I. Ellable	eu.	Subsection	o 5 0 1 and 5	10 1 2			
	Referen	ce item	Subsection	s 5.9.1 and 5	0.10.1.2			
ART2 (#7)	Cutting/ran	id unexnec	ted disturba	nce torque	detection fi	nction typ	e 2 is	
11D12(11)	$0 \cdot \text{Disable}$	led	ica aistaiba	nee torque		metion typ	0 2 15.	
	1: Enable	ed.						
	Referen	ce item	Subsection	5.9.2				
	#7	#6	#5	#4	#3	#2	#1	#0
	A non 1.:	mr. data -t-	P16					DECAMR
DECAMR (#0)	A non-bina 0 · Not w	ry detector	15:					
	1 · Used	seu.						
	Referen	ce item	Subsection	3211				
			Cabecolion	0.2.111				
P16 (#5)	16-pole ser	vo motor is	5					
()	0: Not us	sed.						
	1 : Used.							
	Referen	ce item	Subsection	2.2.4				
	··-							
2224	#7		#5	#4	#3	#2		#0
	ASTUS	UNUTCH				VFFNCH	LNUICH	
LINUICH(#1)								

B-65270EN/08

- 0: Uses resonance elimination filter 4.
- 1: Uses resonance elimination filter L.
- Reference item Subsections 5.4.3 and 5.4.5

VFFNCH (#2) Resonance elimination filter L is applied to:

- 0: Feed-forward part only of the velocity command
- 1 : Entire velocity command

Reference item	Subsection 5.4.5
----------------	------------------

- AMREX(#5) AMR conversion coefficient 1 (parameter No. 2112) is set to:
 - 0: Usually set value.
 - 1: One-sixteenth the usually set value.
- QNOTCH(#6) The specification of resonance elimination filter 4 is:
 - 0: Standard specification.
 - 1: Frequency extended specification.

Extended valid data range of the attenuation center frequency of resonance elimination filter 4

		111.145	NKV4
Valid data range of the attenuation center frequency (parameter No. 2366) (Bit 6 of parameter No. 2221 = 0)	96 to 1000	96 to 2000	96 to 4000
Valid data range of the attenuation center frequency (parameter No. 2366) (Bit 6 of parameter No. 2221 = 1)	96 to 2000	96 to 4000	96 to 4000

Reference item Subsection 5.4.3

ASYCS(#7) The connection signal for the synchronous axes automatic compensation function is:

- 0: Disabled.
- 1: Enabled.
- (Power-off parameter)

Reference item	Subsection 5.10.1.5						

2223		BLCUT2	SLTMAS	SLTTAN					DISOBS
DISOBS (#0) The disturbance elimination filter function is:									
			1						

0: Not used. 1

:	Used.

. 0500.	
Reference item	Subsection 5.4.4

SLTAN (#5) Multi-axis tandem is:

- 0: Not used.
- 1

: Used.	
Reference item	Subsection 5.10.2

SLTMAS (#6) In a multiaxis tandem system, this axis is used as:

- 0: Slave axis.
- Master axis 1:

. master and.	
Reference item	Subsection 5.10.2

BLCUT2 (#7) The backlash acceleration function is:

- 0: Enabled for both cutting feed and rapid traverse.
- 1: Enabled only for cutting feed.

8.DETAILS OF PARAMETERS

B-65270EN/08

- 0: Sine wave. (Usually, select the sine wave.).
- 1 : Square wave.

Reference item Subsection 5.10.1.4

DSTTAN(#6) Disturbance is:

- 0: Input for one axis only.
- 1: Input for both the L and M axes (To be set only for the L axis side of synchronous axes or tandem axes).

Reference itemSubsection 5.10.1.4

DSTIN (#7) The disturbance input function is:

- 0: Not used.
- 1 : Used.

Reference item Subsection 5.10.1.4

1 : Used.

Reference item Subsection 5.9.1

2NDTMG (#5) Two-stage acceleration type 2 of two-stage backlash acceleration is:

2110 11110 (110)	0: Not u 1: Used.	sed.	n type 2 of	two stuge of	iekiusii uev		5.	
	Referen	Reference item		5.5.5				
	#7	#6	#5	#4	#3	#2	#1	#0
2273	DBTLIM	EGBFFG	EGBEX	POA1NG			WSVCPY	
WSVCPY (#1)	When the	Feed axis	synchroniza	tion contro	l is used,	the loop in	ntegrator of t	the master
	axis :							
	0 : Can r	ot be copie	ed to the slav	ve axis.	THIS NC	DTE IS WR	ONG, THE R	IGHT SENTE
	1 : Can b	be copied to	the slave a	xis.	"Set this	parameter	for the maste	er and slave a
	(Specify or	nly the slav	e axis.) —	\longrightarrow	SEE PA	G. 329		
	Referen	nce item	Section 5.1	0				
POA1NG (#4)	In the calc 0 : Consi 1 : Not c	ulation of th idered. onsidered.	ne observer	coefficient (POA1), th	e load iner	tia ratio (LDI	NT) is:
EGBEX (#5)	The EGB a	automatic p	hase matchi	ng function	is:			
	0: In the	normal mo	ode (decelera	ation not per	formed be	etween the	master and de	etector).
	1 : In the	extended r	node (decel	eration perfo	ormed betw	ween the m	aster and dete	ector).
EGBFFG(#6)	FFG is:							
	0: Not c	onsidered in	n the EGB r	atio.				
	1: Consi	idered in the	e EGB ratio					

DBTLIM (#7) The torque limit setting function during brake control is:

0: Disabled.

1 : Enabled.

- 0 : Not used.
- 1 : Used.

DD2048(#0) For a DiS motor, the HP2048 bit is:

- 0: Disabled.
- 1: Enabled.

(Interpolation magnification to be assumed for setting parameters)

No.2274#6	No.2274#0	Interpolation magnification when a position detection circuit is used				
(DD2048)	(HP2048)	D <i>i</i> S motor	L <i>i</i> S motor			
0	0	~ 2048	× 2048			
0	1	* 2048	× 510			
1	1	× 512	~ 312			

Reference item Subsections 2.1.5, 3.1.1, and 3.2.1

	#7	#6	#5	#4	#3	#2	#1	#0
2275					ASYN		RCNCLR	800PLS
	TT 71 (1	DOUTOO	D CD 1000 ·	1 .1	C		• • •	C

800PLS (#0) When the RCN723 or RCN223 is used, the reference counter setting is made in reference to:

- 0: 1/8 turns of the detector.
- 1 : 1 turn of the detector.

Reference item Subsection 2.1.5

RCNCLR (#1) The speed data is:

- 0: Not cleared.
- 1: Cleared. (To use the RCN223 or RCN723, set it to 1.)

Reference item	Subsection 2.1.5
Related parameter	No.2394

ASYN (#3) Synchronous axes automatic compensation function is

0: Not used.

1 :	Used.

Referenc	e item	Subsection	5.10.1.5		
				 "0	 "•

	#7	#6	#5	#4	#3	#2	#1	#0
2277	ACC10N	ACC2ON	ACC3ON	ACCNEG				
ACCNEG (#4)	The sign of acceleration feedback is:							
	0: Not inverted.							
	1 : Inverted.							
	Referen	ce item	Subsection	2.1.8				

ACC3ON (#5) Acceleration feedback in the third direction is:

0: Disabled.

1: Enabled.

Lilabicu.	
Reference item	Subsection 2.1.8

ACC2ON (#6) Acceleration feedback in the second direction is:

- 0: Disabled.
- 1: Enabled.

Reference item	Subsection 2.1.8

ACC1ON (#7) Acceleration feedback in the first direction is:

- 0: Disabled.
- 1 : Enabled.
| | Referer | nce item | Subsection | 2.1.8 | | | | | | |
|--------------------|---|---|--|-------------------------------------|---------------|--------------------------|----------------------------|---------------------------|--|--|
| | | | | | | | | | | |
| 0070 | #7 | #6 | #5 | #4 | #3 | #2 | #1 | #0 | | |
| 2278
DM1TD (#0) | With the fi | rat or third. | anarata dat | PM2ACC | PM2SCB | PM1SCB | PM21P | PM1IP | | |
| PMITP (#0) | with the final 0 · Not u | rst or third : | separate del | ector interi | ace unit, a t | emperature | e detection (| ircuit is: | | |
| | 1 · Used | scu. | | | | | | | | |
| | Referen | nce item | Subsection | 218 | | | | | | |
| | Referen | | Cubecellen | 2.1.0 | | | | | | |
| PM2TP (#1) | With the se | econd or for | urth separat | e detector | interface un | it, a tempe | rature detec | tion circuit | | |
| · · · · · | is: | | 1 | | | , I | | | | |
| | 0 : Not u | sed. | | | | | | | | |
| | 1 : Used. | | | | | | | | | |
| | Referer | nce item | Subsection | 2.1.8 | | | | | | |
| PM1SCB (#2) | The first or
0: Not u
1: Used. | third serve
sed. | check inter | rface unit is | 5: | | | | | |
| | Referer | nce item | Appendix F | | | | | | | |
| PM2SCB (#3) | The second or fourth servo check interface unit is:0: Not used.1: Used. | | | | | | | | | |
| | Referer | nce item | Appendix F | | | | | | | |
| | 0: Read
or no
1: Read
CNC. | from the fi
acceleration
from the s | rst or third
n sensor is u
econd or fo | separate de
ised.
ourth separ | etector inter | face unit c
interface | ounted fror
unit counte | n the CNC,
ed from the | | |
| | Referer | nce item | Subsection | 2.1.8 | | | | | | |
| | | | | | | | | | | |
| | #7 | #6 | #5 | #4 | #3 | #2 | #1 | #0 | | |
| 2279 | | | 11 | | | 11 1 | | DMCON | | |
| DMCON (#0) | In emerger | icy stop can | icellation wi | ith the dum | imy function | enabled: | | | | |
| | 1. The re | ady signal | is output | 11. | | | | | | |
| | Referen | item | Annendix H | 12 | | | | | | |
| | Referen | | | 1.2 | | | | | | |
| | #7 | #6 | #5 | #4 | #3 | #2 | #1 | #0 | | |
| 2281 | | | | | | RDPRR | RDPMU2 | RDPMU1 | | |
| RDPMU1(#0) | Internal un | it for power | consumpti | on monitor | ing | | | | | |
| RDPMU2(#1) | Internal un | it for power | consumpti | on monitor | ring | | | | | |
| | I | Maximum m | otor output | | RDPM | U2 | RDP | MU1 | | |
| | | 300kW to | | | 0 | | (|) | | |
| | | 30kW to | 300kW | | 0 | | 1 | | | |
| | | 3KVV to | 30KW | | 1 | | (|) | | |
| | The type of | [0
f recencrati | on used for | a cartua area | nlifier for m | wer ooner | motion mo | nitoring is: | | |
| KDI KK(#2) | 0 : Electr
1 : Resist | ric power re
tance regen | generation
eration | a sei vo alli | piner tor p | JWEI COIISU | | intornig is. | | |

<u> </u>	#7	#6	#5	#4	#3	#2	#1	#0		
2282 FSAOS (#0)	The quick	ston function	FSAQS	ate serial de	etector al	arms is:				
1 5AQ5 (#0)	0 : Disab	led.	on for separa			ami 15.				
	1 : Enabl	ed.								
	* For th	ie 301-B Se	eries and Pov 10, 2282 is a	ver Motion	h <i>i</i> -A, who	en bit 4 of par	ameter No.	. 2205 or bit		
	enable	ed.	0. 2202 15 5	ci, ilic quie	k stop tu	fiction for sep				
	Sottin	a –	Alar	ms for which	ch to appl	apply the quick stop function				
	Settin	y .	FS30 <i>i</i>	-A,0 <i>i</i> -D		FS30 <i>i</i> -B, P	ower Motic	on <i>i-</i> A		
	No.2205#	#4=1 H	ardware disco phase A/	onnection of B detector	the Ha	Hardware disconnection of the phase A				
	No.2282#	#5=1 S	eparate seria	l detector al	arm	separate se	rial detector	alarm		
	Referer	nce item	Subsection	5.8.7						
	#7	#6	#5	#4	#3	#2	#1	#0		
2283	BLSTP2							NOG54		
NOG54(#0)	High-speed	d HRV cur	rent control	mode (serv	o HRV3	control) is:				
	1: Used when G01 is specified (G5 4O1 is not monitored)									
			is specifica.	(05.121	5 1107 1110					
	NOTE									
	This	function	can be us	sed when	servo ł	HRV3 contro	ol is used			
	Inis	stunction	cannot be	e used wi	nen serv	VO HRV4 CO	ntrol is u	sed.		
	Referer	nce item	Subsection	5.1.3						
BLSTP2 (#7)	The function	on for disat	oling backlas	sh accelera	tion after	a stop is:				
	1 · Used	sea.								
	1. 0000									
2225	#7	#6	#5	#4	#3	#2	#1	#0		
TROCPY(#6)	As the curr	ent comma	and for the s	l ub-axis the	e current	command for	the main a	xis is [.]		
	0: Not u	sed.	ind for the s	uo uno, un	e eurrent	communa for	the man u	110 10.		
	1 : Used.									
	Referer	nce item	Subsection	5.10.4.3						
	#7	#6	#5	#4	#3	#2	#1	#0		
2286				WCCNCK						
WCCNCK(#4)	0: When	external s	ignal Gn321	is set to (), the velo	ocity loop inte	egrator is c	opied to the		
	1: The v	elocity loo	p integrator	is always	copied to	the slave axis	s regardless	s of whether		
	exterr	nal signal C	3n321 is set	to 0 or 1.	1		e			
	(Specify or	nly the slav	e axis.)							
	Referer	ice item	Subsection	5.10.1.1						
	#7	#6	#5	#4	#3	#2	#1	#0		
2288	MPCEF		1.							
MPCEF (#7)	Machining	point cont	rol 1s:							
	1: Enabl	ed.								

B-65270EN/08

FRFATE(#3) Execution condition 1 of the adaptive resonance elimination filter in the follow-up mode FRFATE(#4) Execution condition 2 of the adaptive resonance elimination filter in the follow-up mode

No.2290#4	No.2290#3	Execution condition in the follow-up mode
0	0	Executed when G322.x = 1 or during axis movement.
0	1	Executed when G322.x = 1 or during rapid traverse.
1	-	Executed only when G322.x = 1.

Reference item Subsection 5.6.2

- FRFPWE(#5) The parameter for the center frequency of the adaptive resonance elimination filter (No. 2113) is:
 - 0: Not automatically updated.
 - 1: Automatically updated.

Reference item Subsection 5.6.2

	#7	#6	#5	#4	#3	#2	#1	#0			
2291						FRFEBW					
FRFEBW(#2)	The maxim	num freque	ncy that ca	an be follo	wed by the	e adaptive	resonance	elimination			
	filter in HRV3 or HRV4 control is:										
	0: 1.3 kH	0 : 1.3 kHz (standard).									
	1: 2.0 kH	1 : 2.0 kHz (extended).									
	Referen	ce item	Subsection	5.6.2							

Specifies a servo axis number for the second moving axis.

NOTE For the 30*i*-B Series and Power Motion *i*-A, use parameter No. 2606 to specify servo axis numbers for the first and second moving axes.

Reference item Subsection 5.5.9

MV2IFC(#6) Sets calculation of interactive force from the second moving axis.

- 427 -

NOTE

Set this function when using servo HRV4 control.

Reference item Subsection 5.1.3

- DD (#2) Synchronous built-in servo motor control is:
 - 0: Disabled.
 - 1 : Enabled.

This bit is automatically set when the synchronous built-in servo motor parameters are initialized. However, before driving a synchronous built-in servo motor, check that this bit is set to 1.

Reference item Subsection 3.2.1.1

THRMO (#3) When bit 7 of No. 2300 is set to 1, the overheat alarm of a motor is:

- 0: Obtained from a DI signal via the PMC.
- 1: Obtained from the α*i*CZ detection circuit, linear motor position detection circuit, or temperature detection circuit.
 Reference item Section 3.3

CKLNOH (#7) The overheat alarm of a motor is:

- 0: Obtained from the pulse coder (for an $\alpha i/\beta i$ motor).
- 1: Obtained from a DI signal via the PMC, or from the αiCZ detection circuit, linear motor position detection circuit, or temperature detection circuit.

Reference item	Section 3.3
----------------	-------------

	#7	#6	#5	#4	#3	#2	#1	#0
2301	TQCT10							
		-						

TQCT10 (#7) The torque control setting range extension function is:

- 0: Disabled. (The setting of the torque constant parameter is used without modification.)
- 1: Enabled. (The setting of the torque constant parameter is increased by a factor of 10 for use in the NC.)

	#	7	Ŧ	#6	#5	#4		#	3	#2	2	#1		#0
2414	*	t .				NEGF	PTD	LCS	SYN	BUFF	RST		C	MPLC
(#0)	For tu	uning	the	relevant	paramet	er for	qua	drant	protr	usion	com	pensation	for	Tuning
	Navig	ator												
(#1)	For tu	uning	the	relevant	paramet	er for	qua	drant	protr	usion	com	pensation	for	Tuning
	Navig	ator												
(#2)	For tu	uning	the	relevant	paramet	er for	qua	drant	protr	usion	com	pensation	for	Tuning
	Navig	ator												
(#3)	For tu	uning	the	relevant	paramet	er for	qua	drant	protr	usion	com	pensation	for	Tuning
	Navig	ator												
(#4)	For tu	uning	the	relevant	paramet	er for	qua	drant	protr	usion	com	pensation	for	Tuning
	Navig	ator												
(#5)	For tu	uning	the	relevant	paramet	er for	qua	drant	protr	usion	com	pensation	for	Tuning
	Navig	ator												
(#6)	For tu	uning	the	relevant	paramet	er for	qua	drant	protr	usion	com	pensation	for	Tuning
	Navig	ator												
	* Т	These p	barai	meters ar	e used by	/ Tunii	ng Na	avigat	or du	ring tu	ning.	After tuni	ng, i	they are
	S	et to 0												

	#7	#6	#5	#4	#3	#2	#1	#0		
2415	*	*	LBLACC	*	*	*	IAHDON			
IAHDON(#1)	The default	value of th	e feed-forw	ard timing	adjustment	parameter	is:			
	0: 0.			(: Q ·						
	I: Compa	atible with	that of the I	61 Series.			C 1 C	1		
	* By set	tting IAHL	ON to I a	nd parame	ter No. 20	95 to 0, the	e feed-forw	ard timing		
	becom	les compa	ing is five	that of the	le 16 <i>1</i> Sel	ties. For t	ne 301-B	Series, the		
	wheth	er hit 1 of r	nig is fixed arameter N	0.2415 is s	set to 0 or 1	$(N_0 2415t)$	$\frac{1}{41=1}$	gardless of		
	Referen	ce item	Subsection	553		. (110.2+15)	F 1 1)			
	Reference		Cubeceden	0.0.0						
(#2)	Attenuation	type setti	ing for qua	drant prot	rusion con	pensation	for Tuning	Navigator		
	(Normally (): Exponen	tial)	-		- -	-	-		
(#3)	Acceleratio	n amount	override set	ting for qu	adrant pro	trusion con	npensation	for Tuning		
	Navigator (Normally 1	.)			- • • • •		11		
(#4)	Filter settin	ilter setting for quadrant protrusion compensation for Tuning Navigator (Normally 0)								
LBLACC (#5)	Quadrant p	Quadrant protrusion compensation for Tuning Navigator Is:								
	$1 \cdot \text{Enable}$	eu. A								
(#6)	Acceleratio	celeration amount override setting for quadrant protrusion compensation for Tuning								
(Navigator (avigator (Normally 1)								
(#7)	Acceleratio	n amount (override set	ting for qu	adrant pro	trusion con	npensation	for Tuning		
	Navigator (1 or 0)			_		-	-		
	Referen	ce item	Appendix M							
	#7	#6	#5	#4	#2	#2	#4	#0		
2417	#1	#0 *	#5	#4 TIMCAI	#3	#2 TIMPR2	#1	#0		
TIMCAL(#4)	Preload tim	e constant	calculation	is:						
- ()	0: Not pe	erformed. (Conventiona	al specifica	tion)					
	1: Perfor	med.		-						
TIMPR2(#2)	The expone	ntial time o	constant of t	he preload	function is	:				
	0: Recipi	ocal numb	er of the pos	sition loop	gain.					
	1: Four t	imes of the	reciprocal 1	number of t	he position	loop gain.				
	Referen	ce item	Subsection	5.10.1.2						
	#7	#6	#5	#4	#2	#2	#1	#0		
2418	#1	#0	#5	<i>π</i> -		INESHS	<i>π</i> ι	#0		
INESHS(#2)	The minim	um detectat	ole accelerat	tion for ine	rtia estimat	ion is set to	be:			
	0: Norma	al.								
	1 : 1/32.									
INEVCM(#3)	Oscillation	for inertia	estimation is	s input by:						
	0: Torqu	e command								
	I: Veloci	ity commar	nd.	5.0.4						
	Referen	ce item	Subsection	5.6.1						
	#7	#6	#5	#4	#3	#2	#1	#0		
2419	INESGH	INESGL	INESFH	INESFL	INESMG	INESFC	DYNTQL	DYNERR		
DYNER $\overline{R(\#0)}$	The detection	on of exces	sive error b	etween the	estimated p	position and	actual posi	tion is:		
	0: Disabl	ed.								
DUALTOL	1: Enable	ed.		, . 1		•,•	1 4 1	•,• • .1		
DYNTQL(#1)	The detection	on of exces	sive error b	etween the	estimated	position and	actual pos	ition in the		
	0 · Disabl	ed								
	v. Disabl	uu.								

	Reference	eitem Subs	ection 2.1.11.2								
INESFC(#2)	The inertia es	stimation functi	on is:								
	0: Disablee	d.									
	1: Enabled										
INESMG(#3)	The weight o	f the diagnosis	screen display (N	No. 764) of the	estimated inertia value is:						
	0: Standard	d.									
	1: 1/32 of s	standard.									
INESFL(#4)	Oscillation fr	equency for ine	ertia estimation								
INESFH(#5)	Oscillation fr	equency for ine	ertia estimation								
	Amount o	of the oscillation	o current comman	id INE	SFH INESFL						
	Standard freq	uency (50Hz)			0 0						
	Low frequence	y (25Hz)			D 1						
	High frequence	cy (100Hz)			1 0						
INESGL(#6)	Amount of th	mount of the oscillation current command for inertia estimation									
INESGH(#7)	Amount of th	e oscillation cu	irrent command f	for inertia estim	ation						
	Amount o	of the oscillation	o current comman	id INE	SGH INESGL						
	Rated current				0 0						
	1/2 of the rate	ed current			0 1						
	Double the ra	ted current			1 0						
	Reference	eitem Subs	ection 5.6.1								
· · · · · · · · · · · · · · · · · · ·	#7	#6 #	^{‡5}	#3	#2 #1 #0)					
2420	SFUMSET	ATPKVF	DUDYN								
DUDYN(#4)	When the dual position feedback function is enabled, the detection of excessive error										
	between the estimated position and actual position is:										
	0: Disable	d.									
	I: Enabled					1 1					
	* For the	30 <i>i</i> -B Series, th	is function bit is	s not used becau	ise the dual position feed	back					
	function	can be used to	gether by defaul	t.							
	Reference	eitem Subs	ection 2.1.11.2		• • • •						
ATPKVF(#6)	In the PARA	METER SETT	ING SUPPORT	screen (0 <i>i</i> -D Se	ries), the servo gain has:						
	0: Not been	n tuned.									
	1 : Been tu	ned.									
SFUMSET (#7)	The unit of c	lata for the lev	el on which the	difference in e	rror between the semi-cl	osed					
	and full-close	ed modes becor	nes too large (pa	rameter No. 21	18) is:						
	0: Detectio	on unit.									
	1: 1 μm.										
	* Use this	s parameter wh	the detection	n unit is too si	nall to set a necessary v	/alue					
	within t	he valid data ra	nge for paramete	er No. 2118.							
	Reference	eitem Subs	ection 2.1.11.1								
	# 7	<i>#C</i>	۰ ۲	#2	40 44 40						
2422		#6 #	FD #4	#3		, NB2					
$\frac{2422}{\text{SVS} \wedge \text{P} 2(\#0)}$	Coefficient f	r the detection	level of speed or	rrival ?	JUJANI JUJA	1114					
SVSAR2(#0) SVSAR1(#1)	Coefficient fo	or the detection	level of speed a	rrival 2							
S V SAR((#1))			a level of speed al			—					
	SVSAR1	SVSAR2	Offset speed	speed	speed Remarks						
	0	0	50/min	20/min	Recommended (ai, Bi mo	tor)					
	0	1	10/min	5/min							
	1	0	5/min	2/min	Recommended (DiS moto	or)					

2/min

1/min

1

1

	Referen	Defension F 40.4										
SSTMCC(#4)	When the o	wick stop f	function at	emergeney	ston is enal	hled and th	e zero-snee	d detecting				
$551 \text{ MCC}(\pi + 1)$	signal (SVS	signal (SVSSTn) is set to 1 the excitation of the amplifier is										
	0: Not cu	0 Not cut off										
	1: Cut of	μ 011. Ψ										
	1. Cut of	1.	Outra estisue	5 40 0								
	Referen	ce item	Subsection	5.12.2								
	#7	#6	#5	#4	#3	#2	#1	#0				
2423					RGDFRC	RGDBLA	DBCOFF					
DBCOFF(#1)	Dead-band	compensat	ion for the a	amplifier is:								
	0: Alway	s enabled.		-								
	1: Disabl	1 : Disabled in the stopped state.										
	When this parameter is used, the system determines the stopped state when both the											
	conditions below are satisfied, and set dead-band compensation to 0:											
	• The move command from the CNC is 0.											
	• The absolute value of the position error becomes lower than or equal to the setting											
	of narameter No 2193											
	or parameter 140, 2175.											
	NOTE											
	This personator is used with Series 0000/09 0 and subsequent											
	This parameter is used with Series 90G0/08.0 and subsequent editions (30 <i>i</i> -B Series, Power Motion <i>i</i> -A) or Series 90E1/08.0 and subsequent editions (30 <i>i</i> -A Series).											
			,		,							
RGDBLA(#2)	Compensat	ion for reve	erse operati	on and at th	e start of FS	SSB high-si	beed rigid ta	apping is:				
	0 · Disabl	led	P					······································				
	1 · Enable	ed										
RGDFRC(#3)	Compensati	ion for rev	erse onerati	ion and at t	he start of]	ESSB high	-sneed rigid	tanning is				
nobine(#5)	enabled.		ense operad	ion und ut t		i oob iligii	speed right	upping is				
	$0 \cdot \text{Only f}$	for reverse	oneration									
	1 · For rev	verse onera	tion and at	the start of	rigid tannin	a						
	Poforon	co itom	Soction 5.1	2	iigia tappii	ig.						
	Keleren		Section 5.1	5								
	#7	#6	#5	#4	#3	#2	#1	#0				
2429						FSBSYN	FSBTAP	SVZENB				
SVZENB(#0)	Leakage de	tection for	the servo an	mplifier is:								
	0: Disabl	led.		-								
	1: Enable	ed.										
FSBTAP(#1)	FSSB high-	-speed rigid	l tapping is:									
102111 ()	0 · Disabl	led										
	1 · Enable	ed										
FSRSVN(#2)	Serve contr	ol for the F	GR (FSSP	method) is								
$1000110(\pi 2)$	0 · Disch	lor for the L	מממון ערי	memou) is								
	1. Enchl	ad										
	I. EHADIG	cu.										

 used together: FSSB high-speed rigid tapping (bit 1 of No.2429) Servo-spindle synchronization control (bit 4 of No.2016) Servo HRV4 control (bit 0 of No.2014) When this parameter is set, the power must be turned off before operation is continued. 									
Reference item A-94657E									
#7 #6 #5 #4 #3 #2 #1 #									
 Disabled. 1: Enabled. * This parameter is valid for servo amplifiers for the 30i-B Series. #7 #6 #5 #4 #3 #2 #1 # AILIN AILIN(#4) By using LC195F or LC495F, the minimum resolution of the scale is: 0: Not extended. 1: Extended. 									
Reference item Subsection 2.1.5									
#7 #6 #5 #4 #3 #2 #1 #									
2565 SFER SEP OFE(#0) In a full algorithm in which are surplus. SDU in a lot of the full state of the full state of the full state.									
SEROFF(#0) In a full-closed configuration in which an analog SDU is used, the function monitoring the difference in error between the semi-closed and full-closed modes is: 0 : Enabled. 1 : Disabled.									
Reference item Subsection 2.1.11.1									
#7 #6 #5 #4 #3 #2 #1 #									
3111 S\									
SVS(#0) 1: The SERVO SETTING screen is displayed.									
Reference item Subsections 2.1.3 and 4.1.1									

 \star : Parameters set up automatically at initialization \star : Parameters that can be kept at the automatically set values

Parameter number	Details	
1821	Reference counter capacity	→ 2.1.3
1825	Position loop gain (position gain)	\rightarrow 4.1.1
1851	Backlash compensation value	→ 5.5.4, 5.5.5
2020	Motor ID No.	→ 2.1.3
	Motor ID number that can be specified	Initial setting

 \Rightarrow : Parameters set up automatically at initialization \star : Parameters that can be kept at the automatically set values

Parameter number	Details	
2021	Load inertia ratio (LDINT)	Adjust for
	Load inertia	individual
	×256	machines
	Rotor inertia	separately.
	Increase velocity loop gain parameters PK1V and PK2V by (1 + LDINT/256) times	
2022	Rotation direction of the motor	$\rightarrow 2.1.3$
2023	Number of velocity pulse	Initial setting
2024	Number of position pulse	
2025	Inertial estimation: Oscillation frequency	→ 5.6.1
2026	Inertial estimation: Oscillation gain	
2028	Velocity enabling position gain switching	→ 5.7.1
2029	Acceleration-time velocity enabling integral function for low speed	→ 5.7.2
2030	Deceleration-time velocity enabling integral function for low speed	, .
2031	Excessive torque difference alarm threshold	→ 5.10.1.3
2033	Number of position feedback pulses	→ 5.4.7
2034	Vibration damping control gain	, c
2036	Tandem control/damping compensation gain (main axis)	→ 5.10.1.4.
	Tandem control/damping compensation phase coefficient (sub-axis)	5.10.4.1
2039	Two-stage backlash acceleration function : stage 2 acceleration amount	→ 5.5.5
2040	Current loop gain (PK1)	★ Motor-specific
2041	Current loop gain (PK2)	
2042	Current loop gain (PK3)	
2043	Velocity loop integral gain (PK1V)	☆ Motor-specific
2044	Velocity loop proportional gain (PK2V)	Adjust for
		individual
		machines
		separately.
2045	Velocity loop incomplete integral gain (PK3V)	☆ Motor-specific
		→ 4.3.7
2046	Velocity loop gain (PK4V)	★ Motor-specific
2047	Observer parameter (POA1)	☆ Motor-specific
	This parameter is adjusted when the unexpected disturbance torque	→ 4.3.7, 5.9.1
	detection and two-stage backlash functions are used.	
	NOTE: If the velocity gain (load inertia ratio) is changed, this parameter	
	must be re-adjusted. When a negative value is set for POA1, it is	
	assumed to be $ POA1 \times 10$.	
2048	Backlash acceleration amount	arrow ightarrow 5.5.4, 5.5.5
2049	Maximum dual position feedback amplitude	☆ → 5.4.8
2050	Observer gain (POK1)	☆ Motor-specific
2051	Observer gain (POK2)	→ 5.4.6
	When only the unexpected disturbance torque detection function is used,	
	these parameters must be changed.	
2052	Excess speed alarm detection speed	*
2053	Current dead-band compensation (PPMAX)	★ Motor-specific
2054	Current dead-band compensation (PDDP)	
	The standard setting for αt motors is 1894.	
2055	Current dead-band compensation (PHYST)	
2056	Variable current loop gain during deceleration (EMFCMP)	★ Motor-specific
2057	Phase D current at high-speed (PVPA)	
2058	Phase D current limit (PALPH)	
2060	Torque limit	★ Motor-specific
	The value 7282 represents the maximum current value of the amplifier.	
	The default represents the maximum current of the motor.	

☆: Parameters set up automatically at initialization ★: Parameters that can be kept at the automatically set values

Parameter number	Details	
2061	Back electromotive force compensation (EMFCMP)	★ Motor-specific
2062	First OVC alarm parameter (POVC1)	
2063	First OVC alarm parameter (POVC2)	
2064	Software disconnection alarm level	★ Motor-specific
		\rightarrow 3.2
2065	First OVC alarm parameter (POVCLMT)	★ Motor-specific
2066	Acceleration feedback gain	$\Rightarrow 4.3.4$
2067	Torque command filter	$\Rightarrow \rightarrow 4.3.5, 5.2,$
2068	Feed-forward coefficient	3.4.2
2069	Velocity feed-forward coefficient	
2070	Backlash acceleration timing	\$
2071	Time during which backlash acceleration is effective.	$\Rightarrow 5.5.4$
	Static friction compensation count	,
2072	Static friction compensation amount	☆ → 5.5.6
2073	Stop state judgment parameter	
2074	Variable current loop gain depending on current	★ Motor-specific
2075	Not in use at present.	☆
2076	Not in use at present.	☆
2077	Overshoot compensation counter	☆ → 4.3.7
2078	Dual position feedback: Conversion coefficient (numerator)	$\Rightarrow 5.4.8$
2079	Dual position feedback: Conversion coefficient (denominator)	
2080	Dual position feedback: Constant of first-order lag	
2081	Dual position feedback: Zero zone	
2082	Backlash acceleration stop amount	$\Rightarrow 5.5.4$
2083	Brake control timer (msec)	☆ → 5.8.1
2084	Flexible feed gear (numerator)	\rightarrow 2.1.2
2085	Flexible feed gear (denominator)	Initial setting
2086	Rated current parameter	★ Motor-specific
2087	Torque offset	☆ → 5.5.5, 5.9.1,
	Tandem control/Preload value	☆ → 5.10.1.2
2088	Machine speed feedback gain	$\Rightarrow \rightarrow 4.3.5, 5.4.9$
2089	Two-stage backlash acceleration function : stage-2 end magnification	$\Rightarrow \rightarrow 5.5.5$
2091	Nonlinear control parameter	\$
2092	Advanced preview feed-forward coefficient	☆ → 5.5.1
2094	Backlash acceleration amount in the negative direction	☆ → 5.5.4
2095	Feed-forward timing adjustment coefficient	$\Rightarrow 5.5.3$
2096	Machining point control: Timing adjustment parameter (MPCTIM)	→ 5.4.10
2097	Static friction compensation stop parameter	^ಭ → 5.5.6
2098	Current phase lead compensation coefficient	★ Motor-specific
2099	N pulses suppression function	
2101	Overshoot compensation valid level	$\Rightarrow 5.5.8$
2102	Final clamp value for the actual-current limit	★ Motor-specific
2103	I rack back amount applied when an unexpected disturbance torque is detected	☆ → 5.9.1
2104	Unexpected disturbance torque detection alarm level (cutting when	☆ → 5.9.1
	switching is used)	
2105	Torque constant	$\Rightarrow \overline{5.11}$
2107	Velocity loop gain magnification for cutting	☆ → 5.2
2110	Magnetic saturation compensation	★ Motor-specific
2111	Torque limit at deceleration	★ Motor-specific
2112	Linear motor AMR conversion coefficient 1	☆→ 3.2.1.1
2113	Resonance elimination filter 1: attenuation center frequency	☆→ 5.4.3,5.6.2

☆: Parameters set up automatically at initialization
 ★: Parameters that can be kept at the automatically set values

Parameter number	Details	
2114	Backlash acceleration function : acceleration amount override	$\rightarrow 5.5.4$
	Two-stage backlash acceleration function : stage 2 acceleration amount	→ 5.5.5
	override	
2115	For internal data output: Usually to be kept at 0.	
2116	Unexpected disturbance torque detection : dynamic friction cancel	→ 5.9.1
2118	Dual position feedback	→ 5.4.8
	Semi-closed/full-closed error overestimation level	
2119	Variable proportional gain function in the stop state : Stop level	→ 5.3.3, 5.4.6
2121	Synchronous axes automatic compensation: Preset	5.10.1.5
2122	Not used	
2126	Tandem control/position feedback switching time constant	
2127	Non-interference control coefficient (NINTCT)	★ Motor-specific
2128	Coefficient for magnetic flux weaken compensation (MFWKCE)	★ Motor-specific
2129	Coefficient for magnetic flux weaken compensation (MFWKBL)	★ Motor-specific
2130	Smoothing compensation performed twice per pole pair	☆ → 3.1.2
2131	Smoothing compensation performed four times per pole pair	
2132	Smoothing compensation performed six times per pole pair	
2133	Coefficient for phase lag compensation during deceleration (PHDLY1)	★ Motor-specific
2134	Coefficient for phase lag compensation during deceleration (PHDLY2)	★ Motor-specific
2137	Two-stage backlash acceleration function : stage 1 acceleration amount	
	override	
2138	Linear motor AMR conversion coefficient 2	→ 3.2.1.1
2139	Linear motor AMR offset	
2142	Unexpected disturbance torque detection alarm level in rapid traverse	→ 5.9.2
2144	Position feed-forward coefficient for cutting	→ 5.2, 5.5.2,
2145	Velocity feed-forward coefficient for cutting	5.5.7
2146	Two-stage backlash acceleration end timer	$\rightarrow 5.5.5$
2148	Deceleration decision level (HRV control)	Usually
	Usually to be kept at 0.	adjustment is not
		needed.
2151	For internal data output: Usually, be sure to set 0.	
2152	For internal data output: Usually, be sure to set 0.	
2153	For internal data output: Usually, be sure to set 0.	
2154	Static friction compensation function : decision level for movement restart	\rightarrow
0450	arrer stop.	
2100	OV(C magnification at a star (OV(CCTP))	\rightarrow 5.2, 5.4.2
2101		★ Motor-specific
2102	Second OVC alarm parameter (POVC21)	★ Motor-specific
2103	Second OVC alarm parameter (POVC22)	
2104	Maximum amplifior current	★ Motor specific
2105	Two stage backlash acceleration function : stage 2 acceleration amount	
2107	offset	
2173	Distance to lift for the lifting function against gravity at emergency stop	$\rightarrow 5852$
2173	Resonance elimination filter 1: attenuation bandwidth	$\rightarrow 543.562$
2179	Reference counter size (denominator)	$\rightarrow 213$
2113	Current A for note detection (DTCCRT_A)	$\rightarrow 3212$
2183	Variable integral gain function in the stop state: Stop level	/ 0.2.1.2
2185	Position nulses conversion coefficient	$\rightarrow 21219$
2100		2.1.3
		Initial setting
2193	Stop level (Dead-band compensation: Disabled in the stopped state)	

☆: Parameters set up automatically at initialization

★: Parameters	that can	be kept	t at the	automatically	set values

Parameter number	Details	
2198	Current B for pole detection (DTCCRT B)	
2199	Current C for pole detection (DTCCRT_C)	
2263	Detection unit setting	→ 2.1.9
2265	Machining point control: gain 2 (MPCK2)	→ 5.4.10
2266	Machining point control: gain 1 (MPCK1)	
2268	Allowable travel distance magnification/stop speed decision value	→ 3.2.1.2
	(MFMPMD)	
2315	Servo check interface unit output signal setting	\rightarrow Appendix F
2318	Disturbance elimination filter : gain	\rightarrow 5.4.4
2319	Disturbance elimination filter : inertia ratio	
2320	Disturbance elimination filter : inverse function gain	
2321	Disturbance elimination filter : time constant	
2322	Disturbance elimination filter : acceleration feedback limit	
2323	Variable current PI rate	\rightarrow 5.3.4
2324	Variable proportional gain function in the stop state : arbitrary magnification	→ 4.3.4, 5.3.3
0005	at a stop (for cutting only)	5 40 4 4
2325	I andem disturbance elimination control function/integral gain (main axis)	→ 5.10.1.4
0000	I andem disturbance elimination control function/phase coefficient (sub-axis)	E 40 4 4
2326	Disturbance input : gain	→5.10.1.4
2327	Disturbance input : start frequency	
2320	Disturbance input . end inequency	
2328	Transferred disturbance input measurement points	5 10 1 4
2333	constant (main axis)	\rightarrow 5.10.1.4
2334	Lunisiani (main axis)	\$512513
2335	In high-speed HRV current control mode: Velocity loop gain magnification	\rightarrow 0.1.2, 0.1.3,
2338	2338 Backlash acceleration function : acceleration amount limit value	
2000	Two-stage backlash acceleration function : stage-2 acceleration amount	\rightarrow 5 5 5
	limit value	/ 0.0.0
2339	Two-stage backlash acceleration function : stage-2 acceleration amount	→ 5.5.5
	(negative direction)	
2340	Backlash acceleration function : acceleration amount override (negative	→ 5.5.4
	direction)	→ 5.5.5
	Backlash acceleration function : Acceleration amount override (negative	
	direction)	
2341	Two-stage backlash acceleration function : stage-2 acceleration amount	$\rightarrow 5.5.4$
	limit value (negative direction)	$\rightarrow 5.5.5$
	Two-stage backlash acceleration function : stage-2 acceleration amount	
	limit value (negative direction)	
2342	Unexpected disturbance torque detection: Acceleration threshold	→ 5.9.3
2343	Unexpected disturbance torque detection: Alarm level for high acceleration	
2344	Variable integral gain function in the stop state: Arbitrary magnification in the	
	stop state	
2345	Disturbance estimation function : dynamic friction compensation value in the	→ 5.9.1
00.40	stop state	
2340		
2350		\rightarrow 5.0.2
2351		\rightarrow 5.0.2
2352		\rightarrow 5.0.2
2353	Adaptive resonance emmination mer: Walt time for setting	\rightarrow 5.0.2
\rightarrow 5.4.10		
2307	ranuem speeu unierence alarm unesnolu	\rightarrow 5.10.4.4
2300		\rightarrow 0.4.0
2000		→ 0.9.0

☆: Parameters set up automatically at initialization
 ★: Parameters that can be kept at the automatically set values

Parameter number	Details	
2359	Resonance elimination filter 1 : damping	→.4.3, 5.4.11, 5.6.2
2360	Resonance elimination filter 2 : attenuation center frequency	$\rightarrow 5.4.3.5.4.11$
2361	Resonance elimination filter 2 : attenuation bandwidth	,,
2362	Resonance elimination filter 2 : damping	
2363	Resonance elimination filter 3 : attenuation center frequency	→ 5.4.3, 5.4.11
2364	Resonance elimination filter 3 : attenuation bandwidth	, .
2365	Resonance elimination filter 3 : damping	
2366	Resonance elimination filter 4 / Resonance elimination filter L : attenuation center frequency	→ 5.4.3, 5.4.5, 5.4.11
2367	Resonance elimination filter 4 / Resonance elimination filter L : attenuation bandwidth	
2368	Resonance elimination filter 4 / Resonance elimination filter L : damping	
2369	Smoothing compensation performed twice per pole pair (negative direction)	→ 3.1.2
2370	Smoothing compensation performed four times per pole pair (negative direction)	
2371	Smoothing compensation performed six times per pole pair (negative direction)	
2372	Serial EGB exponent setting	
	* For the 30 <i>i</i> -B, no exponent setting is required.	
2373	Lifting function against gravity at emergency stop : Distance to lift	→ 5.8.5.1, 5.8.5.2
2374	Lifting function against gravity at emergency stop : Lifting time	
2377	Smoothing compensation performed 1.5 times per pole pair	→ 3.2.2
2378	Smoothing compensation performed 1.5 times per pole pair (negative direction)	
2380	Smoothing compensation performed three times per pole pair	→ 3.2.2
2381 Smoothing compensation performed three times per pole pair (negative direction)		
2382	Torsion preview control: maximum compensation value (LSTCM)	→ 5.5.7
2383	Torsion preview control: acceleration 1 (LSTAC1)	→ 5.5.7
2384	Torsion preview control: acceleration 2 (LSTAC2)	
2385	Torsion preview control: acceleration 3 (LSTAC3)	
2386 Torsion preview control: acceleration torsion compensation value K1		→ 5.5.7
	(LSTK1)	
2387	Torsion preview control: acceleration torsion compensation value K2	
	(LSTK2)	
2388	Torsion preview control: acceleration torsion compensation value K3 (LSTK3)	
2389	Torsion preview control: torsion delay compensation value KD (LSTKD)	$\rightarrow 5.5.7$
2391	Torsion preview control: acceleration torsion compensation value K1N (LSTK1N)	→ 5.5.7
2392	Torsion preview control: acceleration torsion compensation value K2N (LSTK2N)	
2393	Torsion preview control: acceleration torsion compensation value K3N (LSTK3N)	
2394	Number of data mask digits	→ 2.1.5, 3.2.1.1
2396	Torsion preview control: Torsion delay compensation value KDN (LSTKDN)	→ 5.5.7
2402	Torsion preview control: torsion torque compensation coefficient (LSTKT)	→ 5.5.7
2403	Synchronous axes automatic compensation function : coefficient (K)	→5.10.1.5
2404	Synchronous axes automatic compensation function : maximum	→ 5.10.1.5
	compensation (sub axis)	
	Synchronous axes automatic compensation function : dead-band width	
	(main axis)	
2405	Synchronous axes automatic compensation function : filter coefficient	\rightarrow 5.10.1.5

☆: Parameters set up automatically at initialization
 ★: Parameters that can be kept at the automatically set values

		natically set values					
Parameter number	Details	Details					
2446 to 2453	Parameters for tuning for quadrant protrusion compensation for Tuning Navigator	\rightarrow Appendix M					
2455	Integer part of the number of pulses per revolution	→ 5.5.9					
2456	Exponent part of the number of pulses per revolution						
2458	Detection of excessive error between the estimated position and actual	→ 2.1.11.2					
	position: Detection level						
2459	Adaptive resonance elimination filter: Search bandwidth	→ 5.6.2					
2463	Power consumption monitoring: Loss coefficient C (Power Supply)	\rightarrow Appendix J					
2468	Power consumption monitoring: Coil resistance						
2469	Power consumption monitoring: Loss coefficient A (Servo Amplifier)						
2470 to 2475	Parameters for tuning for quadrant protrusion compensation for Tuning	\rightarrow Appendix M					
	Navigator						
2478	Interactive Force Compensation: Compensation gain (for the first moving	→ 5.5.9					
	axis)						
2479	Interactive Force Compensation: Angle data offset (for the first moving axis)						
2480	Interactive Force Compensation: Compensation gain (for the second						
	moving axis)						
2481	Interactive Force Compensation: Angle data offset (for the second moving						
	axis)						
2482	Detection level of speed arrival	→ 5.12.1					
2483	Detection level of speed zero						
2486 to 2489	Parameters for tuning for quadrant protrusion compensation for Tuning Navigator						
2490	Power consumption monitoring: Loss coefficient B (Servo Amplifier)	\rightarrow Appendix J					
2491	Power consumption monitoring: Loss coefficient D (Power Supply)	\rightarrow Appendix J					
2494 to 2505	Parameters for tuning for quadrant protrusion compensation for Tuning	\rightarrow Appendix M					
	Navigator						
2506 to 2509	Parameters for tuning for quadrant protrusion compensation for Tuning	\rightarrow Appendix M					
	Navigator						
2606	Interactive force compensation function: First moving axis number, second	→ 5.5.9					
	moving axis number						
2613	Compensation amount for reverse operation in FSSB high-speed rigid	→ 5.13					
	tapping						

9

PARAMETER LIST

Chapter 9, "PARAMETER LIST", consists of the following sections:

9.1	STANDARD PARAMETERS FOR THE α <i>i</i> SERIES SERVO MOTORS	442
	9.1.1 α <i>i</i> S Series	443
	9.1.2 α <i>i</i> S Series HV*	446
	9.1.3 α <i>i</i> F Series	450
	9.1.4 α <i>i</i> F Series HV *	451
	9.1.5 αC <i>i</i> Series	452
9.2	STANDARD PARAMETERS FOR THE βi SERIES SERVO MOTORS	453
	9.2.1 β <i>i</i> S Series	454
	9.2.2 β <i>i</i> S Series HV*	457
	9.2.3 βiSc Series	458
	9.2.4 β <i>i</i> F Series	459
9.3	STANDARD PARAMETERS FOR THE LINEAR MOTORS	460
	9.3.1 Linear Motor LiS Series [200V]	461
	9.3.2 Linear Motor LiS Series [400V]*	463
9.4	STANDARD PARAMETERS FOR THE SYNCHRONOUS BUILT-IN SERVO MOTORS	465
	9.4.1 Synchronous Built-in Servo Motor DiS Series [200V]	466
	9.4.2 Synchronous Built-in Servo Motor DiS Series [400V]	470

* With the Series 30*i*-B or Power Motion *i*-A, to use a 400-V driving motor, servo software of 90G0/06.0 or later is required.

9.PARAMETER LIST

When *1 to *6 is added in "Remarks" for a motor, a servo amplifier and power supply having specification numbers listed below, and/or servo software of the listed series and edition or later are required.

(*1)

Servo amplifier, Power supply

Series		Specificatio	Bomorko	
		200V	400V	Remarks
αi series	αi SV	A06B-6117-Hxxx	A06B-6127-Hxxx	
		A06B-6240-Hxxx	A06B-6290-Hxxx	
	α <i>i</i> PS	A06B-6140-Hxxx	A06B-6150-Hxxx	
		A06B-6200-Hxxx	A06B-6250-Hxxx	
βi series	βi SV	A06B-6130-Hxxx	A06B-6131-Hxxx	
		A06B-6160-Hxxx	A06B-6161-Hxxx	
	βi SV(2 axes)	A06B-6136-Hxxx		
		A06B-6166-Hxxx		
	β <i>i</i> SVSP	A06B-6164-Hxxx		
	β <i>i</i> SVSPc	A06B-6167-Hxxx		

Series and editions of servo software

CNC	Servo software		Bemerke
CNC	Series	Edition	Remarks
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0	
Power Motion <i>i</i> -A			
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	Q(17)	
	90E1	01.0	
Series 30 <i>i/</i> 31 <i>i</i> -A	90D0	Q(17)	HRV4
Series 0 <i>i</i> -D	90C5	01.0	
Series 0 <i>i</i> Mate-D	90C8	01.0	
	90E5	01.0	
	90E8	01.0	

(*2)

Series and editions of servo software

CNC	Servo software		Bemerke
CNC	Series	Edition	Remarks
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	01.0	
Power Motion <i>i</i> -A			
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	N(14)	
	90E1	01.0	
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	N(14)	HRV4
Series 0 <i>i</i> -D	90C5	01.0	
Series 0 <i>i</i> Mate-D	90C8	01.0	
	90E5	01.0	
	90E8	01.0	

(*3)

Series and editions of servo software

	Servo software		Demonto
CNC	Series	Edition	Remarks
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	10.0	
Power Motion <i>i</i> -A			
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	28.0	
	90E1	04.0	
Series 30 <i>i/</i> 31 <i>i</i> -A	90D0	—	HRV4
Series 0 <i>i</i> -D	90C5	—	
Series 0 <i>i</i> Mate-D	90C8	—	
	90E5	—	
	90E8	—	

(*4)

Series and editions of servo software

CNC	Servo s	oftware	Remarks			
CNC	Series	Edition	Remarks			
Series 30 <i>i/</i> 31 <i>i/</i> 32 <i>i/</i> 35 <i>i</i> -B	90G0	09.0				
Power Motion <i>i</i> -A						
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	30.0				
	90E1	04.0				
Series 30 <i>i/</i> 31 <i>i</i> -A	90D0	—	HRV4			
Series 0 <i>i</i> -D	90C5	04.0				
Series 0 <i>i</i> Mate-D	90C8	01.0				
	90E5	04.0				
	90E8	01.0				

(*5)

Series and editions of servo software

<u>enc</u>	Servo s	oftware	Domorko
	Series	Edition	Remarks
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	01.0	
Power Motion <i>i</i> -A			
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	N(14)	
	90E1	01.0	
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	N(14)	HRV4
Series 0 <i>i</i> -D	90C5	01.0	
Series 0 <i>i</i> Mate-D	90C8	01.0	
	90E5	01.0	
	90E8	01.0	

(*6)

Series and editions of servo software

CNC	Servo s	oftware	Bomorko
CNC	Series	Edition	Remarks
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	19.0	
Power Motion <i>i</i> -A			
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	-	
	90E1	—	
Series 30 <i>i/</i> 31 <i>i</i> -A	90D0	—	HRV4
Series 0 <i>i</i> -D	90C5	-	
Series 0 <i>i</i> Mate-D	90C8	—	
	90E5	—	
	90E8	-	

9.1 STANDARD PARAMETERS FOR THE αi SERIES SERVO MOTORS

Series 90G0 (for Series 30*i*/31*i*/32*i*/35*i*-B, Power Motion *i*-A) Series 90E0 and 90E1 (for Series 30*i*/31*i*/32*i*-A) Series 90D0 (for Series 30*i*/31*i*-A) Series 90C5 and 90C8 (for Series 0*i*-D) Series 90E5 and 90E8 (for Series 0*i*-D)

9.1.1 *αi*S Series

αiS	series	(1/3)

Nor sections 0/12 0/14 0/15		Motor model	α i S2 5000	α i S2 6000	α i S4 5000	α i S4 6000	α i S8 4000	α i S8 6000	α iS12 4000	α i \$12 6000	α i S22 4000	α i S22 6000	α i \$30 4000
NM D COUNT COUNT <thcount< th=""> <thcount< th=""> COUNT<td></td><td>Motor specification Motor ID No.</td><td>0212 262</td><td>0218 284</td><td>0215 265</td><td>0210 466</td><td>0235 285</td><td>0232 290</td><td>0238 288</td><td>0230 462</td><td>0265 315</td><td>0262 452</td><td>0268 318</td></thcount<></thcount<>		Motor specification Motor ID No.	0212 262	0218 284	0215 265	0210 466	0235 285	0232 290	0238 288	0230 462	0265 315	0262 452	0268 318
Bits Bandbase Bandbase <th< td=""><td>PRM NO</td><td>SERVO PRM.</td><td>00001000</td><td>00001000</td><td>00001000</td><td>00001000</td><td>00001000</td><td>00001000</td><td>00001000</td><td>00001000</td><td>00001000</td><td>00001000</td><td>00001000</td></th<>	PRM NO	SERVO PRM.	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000
BBS Image: Control in the second interval in the second interval in the second interval i	2003		00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000
Bios Bioscol B	2005		00000000	0000000	00000000	00000000	0000000	0000000	0000000	0000000	00000000	00000000	0000000
DBM DBM0000 DB00000 DB000000 DB000000 <thdb000000< th=""> DB000000 <th< td=""><td>2006</td><td></td><td>00000000</td><td>0000000</td><td>00000000</td><td>00000000</td><td>0000000</td><td>00000000</td><td>00000000</td><td>0000000</td><td>0000000</td><td>00000000</td><td>0000000</td></th<></thdb000000<>	2006		00000000	0000000	00000000	00000000	0000000	00000000	00000000	0000000	0000000	00000000	0000000
Biol Discolor Discolor <thdiscolor< th=""> <thdiscolor< th=""> <thdi< td=""><td>2007</td><td></td><td>0000000</td><td>0000000</td><td>00000000</td><td>0000000</td><td>0000000</td><td>00000000</td><td>00000000</td><td>0000000</td><td></td><td>0000000</td><td>0000000</td></thdi<></thdiscolor<></thdiscolor<>	2007		0000000	0000000	00000000	0000000	0000000	00000000	00000000	0000000		0000000	0000000
Diff Diff <thdif< th=""> <thdiff< th=""> Diff Di</thdiff<></thdif<>	2009		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
Dist Dist <thdist< th=""> Dist Dist <thd< td=""><td>2010</td><td></td><td>0000000</td><td>0000000</td><td>00000000</td><td>0000000</td><td>0000000</td><td>0000000</td><td>0000000</td><td>0000000</td><td>0000000</td><td>0000000</td><td>0000000</td></thd<></thdist<>	2010		0000000	0000000	00000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000
Dist Discosci Dis	2011		0000000	00000000	00000000	0000000	0000000	00000000	00000000	0000000		0000000	00000000
Bit A 0000000	2012		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	000000000000000000000000000000000000000	00000000	00000000
210 0000000 0000000 0000000 <th< td=""><td>2014</td><td></td><td>00000000</td><td>00000000</td><td>00000000</td><td>0000000</td><td>00000000</td><td>00000000</td><td>00000000</td><td>0000000</td><td>00000000</td><td>00000000</td><td>00000000</td></th<>	2014		00000000	00000000	00000000	0000000	00000000	00000000	00000000	0000000	00000000	00000000	00000000
2130 D000000 D0000000 <thd0000000< th=""> D000000 <thd< td=""><td>2210</td><td></td><td>0000000</td><td>00000000</td><td>00000000</td><td>0000000</td><td>00000000</td><td>0000000</td><td>00000000</td><td>0000000</td><td>0000000</td><td>00000000</td><td>00000000</td></thd<></thd0000000<>	2210		0000000	00000000	00000000	0000000	00000000	0000000	00000000	0000000	0000000	00000000	00000000
2291 0000000 0	2211		00001010	00001010	00001010	00001010	00001010	00001010		00001010		00001010	00001010
NUMB URK NUMB SS1 SS2 4420 SS5 SS5 4460 SS7 4471 SS1 SS5 4461 SS1 4441 SS1	2301		00000000	00000000	00000000	0000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
Diage Diage <thdiage< th=""> Diage <thd< td=""><td>2040</td><td>CUR GAIN I</td><td>530</td><td>552</td><td>420</td><td>395</td><td>550</td><td>460</td><td>570</td><td>471</td><td>581</td><td>605</td><td>799</td></thd<></thdiage<>	2040	CUR GAIN I	530	552	420	395	550	460	570	471	581	605	799
29:43 WE, KH, H 39 46 A 40 A 76 33 55 52 72 766 772 778 20:44 VE, KH, H 30 -0 -0 0<	2041	CUR GAIN P	-2543	-2288	-1/48	-1606	-3449	-1760	-3358	-2249	9 <u>-3844</u> 1 -1337	-2393	-444/
D044 VEL 6AN P -350 -4.29 -5.74 -6.78 <	2043	VEL GAIN I	39	48	64	76	33	53	52	43	3 69	102	82
CHAR CHAR CON CON </td <td>2044</td> <td>VEL GAIN P</td> <td>-350</td> <td>-429</td> <td>-574</td> <td>-678</td> <td>-294</td> <td>-478</td> <td>-466</td> <td>-387</td> <td>7 -616</td> <td>-914</td> <td>-733</td>	2044	VEL GAIN P	-350	-429	-574	-678	-294	-478	-466	-387	7 -616	-914	-733
DERVICE PAL DBESIVER PAL DBSIVER PAL DBSIVER PAL DBSIVER PAL DBSIVER PAL DBSIVER PAL DBSIVER PAL DSIVER PAL DSIVERPAL DSIVER PAL	2045	VEL GAIN 3	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8236	5 -8235	-8235	-8235
BLACC ONF 0	2047	OBSERVER POA1	10853	-884	-661	5601	-1289	-794	-815	-980	0 6163	4150	5175
UPTEA UPTEA <th< td=""><td>2048</td><td>BLACC CMP</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>(</td><td>0 0</td><td>0</td><td>0</td></th<>	2048	BLACC CMP	0	0	0	0	0	0	0	(0 0	0	0
2015 0582 PVEX PPO2 510	2049	UPEMX OBSERVER POK1	0	0	0	0	0	0	0 056	056	<u>ار</u> محماد	0	0
2052 OVER. SPEED 7000 7500 7500 5500 7500 5600 7500	2051	OBSERVER POK2	510	510	510	510	510	510	510	510	510	510	510
000000000000000000000000000000000000	2052	OVER SPEED	7000	7500	7000	7500	5600	7500	5600	7500	5600	7500	5400
2026 BF-ORD PHYST 319 319 319 1319	2053	DB-CMP PPMAX	21	21	21	21	21	21	21	189/	1 1894	21	21
2056 BHCMP 0<	2055	DB-CMP PHYST	319	319	319	319	319	319	319	319	319	319	319
2007 D=HASE DHA -10280 -10280 -10280 -10280 -10280 -10280 -10280 -2000	2056	EMFCMP	0	0	0	0	0	0	0	(0 0	0	0
2015 PPASA Con Con<	2057	D-PHASE CUR	-10250	-13062	-89/4	-13326	-/685	-16398	-5898	-12808	$\frac{3}{-7687}$	-12039	-6412
OBGE TABD <limit< th=""> 7282 7283 7261</limit<>	2059	PPBAS	0	0	0041	0	0	0000	0000	(0 0	0	0
DBM DMM D <thd< th=""> D D <thd< th=""></thd<></thd<>	2060	TCMD LIMIT	7282	7282	7282	7282	7282	7282	7282	7282	2 7282	7282	7282
006 007 22 008 0018	2061	EMFLMI OVC_K1	22528	32415	32289	22310	32609	32520	0	32688	0 0	32515	32515
2064 TALMLY 4	2062	OVC K2	3005	4413	5994	5728	1993	3101	2923	998	3 3166	3166	3166
Orde Over Linit 1788 1789 1791 3920 3922 2940 9418 <t< td=""><td>2064</td><td>TGALMLV</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>1 4</td><td>4</td><td>4</td></t<>	2064	TGALMLV	4	4	4	4	4	4	4	4	1 4	4	4
Order Order O O O <tho< t<="" td=""><td>2065</td><td>ACC FR GAIN</td><td>8936</td><td>13146</td><td>1/889</td><td>1/091</td><td>5920</td><td>9224</td><td>8692</td><td>2960</td><td>9418</td><td>9418</td><td>9418</td></tho<>	2065	ACC FR GAIN	8936	13146	1/889	1/091	5920	9224	8692	2960	9418	9418	9418
2068-2073 0	2000	TCMD FILTER	0	0	0	0	0	0	0	(0	0
ALPH 2048 2048 12288 16384 0 9122 0 12288 4098 4096 40	2068-2073		0	0	0	0	0	0	0)	0 0	0	0
BATED CURRENT 1540 1868 2824 2585 1253 2075 1518 1181 1627 1977 1888 2009 2008 0 <t< td=""><td>20/4</td><td>AALPH</td><td>20480</td><td>20480</td><td>12288</td><td>16384</td><td>0</td><td>8192</td><td>0</td><td>12288</td><td>3 4096</td><td>4096</td><td>4096</td></t<>	20/4	AALPH	20480	20480	12288	16384	0	8192	0	12288	3 4096	4096	4096
2087-2089 0	2086	RATED CURRENT	1540	1868	2824	2585	1253	2075	1518	1181	1627	1977	1836
2090 ROBSIL 0	2087-2089	DODOTI	0	0	0	0	0	0	0	(0 0	0	0
Doty Description Description <thdescription< th=""> <thde< td=""><td>2090</td><td>RUBSIL</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td></td><td></td><td></td><td>0</td><td>0</td></thde<></thdescription<>	2090	RUBSIL	0	0	0	0	0	0				0	0
2100 INPA1 0<	2099	ONEPSL	400	400	400	400	400	400	400	400	400	400	400
101 IMPA2 0 </td <td>2100</td> <td>INPA1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>(</td> <td>0 0</td> <td>0</td> <td>0</td>	2100	INPA1	0	0	0	0	0	0	0	(0 0	0	0
2103 ABVOF 0<	2101	DBL IM	0	0	0	0	0	0				0	0
2104 ABTSH 0<	2102	ABVOF	0	0	0	0	0	0	0	(0 0	0	0
2105 10KdUE const. 111 96 127 104 552 346 696 837 1216 819 1470 2106-2109 0	2104	ABTSH	0	0	0	0	0	0	0	(0 0	0	0
2110 MGSTCM 32 1555 8 3092 519 1284 521 528 519 1288 775 2111 TGLINI NDEC. 8995 11550 10295 8208 7268 10255 6174 10260 6224 12830 6450 2112 AMRVMUL 0	2105	TURQUE CUNST.	0	96	0	0	002	340	090	831	0 0	819	14/0
2111 TQLIM IN DEC. 8995 11550 10295 8208 7268 10255 6174 10260 6224 1230 6450 2112 AMROML 0 <t< td=""><td>2110</td><td>MGSTCM</td><td>32</td><td>1555</td><td>8</td><td>3092</td><td>519</td><td>1284</td><td>521</td><td>528</td><td>3 519</td><td>1288</td><td>775</td></t<>	2110	MGSTCM	32	1555	8	3092	519	1284	521	528	3 519	1288	775
2112 IMRVML 0	2111	TQLIM IN DEC.	8995	11550	10295	8208	7268	10255	6174	10260	0 6224	12830	6450
2127 NINTCT 1137 1137 646 660 2106 801 1592 1146 2041 1000 1871 2128 MFWKCE 1000 3000 1667 3000 4000 1000 2000 667 2500 1000 4000 2129 MFWKEL 3851 4112 3847 4365 2580 5388 2575 3850 2580 3854 2574 2130-2132 SMOOTH CMP 0	2112	HRV FILT	0	0	0	0	0	0	0	(0	0
2128 MFWK0E 1000 3000 1667 3000 4000 1000 2000 667 2500 1000 4000 2129 MFWK0E 3851 4112 3847 4365 2580 5388 2575 3850 2580 3854 2574 2130-2132 SMOOTH CMP 0	2127	NINTCT	1137	1137	646	660	2106	801	1592	1146	6 2041	1000	1871
2129 INTROL 3601 4112 3647 4363 2080 3368 2073 3550 2080 3634 2074 2130-2132 SMOTH 0	2128	MFWKCE	1000	3000	1667	3000	4000	1000	2000	667	7 2500	1000	4000
2133 PHDLY1 7690 7690 7690 75150 10250 6174 7690 5150 7690 5150 2134 PHDLY2 12840 7740 12840 12830 8990 890 890 890 890 890 890 890	2129	SMOOTH CMP	0	4112	0	4305	2380	0300	0	3850	0 0	0	2374
2134 PHDLY2 12840 7740 12840 12830 8990 12830 8990 8900	2133	PHDLY1	7690	7690	7690	7690	5150	10250	6174	7690	5150	7690	5150
2139 DdC.Simin 0 <t< td=""><td>2134</td><td>PHDLY2</td><td>12840</td><td>//40</td><td>12840</td><td>12830</td><td>8990</td><td>12830</td><td>8990</td><td>8990</td><td>0 8990</td><td>8990</td><td>8990</td></t<>	2134	PHDLY2	12840	//40	12840	12830	8990	12830	8990	8990	0 8990	8990	8990
2161 OVC STP O O O O O O O 128 128 128 128 2162 OVC2 K1 32766 32766 32763 32767 32765 32766 32767 32765 32767 3672 11721	2159	TROCUP	0	0	0	0	0	0	0	(0	0
2162 OVC2 K1 32766 32766 32762 32767 32765 32766 32766 32766 32765 32766 32766 32766 32765 32766 32766 32765 32765 32766 32766 32765 32765 32766 32766 32766 32765 32766 32766 32765 32765 32765 32765 32766 32766 32765 32765 32765 32766 32766 32765 32765 32765 32765 32765 32765 32765 32765 32765 32765 32765 32765 32767 32767 32765 32767 32765 32767 <t< td=""><td>2161</td><td>OVC STP</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>(</td><td>128</td><td>128</td><td>128</td></t<>	2161	OVC STP	0	0	0	0	0	0	0	(128	128	128
2103 0402 12 20 30 17 36 13 36 19 43 26 44 37 2164 0402 1111 3776 5554 12702 9912 2501 6857 3672 1721 5177 7743 668 2165 MAX CURRENT 25 25 25 25 85 85 85 165 </td <td>2162</td> <td>0VC2 K1</td> <td>32766</td> <td>32766</td> <td>32762</td> <td>32763</td> <td>32767</td> <td>32765</td> <td>32766</td> <td>32764</td> <td>1 32766</td> <td>32765</td> <td>32765</td>	2162	0VC2 K1	32766	32766	32762	32763	32767	32765	32766	32764	1 32766	32765	32765
2165 MAX CURRENT 25 25 25 25 25 85 85 165 </td <td>2164</td> <td>OVC2 LIMIT</td> <td>3776</td> <td>5554</td> <td>12702</td> <td>9912</td> <td>2501</td> <td>6857</td> <td>3672</td> <td>1721</td> <td>, <u>28</u> I 5177</td> <td>7743</td> <td>6687</td>	2164	OVC2 LIMIT	3776	5554	12702	9912	2501	6857	3672	1721	, <u>28</u> I 5177	7743	6687
2302 TOLLIN AT STOP 0	2165	MAX CURRENT	25	25	25	25	85	85	85	165	5 165	165	165
Involution O <tho< td=""><td>2302</td><td>IQLIM AT STOP</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>(</td><td>0</td><td>0</td><td>0</td></tho<>	2302	IQLIM AT STOP	0	0	0	0	0	0	0	(0	0	0
2310 DCIDBS 0	2304	ACDCEBD	0	0	0	0	0	0	0			0	0
Image: New York Old	2310	DCIDBS	0	0	0	0	0	0	0	(0 0	0	0
Remarks	2316	ILIMLIM	0	0	0	0	0	0	0 0	. (<u>)</u> 0	0	0
	R	emarks											

9.PARAMETER LIST

α*i*S series (2/3)

	Motor model	α i S40 4000	α i S50 2000	α i \$50 3000	α i S50 3000 Fap	α i S60 2000	α iS60 3000 For	α iS100 2500	α iS100 2500 For	α i \$200 2500	α i S200 2500	α i \$300 2000
	Motor specification Motor ID No.	0272 322	0042 468	0275 324	0275 325	0044 470	0278	0285 335	0285	0288 338	0288 334	0292 342
PRM NO	SERVO PRM.	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	Amp*2
2003		00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000
2005		00000000	00000000	0000000	00000000	00000000	00000000	00000000	0000000	00000000	0000000	00000000
2006		0000000	0000000	00000000	0000000	00000000	00000000		00000000		00000000	0000000
2007		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
2009		0000000	0000000	0000000	00000000	00000000	0000000	0000000	0000000	0000000	0000000	0000000
2010		0000000	0000000	0000000	00000000	0000000	0000000		0000000		0000000	0000000
2012		00000000	00000000	0000000	00000000	00000000	00000000	00000000	0000000	00000000	0000000	00000000
2013		00000000	00000000	00000000	00000000	00000000	00000000		0000000		0000000	0000000
2210		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
2211		00001010	00001010	00001010	00001010	00001010	00001010	00001010	00001010	00001010	00001010	00001010
2300		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
2040	CUR GAIN I	712	1539	547	547	1358	1191	1020	1020	1834	1834	1659
2041	CUR GAIN P	-4138	-/321	-3423	-3423	-6/6/	-6320	-/093	-/093	3 -/805 -1360	-/805	-8045
2043	VEL GAIN I	92	90	69	69	103	69	91	91	115	115	114
2044	VEL GAIN P	-827	-802	-622	-622	-925	-61/	/ -819) 0	-819		-1026	-1025
2046	VEL GAIN 4	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235
2047	OBSERVER POA1	4589	4731	6099	6099	4103	6152	2 4632	4632	2 3699	3699	3709
2048	DPFMX	0	0	0	0	0	0		(0 0	0	0
2050	OBSERVER POK1	956	956	956	956	956	956	956	956	956	956	956
2051	OVER SPEED	4800	2800	4200	4200	2700	4000	3500	3500	3100	3100	2800
2053	DB-CMP PPMAX	21	31979	31979	31979	31979	31979	21	21	21	21	21
2054	DB-CMP PDDP	319	319	319	319	319	319	3 1894	319	1894 319	319	319
2056	EMFCMP	0	0	0	0	0	C	0 0	(0 0	0	C
2057	D-PHASE CUR D-PHASE CUR	-5645	-3867	-5638	-5638	-3097 -2995	-4619	-4368	-4368	3 -3090 -2700	-3090	-3081
2059	PPBAS	0000	0000	0	0	0	0	0000	(0	0	0
2060	TCMD LIMIT	7282	7282	7282	7282	7282	7282	2 7282	7282	2 7282	7282	7282
2062	OVC K1	32515	32515	32558	32348	32515	32388	32310	32309	32309	32309	32391
2063	OVC K2	3166	3166	2627	5245	3166	4744	5728	5734	1 5734	5734	4714
2064	OVC LIMIT	9418	9418	7810	15639	9418	14138	15662	27346	27346	27346	23263
2066	ACC FB GAIN	0	0	0	0	0	0	0 0	(0 0	0	0
2067	IGMD FILTER	0	0	0	0	0	0		(0	0
2074	AALPH	4096	8192	4096	4096	0	8192	20480	20480	12288	12288	12288
2077-2083	RATED CURRENT	2073	1856	1439	2037	2018	1937	1960	2848	0 0 3 2712	3013	2386
2087-2089	DODOTI	0	0	0	0	0	0	0 0	(0 0	0	0
2090	RUBSIL	0	0	0	0	0	0		(0	0
2099	ONEPSL	400	400	400	400	400	400	400	400	400	400	400
2100	INPA1 INPA2	0	0	0	0	0					0	
2102	DBLIM	0	0	0	0	0	C	0 0	(0 0	0	C
2103 2104	ABVOF	0	0	0	0	0					0	0
2105	TORQUE CONST.	1701	2569	3312	3312	2942	4411	4589	4589	5973	5973	10871
2106-2109	MGSTCM	776	1032	0 519	0 519	1544	519	0 0	776	0 0	1290	1296
2111	TQLIM IN DEC.	5682	4954	6174	6174	3151	5220	3787	3787	/ 0	0	0
2112	AMRDML HRV FILT	0	0	0	0	0	0		(0	0
2127	NINTCT	1853	2825	2046	2046	5498	2852	3520	3520	3518	3518	3817
2128	MFWKCE	4000	4601	6500	6500	4004	5000	6500	6500	0 4000 7 1298	4000	7000
2130-2132	SMOOTH CMP	0	0	0	0	0	000) 1237	(0	0	0
2133	PHDLY1	5150	2570	5150	5150	4146	5150	2570	2570	3092	3092	2574
2159	DGCSMM	0300	0	0330	0330	0	0330	0370	0370) 12020	0	12014
2160	TRQCUP	0	0	0	0	0	0	0	140	0 0	0	0
2161	OVC STP OVC2 K1	32765	32764	32754	32739	32761	32742	32750	32745	32745	32745	32738
2163	OVC2 K2	38	51	174	365	81	327	223	292	2 292	292	375
2165	MAX CURRENT	6846 165	6831	3300	6608	8124	59/3	6581 365	13952	13952	13952	13952
2302	TQLIM AT STOP	0	0	0	0	0	0	0	(000	0	0
2304	ACCESLM	0	0	0	0	0			((0	
2310	DCIDBS	0	0	0	0	0	0	0	(0 0	0	0
2316		0	0	0	0	0	L C	0 0		0 0	0	0
Re	emarks											

α*i*S series (3/3)

9.PARAMETER LIST

		α i \$500								
	Motor model	2000								
	Motor specification	0295			 					
	Motor ID No.	345			 					
PRM NO	SERVO PRM.	Amp*2					İ	İ		
2003		00001000								
2004		00000011								
2005		0000000			 					
2000		0000000			 					
2007		00000000			 					
2009		0000000								
2010		0000000								
2011		0000000			 					
2012		0000000								
2014		00000000								
2210		0000000								
2211		00001010			 					
2300		0000000			 					
2040	CUR GAIN I	2660			 					
2041	CUR GAIN P	-10235					1	1		
2042	CUR GAIN 3	-1355								
2043	VEL GAIN D	134			 					
2044	VEL GAIN P	-1199			 					
2046	VEL GAIN 4	-8235			1					
2047	OBSERVER POA1	3164								
2048	BLACC CMP	0			 					
2049	DRSERVER DOK1	050			 					
2050	OBSERVER POKI	510			 -					
2052	OVER SPEED	2400								
2053	DB-CMP PPMAX	21								
2054	DB-CMP PDDP	1894			 					
2055	DB-CMP PHISI	319			 					
2050	D-PHASE CUR	-2068			 					
2058	D-PHASE CUR	-2600					İ	İ		İ
2059	PPBAS	0								
2060		/282			 					
2001	OVC K1	32309			 					
2062	OVC K2	5734								
2064	TGALMLV	4					İ	İ		İ
2065	OVC LIMIT	27346			 					
2065	ACC FB GAIN	0			 					
2068-2073		0			 					
2074	AALPH	12288								
2077-2083		0								
2086	RAIED CURRENT	2980			 					
2007 2003	ROBSTI	0								
2091-2098		0								
2099	ONEPSL	400								
2100		0			 					
2101	DRI IM	0			 					
2102	ABVOF	0								
2104	ABTSH	0								
2105	IURQUE CONST.	15096			 -					
2100-2109	MGSTCM	1206			 					
2111	TQLIM IN DEC.	0								
2112	AMRDML	0								
2113	HRV FILT	0								
2127	MEWKCE	41/5			 					
2129	MFWKBL	1041			1					
2130-2132	SMOOTH CMP	0								
2133	PHDLY1	2069								
2134	PHDLY2	8981			 					
2160	TROCUP	0			 					
2161	OVC STP	140								
2162	OVC2 K1	32745								
2163	OVC2 K2	292			 					
2165	UVGZ LIMII MAX CURRENT	13952			 -					
2302	TQLIM AT STOP	000			1					
2304	ACCBSLM	0								<u> </u>
2305	ACDCEBD	0								
2310		0			 					
2310		0	1	I	 					
R	emarks									

9.1.2 *αi*S Series HV

α*i*S series HV (1/4)

	Motor model	α i S2 5000HV	α i S2 6000HV	α i S4 5000HV	α i S4 6000HV	α i S8 4000HV	α i S8 6000HV	α iS12 4000HV	α i S12 6000HV	α i S22 4000HV	α i S22 6000HV	α i S30 4000HV
	Motor specification Motor ID No.	0213 263	0219 287	0216 266	0214 467	0236 286	0233	0239	0237 463	0266	0263 453	0269
PRM NO	SERVO PRM.	200	207	200		200	202	200		0.0	100	0.0
2003		00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000
2004		00000011	00000011	00000011	00000011	00000011	00000011	00000011	00000011	00000011	00000011	00000011
2005		00000000	00000000	00000000	00000000	0000000	00000000	00000000	00000000	000000000000000000000000000000000000000	00000000	00000000
2007		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
2008		0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000
2009		00000000	00000000	0000000	0000000	0000000	00000000	0000000	0000000	00000000	00000000	00000000
2010		0000000	0000000	0000000	0000000	0000000	00000000	0000000	00000000		0000000	0000000
2012		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
2013		00000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000
2014		00000000	00000000	0000000	0000000	00000000	00000000	0000000	0000000	00000000	00000000	00000000
2210		0000000	0000000	0000000	0000000	0000000	0000000	00000000	00000000		0000000	0000000
2300		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
2301		0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000
2040	CUR GAIN I	400	49/	425	432	694	381	/83	4/1	/09	605	816
2041	CUR GAIN 3	-1251	-2371	-1041	-1073	-3656	-1749	-4294	-1321	-1345	-2393	-4001
2043	VEL GAIN I	39	48	64	77	34	53	52	43	3 76	102	82
2044	VEL GAIN P	-351	-429	-574	-688	-306	-478	-470	-387	-685	-914	-738
2045	VEL GAIN 3	0000	0005	0000	0000	0000	0000	0005	0005	0000	00005	0000
2040	OBSERVER POA1	-1081	-884	-661	5516	-1240	-794	-808	-980	5538	4150	5143
2048	BLACC CMP	0	0	0	0	0	0	0	C	0	0	0.10
2049	DPFMX	0	0	0	0	0	0	0	0	0 0	0	0
2050	UBSERVER POK1	956	956	956	956	956	956	956	956	956	956	956
2052	OVER SPEED	7000	7500	7000	7500	5600	7500	5600	7500	5600	7500	5400
2053	DB-CMP PPMAX	21	21	21	21	21	21	21	21	21	21	21
2054	DB-CMP PDDP	1894	1894	1894	1894	1894	1894	1894	1894	1894	1894	1894
2055	EMECMP PHIST	0	0	0	0	319	0	319	319	0 0	0	0
2057	D-PHASE CUR	-10252	-13062	-10262	-13326	-7685	-16398	-5898	-12808	-7683	-12039	-6412
2058	D-PHASE CUR	-1600	-1200	-3300	-2500	-2000	-1000	-3000	-1800	-1000	-2000	-2300
2059	TCMD LIMIT	7282	7282	7282	7282	7282	7282	7282	7282	0 0	7282	7282
2000	EMFLMT	0	0	0	0	0	0	0	0	0 0	0	0
2062	OVC K1	32532	32416	32289	32288	32596	32548	32530	32688	32501	32501	32501
2063		2953	4405	5994	5995	2153	2755	2976	998	3332	3332	3332
2064		8782	4	17889	17893	6396	8192	8848	2960	9912	9912	9912
2066	ACC FB GAIN	0	0	0	0	0	0	0	C	0 0	0	0
2067	TCMD FILTER	0	0	0	0	0	0	0	0	0 0	0	0
2068-2073		16384	20480	8192	16384	8192	8192	8192	12288	8192	4096	4096
2077-2083		0	0	0102	0	0102	0102	0102	0	0102	0	0
2086	RATED CURRENT	1526	1866	2824	2586	1302	2075	1532	1181	1810	1977	1847
2087-2089	PORSTI	0	0	0	0	0	0	0			0	0
2091-2098	RODOTE	0	0	0	0	0	0	0	C C		0	0
2099	ONEPSL	400	400	400	400	400	400	400	400	400	400	400
2100		0	0	0	0	0	0	0	0		0	0
2101	DBL IM	0	0	0	0	0	0	0			0	0
2103	ABVOF	0	0	0	0	0	0	0	C	0 0	0	0
2104	ABTSH	0	0	0	0	0	0	0	002	0 0	0	0
2105		117	96	127	104	541 0	34b 0	090	1 837 C) 1093	δ19 0	1460
2110	MGSTCM	40	1555	40	3092	519	1284	521	528	513	1288	775
2111	TQLIM IN DEC.	10260	11550	10260	8208	7268	10255	6159	10260	6194	12830	6430
2112		0	0	0	0	0	0	0			0	0
2127	NINTCT	4548	2302	1293	1368	5103	1600	4904	2292	2 4264	2000	5117
2128	MFWKCE	1250	2200	3000	3000	4500	1400	2000	667	2000	1000	3000
2129	MFWKBL	3847	4112	5122	4365	2580	5390	2575	3850	3092	3854	2574
2130-2132	PHDI Y1	7690	7690	7685	7690	5150	10260	6174	7690	5150	7690	5150
2134	PHDLY2	12850	7740	12850	12830	8990	12835	8990	8990	8990	8990	8990
2159	DGCSMM	0	0	0	0	0	0	0	C	0	0	0
2160		0	0	0	0	0	0	0	0		0	0
2162	0VC2 K1	32766	32766	32762	32763	32767	32765	32766	32764	32766	32765	32766
2163	0VC2 K2	20	30	77	63	14	38	20	45	5 28	34	30
2164	UVC2 LIMIT	3711	5544	12702	10651	2702	6857	3738	1721	5218	6222	5432
2302	TQLIM AT STOP	10	10	10	10	45	45 0	45 0	1 85 C) 85) N	85 0	85 0
2304	ACCBSLM	0	0	0	0	0	0	0	Č	0	0	0
2305	ACDCEBD	0	0	0	0	0	0	0	0	0 0	0	0
2310	DCIDR2	0	0	0	0	0	0	0			0	0
2010		0	0	0	0	0	U	U		, U	0	0
R	lemarks											

α*i*S series HV (2/4)

	Motor model	α i \$40 4000HV	α i S50 2000HV	α i S50 3000HV	α i S50 3000HV	α i S60 2000HV	α i S60 3000HV	α i \$100 2500HV	α i \$100 2500HV	α i S200 2500HV	α i S200 2500HV	α i \$300 2000HV
	Motor specification	0273	0043	0276	0276	0045	0279	0286	0286	0289	0289	0293
PRM NO	SERVO PRM.	00001000	403	00001000	00001000	4/1	00001000	00001000	00001000	00001000	00001000	00001000
2003 2004 2005		00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	010001000
2005		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
2008		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
2010		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
2012		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
2014		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
2211 2300		00001010	00001010	00001010	00001010	00001010	00001010	00000000	00000000	00001010	00001010	00001010
2301 2040	CUR GAIN I	00000000	00000000	00000000	00000000 705	00000000	00000000	00000000	00000000	00000000	00000000	00000000
2041 2042	CUR GAIN P CUR GAIN 3	-4938 -1350	-7321	-4855	-4855	-6767	-5966	-5915	-5915	-8139	-8139	-7279
2043 2044	VEL GAIN I VEL GAIN P	93 -831	90 -802	70 -628	70 -628	103 -925	69 -617	91 91 -819	91 -819	115 -1026	115 -1026	114 -1025
2045 2046	VEL GAIN 3 VEL GAIN 4	0 -8235	0 -8235	0 -8235	0 -8235	0 -8235	0 -8235	0 0	0 -8235	0 -8235	0 -8235	0 -8235
2047 2048	OBSERVER POA1 BLACC CMP	4569 0	4731 0	6039 0	6039 0	4103 0	6152 0	4636 0 0	4636 0	3699 0	3699 0	3703 0
2049 2050	DPFMX OBSERVER POK1	0 956	0 956	0 956	0 956	0 956	0 956	0 0	0 956	0 956	0 956	0 956
2051 2052	OBSERVER POK2 OVER SPEED	510 4800	510 2800	510 4200	510 4200	510 2700	510 4000	510 5500	510 3500	510 3100	510 3100	510 2800
2053	DB-CMP PDDP	21 1894 210	31979	319/9	319/9	31979	319/9	1894	21 1894	1894	1894	3787
2056	EMFCMP D-PHASE CUR	-5648	-3867	-5638	-5638	-3097	-4620	0 -3846	-3846	-3088	-3088	-3846
2058 2059	D-PHASE CUR PPBAS	-3000	-3393	-1000	-1000	-2995	-2000	-900	-900	-3000	-3000	-900
2060 2061	TCMD LIMIT EMFLMT	7282 0	7282	7282 0	7282 0	7282 0	7282	7282	7282	7282 0	7282 0	7282 0
2062 2063	OVC K1 OVC K2	32501 3332	32501 3332	32554 2680	32371 4967	32501 3332	32388 4745	32474 3672	32309 5734	32309 5734	32309 5734	32391 4714
2064 2065	IGALMLV OVC LIMIT	4 9912	4 9912	4	4 14807	4	4	4	27346	27346	27346	4 23263
2060 2067 2068-2073	TCMD FILTER	0	0	0	0	0	0		0	0	0	0
2074	AALPH	4096	8192	0	0	0	4096	12288	12288	12288	12288	12288
2086 2087-2089	RATED CURRENT	2083 0	1856	1454	2057 0	2018	1937	2033	2848	2712	3013 0	2483 0
2090 2091-2098	ROBSTL	0	0	0	0	0	0	0 0	0	0	0	0
2099 2100	ONEPSL INPA1	400 0	400	400	400 0	400	400	400 <u>400</u>	400	400	400	400
2101 2102	INPA2 DBLIM	0	0	0	0	0	0	0 0	10000	0	0	0
2103 2104 2105	ABTSH	0	0	0	0	0	0	0 0	0	0	0	0
2105 2106-2109 2110		0	0	0	0	0	0	4423 0 0 1291	0	0	0973	0
2111 2112	TQLIM IN DEC.	5682	4954	6174	6174	3151	5220	0 0	0	3428	3428	0
2113 2127	HRV FILT NINTCT	0 5230	0 5651	0 4861	0 4861	0 5498	0 5393	0 0	0 6952	0 6729	0 6729	0 7634
2128 2129	MFWKCE MFWKBL	4000 2063	4601 1296	2500 2068	2500 2068	4004 1302	3000 1300	2000 1549	2000 1549	4000 1551	4000 1551	5000 1298
2130-2132 2133	SMOOTH CMP PHDLY1	0 5150	0 2570	0 5150	0 5150	0 4146	0 5150	0 0	0	0 2575	0 2575	0 2574
2134 2159	PHDLY2 DGCSMM	8988	12814	8990	8990	12821	8990	0 0	0	8984	8984	12814
2160	OVC STP	0	0	0	0	0	0	140	140	140	140	140
2163	OVC2 K1 OVC2 K2	32703	48	178	373	51	32742	112	292	292	292	375
2165	MAX CURRENT	85	85	185	185	85	185	185	185	185	185	365
2304 2305	ACCBSLM	0	0	0	0	0	0	0	0	0	0	0
2310 2316	DCIDBS LIMLIM	0	0	0	0	0	0	0	0	0	0	0
F	Remarks											

9.PARAMETER LIST

	Motor model	α i S300 3000HV	α i S500 2000HV	α i S500 3000HV	α iS1000 2000HV	α i \$1000 2000HV	α i \$1000 3000HV	α i \$1000 3000HV	α i \$2000 2000HV	α i \$2000 2000HV	α i \$2000 2000HV	α i \$3000 2000HV
	Motor specification	0290	0296	0297	0298	0098	0099	0099	0091	0091	0091	0092
PRM NO	Motor ID No. SERVO PRM.	344	346	347	348 Amp*2	458 Amp*2	350 Amp*4 (PDM)	465 Amp*4	454 Amp*4 (PDM)	459 Amp*4	476 Amp*4	455 Amp*4 (PDM)
2003		00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000
2004		00000011	01000011	00000011	01000011	01000011	00000011	00000011	01000011	01000011	01000011	01000011
2005		00001000	00000000	00001000	00000000	00001000	00001000	00001000	00000000	00000000	00001000	00000000
2007		00000000	00000000	00000000	00000000	0000000	0000000	0000000	00100000	00100000	00100000	00100000
2008		00000000	00000000	00000000	00000000	0000000	0000000	0000000	00000000	00000000	00000000	00000000
2010		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
2011		00000000	00000000	00000000	00000000	0000000	0000000	0000000	0000000	0000000	00000000	00000000
2012		00000000	00000000	00000000	00000000	00000000	00000000	0000000	00000000	00000000	00000000	00000001
2014		00000000	00000000	00000000	00000000	0000000	0000000	0000000	0000000	0000000	00100000	00000000
2210		00000000	00000000	00000000	00000000	0000000	0000000	10011010	00000000	10011110	10011110	00000000
2300		00000000	00000000	00000000	00000000	0000000	00000000	0000000	0000000	0000000	00000000	00000000
2301	CUR GAIN I	00000000	00000000	00000000	00000000	0000000	1000000	1000000	1100000	11000000	11000000	11000000
2040	CUR GAIN P	-5450	-10049	-7296	-5329	-8010	-6554	-6554	-3600	-3600	-3600	-3819
2042	CUR GAIN 3	-1355	-1356	-1357	-1361	-1362	-1362	-1362	-1358	-1358	-1358	-1357
2043	VEL GAIN I	-819	-1199	-996	-2096	-2357	-1708	-1708	-4500	-4500	-4500	-5836
2045	VEL GAIN 3	0	0	0	0	0	0	0	0	0	0	0
2046	OBSERVER POA1	-8235 4633	-8235 3164	-8235 3811	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235 650
2048	BLACC CMP	0	0	0	0	0	0	0	0	0	0	0
2049	DPENX OBSERVER POK1	0	0	0	0	0	0	056	056	056	0	0
2051	OBSERVER POK2	510	510	510	<u>510</u>	510	510	510	510	510	510	510
2052	OVER SPEED	3900	2400	4200	2600	2600	3800	3800	2400	2400	2400	2800
2053	DB-CMP PDDP	1894	3787	1894	3787	3787	1894	1894	3787	3787	3787	3787
2055	DB-CMP PHYST	319	319	319	319	319	319	319	319	319	319	319
2056	D-PHASE CUR	-5646	-2070	-3856	-2320	-2320	-4620	-4620	-3363	-3363	-3363	-2088
2058	D-PHASE CUR PPBAS	-1800	-2700	-2900	-2500	-2500	-2500	-2500	-3200	-3200	-3200	-5000
2060		7282	7282	7282	7282	7282	7282	7282	7282	7282	5097	7282
2061	OVC K1	32380	32309	32380	32309	32309	32488	32488	32309	32309	32309	32322
2063	OVC K2	4850	5734	4850	5734	5734	3503	3503	5734	5734	5734	5579
2064		4	27346	4	27346	27346	4 18280	18280	27346	27346	27346	26742
2066	ACC FB GAIN	0	0	0	0	0	0	0	0	0	0	0
2067	ICMD FILTER	0	0	0	0	0	0	0	0	0	0	0
2074	AALPH	12288	12288	12288	12288	12288	12288	12288	12288	12288	12288	12288
2077-2083	RATED CURRENT	2000	2980	2482	2834	2960	2500	2500	2803	2803	2803	3187
2087-2089	INTED CONTENT	0	0	0	0	0	0	0	0	0	0	0
2090	ROBSTL	0	0	0	0	0	0	0	2800	2800	2800	0
2091 2000	ONEPSL	400	400	400	400	400	400	400	400	400	400	400
2100	INPA1	0	0	0	0	0	0	0	0	0	2000	0
2101	DBLIM	0	0	0	0	0	0	0	0	0	0	0
2103	ABVOF	0	0	0	0	0	0	0	0	0	0	0
2104	TORQUE CONST.	13494	15096	18125	28573	27963	3807	3807	5957	5957	5957	8472
2106-2109	мостон	0	0	0	0	0	0	0	0	0	0	0
2110	TQLIM IN DEC.	523 2960	1293	521 2953	1296	2300	1040	1040	2022	2022	2720	26/ 2218
2112	AMRDML	0	0	0	0	0	0	0	0	0	0	0
2113		7720	8341	8021	8637	11851	9876	9876	3449	3449	3449	3029
2128	MFWKCE	4300	4500	2500	6000	4500	4500	4500	3000	3000	3000	2700
2129	MFWKBL SMOOTH CMP	1556	/88	1041	1047	1038	1556	1556	1291	1291	1291	0
2133	PHDLY1	3100	2324	3093	2580	2570	2580	2580	2060	2060	2060	2068
2134	PHDLY2	6422	8984	6418	8985	12810	6418	6418	12820	12820	12820	6410
2160	TRQCUP	0	0	0	0	0	0	0	0	0	0	0
2161	OVC STP	140	140	140	140	140	140	140	140	140	140	140
2162	0VC2 K2	32700 853	32745	32700	32745	292	589	589	292	292	32745	32756
2164	OVC2 LIMIT	10644	13952	10644	13952	13952	13952	13952	13952	13952	13952	13944
2302	TQLIM AT STOP	20	365	20	365	365	0	365	0	365	365	0
2304	ACCBSLM	0	0	0	0	0	0	0	2720	2720	2720	0
2305	DCIDBS	29 1700	0	32	0	22	29	29	4112	4112	4112	22
2316		5394	0	5394	0	0	0	0	0	0	0	0
F	Remarks	*1, *2, *3		*1, *2, *3		*1, *2, *3	*1, *2, *3	*1, *2, *3	*1, *2	*1, *2	*1, *2, *3, *4	*1, *2
	ائد د ن (ب	Supporting se	rvo software,	amplifier, and	power supply	are required.						
	≁∠, ∗ა, ⊀4	Subhorning se	IND SUILWARE IS	s required.								

α*i*S series HV (4/4)

9.PARAMETER LIST

0024		(·· ·)				1				1
	Motor model	2000HV								1
	motor moder	200011								1
		0002						 		
	Motor specification	0092						 		
	Motor ID No.	460						 		
PRM NO	SERVO PRM.	Amp*4								
2003		00001000								
2004		01000011								
2005		00000000								1
2006		0000000								
2007		00100000								
2008		0000000		İ	İ		İ			
2009		0000000								
2010		0000000	bi i i i i i i i i i i i i i i i i i i					 		
2011		0000000								
2012		0000000								
2013		00000000						 		
2014		00000000						 		
2210		00000000						 		
2210		10011010						 		
2200		0000000								
2201		11000000						 		
2010		11000000						 		
2040		2010								
2041	CUR GAIN P	-3819	2					 		
2042	GUR GAIN 3	-1357						 		
2043	VEL GAIN I	652						 		
2044	VEL GAIN P	-5836						 		
2045	VEL GAIN 3	0000						 		
2040	VEL GAIN 4	-8235						 		
2047	UBSERVER POAT	650		ļ			ļ	 		
2048	BLACC CMP	0	1					 		
2049	DPEMX	0	1					 	ļ'	
2050	UBSERVER POK1	956	<u> </u>					 		
2051	OBSERVER POK2	510						 		
2052	OVER SPEED	2800						 		
2053	DB-CMP PPMAX	21						 		
2054	DB-CMP PDDP	3787	1					 		
2055	DB-CMP PHYST	319						 		
2056	EMFCMP	0								
2057	D-PHASE CUR	-2088	8					 		
2058	D-PHASE CUR	-5000						 		
2059	PPBAS	0						 		
2060	TCMD LIMIT	7282								
2061	EMFLMT	0						 		
2062	OVC K1	32322								
2063	OVC K2	5579								
2064	TGALMLV	4								
2065	OVC LIMIT	26742								
2066	ACC FB GAIN	0						 		
2067	TCMD FILTER	0						 		
2068-2073	3	0								
2074	AALPH	12288	6							
2077-2083	3	0						 		
2086	RATED CURRENT	318/						 		
2087-2089)	0						 		
2090	ROBSTL	0						 		
2091-2098	3	0								
2099	ONEPSL	400						 		
2100	INPA1	0								
2101	INPA2	0								
2102	DBLIM	0								
2103	ABVOF	0								
2104	ABTSH	0						 		
2105	TORQUE CONST.	8472						 		
2106-2109		0						 		
2110	MGSTCM	267						 		
2111	TQLIM IN DEC.	2218						 		
2112	AMRDML	0								
2113	HRV FILT	0								
2127	NINTCT	3029								
2128	MFWKCE	2700								
2129	MFWKBL	777								
2130-2132	SMOOTH CMP	0								
2133	PHDLY1	2068								
2134	PHDLY2	6410						 		
2159	DGCSMM	0								
2160	TRQCUP	0								
2161	OVC STP	140								
2162	0VC2 K1	32756								
2163	0VC2 K2	151								
2164	OVC2 LIMIT	13949								
2165	MAX CURRENT	365								
2302	TQLIM AT STOP	0								
2304	ACCBSLM	0								
2305	ACDCEBD	22	1							
2310	DCIDBS	1112	1							
2316		0								
	Remarks	*1, *2								
	*1	Supporting s	ervo software, amplifier,	and power s	upply are rea	quired.		 		
	*2	pupporting s	ervo software is required	l.						

9.1.3 *αi*F Series

α*i*F series

	Motor model	α iF1 5000	α iF2 5000	α iF4 5000	α iF8 3000	α iF8 4000	α iF12 4000	α iF22 3000	α iF22 4000	α iF30 4000	α iF40 3000	α iF40 3000
	Motor specification	0202	0205	0223	0227	0228	0243	0247	0248	0253	0257	0257 308
PRM NO	SERVO PRM.	202	200	270	211	432	230	237		000	007	000
2003		00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000
2005		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
2006		00000000	00000000	00000000	00000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000
2008		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
2009		00000000	00000000	00000000	00000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000
2010		00000000	00000000	00100000	00100000	00000000	00100000	00100000	00000000	00000000	00100000	00100000
2012		00000000	00000000	0000000	00000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000
2014		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
2210		00000000	00000000	00000000	00000000	00000000	0000000	0000000	00000000	00000000	00000000	00000000
2300		00000000	00000000	0000000	00000000	0000000	00000000	0000000	0000000	0000000	00000000	0000000
2301	CUR GAIN I	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
2041	CUR GAIN P	-3034	-3743	-4260	-4184	-3270	-6391	-6000	-5208	-4492	-8224	-8224
2042	CUR GAIN 3	-1256	-1283	-1311	-1325	-1322	-1315	-1345	-1343	-1347	-1348	-1348
2044	VEL GAIN P	-594	-680	-953	-1009	-807	-1721	-1775	-1523	-2057	-1712	-1712
2045	VEL GAIN 3 VEL GAIN 4	-8235	-8235	-8235	-8235	-8235	-8235	0 0	-8235	-8235	-8235	-8235
2047	OBSERVER POA1	6384	5578	3980	3760	4704	2204	2137	2492	1845	2216	2216
2048 2049	BLACC CMP	0	0	0	0	0					0	0
2050	OBSERVER POK1	956	956	956	956	956	956	956	956	956	956	956
2051	OVER SPEED	510	510	510 6000	510 4200	510	4800	510	4800	4800	510 4200	4200
2053	DB-CMP PPMAX	21	21	21	21	21	21	21	21	21	21	21
2054	DB-CMP PDDP DB-CMP PHYST	319	319	319	319	319	319	319	319	319	319	319
2056		-5130	-10	-6430	0	-10007	(0	-7606	-20500	0	-2570
2058	D-PHASE CUR	0	-1275	-2575	-2000	-1593	-747	-2800	-2574	-2512	-2000	-2000
2059	PPBAS TCMD LIMIT	0 7282	0	0 8010	0 8010	0 7282	7282	0	7282	0	7282	0 7282
2061	EMFLMT	0	0	0	0	0	0	0	(0	0	0
2062		32613	32497	32446 4029	32383	32522 3078	32520	32520	32487	32515	32515	32431 4212
2064	TGALMLV	4	4	4	4	4	4	4	4	4	4	4
2065	ACC FB GAIN	5739	10085	0	14327	9154	9224	9224	9418	9418	9418	12545
2067	TCMD FILTER	0	0	0	0	0	0	0	(0	0	0
2000 2073	AALPH	20480	12288	8192	8192	12288	8192	12288	8192	4096	0	0
2077-2083	RATED CURRENT	1234	0	0 1784	1950	0	2085	0 0	1827	2306	1957	2593
2087-2089	DODATI	0	0	0	0	0	0	0	(0	0	0
2090	ROBSIL	0	0	0	0	0				0	0	0
2099	ONEPSL	400	400	400	400	400	400	400	400	400	400	400
2100	INPA2	0	0	0	0	0	0	0	(0	0	0
2102	DBLIM	0	0	15000	15000	0	15000	15000	0	0	12000	12000
2103	ABTSH	0	0	0	0	0	0	0	(0	0	0
2105 2106-2109	TORQUE CONST.	72	109	201	369	461	517	929	1083	1170	1839	1839
2110	MGSTCM	32	32	1553	776	1300	32	1291	1547	1815	1291	1291
2111 2112	AMRDML	10260	10280	//12	3870	6500	5191		5495	0	5220	5140
2113	HRV FILT	0	0	0	0	0	0000	0	(0	0	0
2127	MFWKCE	1667	2000	1443	3500	3139	2388	4500	5518	2500	6000	2000
2129	MFWKBL	3858	3862	3335	1815	3089	2568	1301	2326	2829	1560	1553
2130-2132	PHDLY1	7690	7693	7712	0	5141	7701	0	5141	5140	2590	3085
2134	PHDLY2	12840	12840	8892	0	8981	5141	0	8981	8995	8990	8990
2160	TRQCUP	0	0	0	0	0	C	0	(0	0	0
2161 2162	OVC STP	32767	0 32766	32766	32765	32765	32765	0 0	128	128	128	128
2163	OVC2 K2	13	23	27	33	40	38	40	75	48	46	637
2164 2165	MAX CURRENT	2425	4261	5069 45	6053 45	<u>5/46</u> 85	6924	/229	165	8124	8124	10815
2302	TQLIM AT STOP	0	0	0	0	0	0	0	(0	0	0
2304	ACDCEBD	0	0	0	0	0		0		0	0	0
2310	DCIDBS	0	0	0	0	0	0	1817	0	0	0	0
2310	lemarks		0	0		0		/ <u> </u>	<u> </u>	U	0	0
	*1	Supporting se	ervo software	, amplifier,	and power su	pply are rec	uired.		1	1	1	l

9.1.4 $\alpha i F$ Series HV

αiF	series	нν

	Motor model	α i F4 5000HV	α iF8 3000HV	α iF8 4000HV	αiF12 4000HV	α iF22 3000HV	α iF22 4000HV	α iF30 4000HV	α iF40 3000HV	α iF40 3000HV		
	Motor specification	0225	0229	0220	0245	0249	0240	0255	0259	0259		_
PRM NO	SERVO PRM.	2/5	279	493	290	299	495	304	309	4/9		_
2003		00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	1	_
2004		00000011	00000011	00000011	00000011	00000011	00000011	00000011	00000011	00000011		
2005		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000)	
2007		0000000	0000000	0000000	00000000	00000000	0000000	0000000	0000000	0000000		_
2008		00000000	0000000	0000000	00000000	00000000	0000000	0000000	0000000	00000000		
2010		0000000	0000000	0000000	00000000	00000000	0000000	0000000	0000000	0000000		_
2011 2012		00000000	0000000	00000000	00100000	00100000	0000000	00100000	00000000		·	
2013		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	0000000		_
2014		00000000	0000000	0000000	00000000	00000000	0000000	0000000	0000000			
2210		00001010	00001010	00001010	00000000	00000000	00001010	00001010	00011010	00011010		_
2300		00000000	0000000	0000000	00000000	00000000	0000000	0000000	0000000	0000000		
2040	CUR GAIN I	570	1222	526	1200	1919	1214	785	1441	1441		
2041	CUR GAIN P	-3578	-5890	-3270	-6059	-9132	-5208	-4179	-7513	-7513		
2042	VEL GAIN 3	-1309	-1322	-1322	-1339	-1346 197	-1343	-1347	-1350	1350	4	
2044	VEL GAIN P	-1009	-1008	-807	-1727	-1765	-1523	-2016	-1684	-1684	F	_
2045	VEL GAIN 3	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235) (823F		
2047	OBSERVER POA1	3762	3764	4704	2197	2150	2492	-1882	2253	2253	<u>, </u>	
2048	BLACC CMP	0	0	0	0	0	0	0	(_
2049	OBSERVER POK1	956	956	956	956	956	956	956	956	, c 6 956	j	_
2051	OBSERVER POK2	510	510	510	510	510	510	510	510	510		
2052	DB-CMP PPMAX	21	3900	21	4800	21	4800	4800	21	21		
2054	DB-CMP PDDP	1894	1894	1894	1894	1894	1894	1894	1894	1894	•	_
2055	DB-CMP PHYSI	319	319	319	319	319	319	319	319		·	
2057	D-PHASE CUR	-11788	-6159	-10007	-8203	-5136	-7696	-7697	-5137	-5137		_
2058	D-PHASE CUR PPRAS	-1/34	-1261	-1593	-11/8	-2824	-25/4	-2512	-2027	-2027	1	
2060	TCMD LIMIT	7282	8010	7282	7282	7282	7282	7282	7282	7282		_
2061	EMFLMT	22/133	32433	32522	32548	0 32548	32487	22501	32501	32501		
2062	OVC K2	4184	4184	3078	2755	2755	3517	3332	3332	3332		_
2064		12/61	12/61	0154	<u> </u>	8102	4	4	4	4 0012		
2005	ACC FB GAIN	0	0	0	0192	0192	0	0	3312) ()	
2067	TCMD FILTER	0	0	0	0	0	0	0	(
2008-2073	AALPH	12288	12288	12288	12288	8192	8192	12288	8192	8192	2	
2077-2083		0	1049	0	0	0	1007	0	1076	0 0		
2080	KATED GORRENT	0	0	0	0	0	0	0	(0 2007)	
2090	ROBSTL	0	0	0	0	0	0	0	(0 0		
2091-2098	ONEPSL	400	400	400	400	400	400	400	400	400		
2100	INPA1	0	0	0	0	0	0	0	(0		
2101	DBLIM	0	0	0	15000	15000	0	0)	
2103	ABVOF	0	0	0	0	0	0	0	(0 0		
2104	ABISH TORQUE CONST.	190	369	461	516	934	1083	2215	1869	1869	,	
2106-2109	NOCTON	0	0	0	0	0	0	0	(0		_
2110	TQLIM IN DEC	1553	/82	1300	5191	/8/	154/	1815	4241	4241		
2112	AMRDML	0	0	0	0	0	0	0	(0 0		
2113	NINTCT	2573	0 	1631	4787	0 6547	0 2226	3354	6538	1 C 6538		
2128	MFWKCE	1001	6000	3139	4000	6000	5518	3000	6147	6147		_
2129	MFWKBL	2568	1810	3089	2320	1808	2326	2833	1809		1	
2133	PHDLY1	8220	5150	5141	7701	0	5141	5150	3594	3594	6	_
2134	PHDLY2	8990	8990	8981	5141	0	8981	8990	6414	6414		
2160	TRQCUP	0	0	0	0	0	0	0	(_
2161	OVC STP	0	20765	20765	20765	20765	0	0	20760	0 (
2163	0VC2 K1	32700	33	40	32703	40	75	58	78	58	5	
2164	OVC2 LIMIT	5676	6042	5746	6969	7142	7898	9912	8288	9912		
2302	TQLIM AT STOP	25	25 0	45	40	45 0	0	0	60	, 80) (
2304	ACCBSLM	0	0	0	0	0	0	0	(0		_
2305	DCIDBS	0	0	0	0	0	0	0	36) 36) (
2316		0	0	0	0	0	0	0	C	i c		
R	emarks								*2	*2		
	*2	Supporting se	ervo software	e is required							· · · · ·	_

B-65270EN/08

9.1.5 αCi Series

αC*i* series

	Motor model	α C4 3000 i	α C8 2000 i	α C12 2000 i	α C22 2000 i	αC30 1500 i				
	Motor specification	0221	0226	0241	0246	0251				
	Motor ID No.	271	276	291	296	301				
PRM NO	SERVO PRM.	00001000	00001000	00001000	00001000	00001000				
2003		00001000	00001000	00001000	00001000	00001000				
2005		00000000	00000000	00000000	00000000	00000000				
2006		00000000	0000000	0000000	00000000	0000000				
2007		00000000	00000000	00000000	00000000	00000000				
2009		00000000	00000000	00000000	00000000	0000000				
2010		00000000	0000000	00000000	00000000	00000000				
2011		00000000	00000000	00000000	00000000	00000000				
2013		00000000	0000000	00000000	0000000	0000000				
2014		00000000	0000000	0000000	00000000	0000000				
2210		00000000	00001010	000000000000000000000000000000000000000	00001010	00001010				
2300		00000000	0000000	0000000	00000000	0000000				
2301	CUR GAIN I	00000000	0000000	00000000	00000000	00000000				
2040	CUR GAIN P	-6415	-6288	-9137	-10593	-13330				
2042	CUR GAIN 3	-1309	-1326	-1339	-1347	-1347				
2043	VEL GAIN I	-1034	-1342	280	-2426	-1486				
2045	VEL GAIN 3	0	0.0	0	0	0				
2046	VEL GAIN 4	-8235	-8235	-8235	-8235	-8235				
2047	BLACC CMP	0	2027	0	0	2000				
2049	DPFMX	0	C	0	0	0				
2050	UBSERVER POK1	956	956	956	956	956	1			
2052	OVER SPEED	4200	2800	2800	2400	2100				
2053	DB-CMP PPMAX	21	21	21	21	21				
2054	DB-CMP PDDP DB-CMP PHYST	1894	1894	1894	1894	1894				
2056	EMFCMP	010	010	010	010	010				
2057	D-PHASE CUR	-5915	-3854	-1804	-2597	-1545				
2058	PPBAS	-1500	-1236	-2500	-1942	-1300				
2060	TCMD LIMIT	7282	7282	7282	8010	7282				
2061	EMFLMT	0 32406	32280	0	0 32114	32520				
2062	OVC K2	4529	5994	5994	8171	3101				
2064	TGALMLV	4	4	4	4	4				
2065	OVC LIMII	13493	1/889	1/889	24454	9224				
2000	TCMD FILTER	0	0	0	0	0				
2068-2073		0	0100	0 0100	0	0				
2074	AALPH	12288	8192	8192	4096	8192				
2086	RATED CURRENT	1892	2593	3020	2911	1655				
2087-2089		0	0	0	0	0				
2090	NUDSTL	0	0	0	0	0				
2099	ONEPSL	400	400	400	400	400				
2100		0	0	0	0	0				
2102	DBLIM	0	0	15000	0	0				
2103	ABVOF	0	0	0	0	0				
2104	TORQUE CONST.	190	277	350	680	1630				
2106-2109		0	0	0	0	0	1			
2110	MGSICM	1289	1552	0	1548	2059				
2112	AMRDML	03500	0	0	0	0				
2113	HRV FILT	0	0	0	0	0				
2127	MFWKCE	2544	2380	4150	3695	6680				
2129	MFWKBL	1812	1550	1044	1046	539	1	1	1	
2130-2132	SMOOTH CMP	2055	0	0	0	0				
2133	PHDLY2	3805	3860	8990	9000	9000				
2159	DGCSMM	0	0	0	0	0				
2160	IRQCUP	0	0	0	0	0				
2162	OVC2 K1	32766	32763	32761	32761	32766				
2163	OVC2 K2	31	63	91	83	23				
2164	UVC2 LIMIT	5701	10709	14518	13493	4361 85				
2302	TQLIM AT STOP	0	0	0		0				
2304	ACCBSLM	0	0	0	0	0				
2300	DCIDBS	0	0	0	0	0				
2316		0	0	0	0	0				
	Remarks						 			
							 1	1	1	1
1										

9.2 STANDARD PARAMETERS FOR THE βi SERIES SERVO MOTORS

Series 90G0 (for Series 30*i*/31*i*/32*i*/35*i*-B, Power Motion *i*-A) Series 90E0 and 90E1 (for Series 30*i*/31*i*/32*i*-A) Series 90D0 (for Series 30*i*/31*i*-A) Series 90C5 and 90C8 (for Series 0*i*-D) Series 90E5 and 90E8 (for Series 0*i*-D)

9.2.1 βi S Series

βiS series (1/3)

	Motor model	β i S0. 2 5000	β i S0. 3 5000	β i S0. 4 5000	β i S0. 5 6000	β iS1 6000	β iS2 4000	β i S2 4000 404	β iS2 4000 FS0 i	β iS2 4000 FS0i 40A	βiS4 4000	βiS4 4000 40A
	Motor specification Motor ID No.	0111 260	0112 261	0114 280	0115 281	0116 282	0061-Bxx3 253	0061-Bxx3 254	0061-Bxx6 306	0061-Bxx6 310	0063-Bxx3 256	0063-Bxx3 257
PRM NO	SERVO PRM.					ĺ						ĺ
2003		00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000
2004		00000011	00000011	00000011	00000011	00000011	00000011	00000011	00000011	00000011	00000011	00000011
2005		0000000	0000000	0000000	0000000	00000000		0000000	00000000		0000000	0000000
2007		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
2008		00000000	00000000	00000000	00000000	0000000	00000000	00000000	0000000	00000000	0000000	00000000
2009		00000000	0000000	00000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000
2010		00000000	0000000	00000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000
2011		0000000	0000000	0000000	0000000	00000000		0000000	00000000	00000000	0000000	00000000
2012		00000000	00000000	00000000	00000000	00000000	00000100	00010000	00000100	00010000	00000000	00001110
2014		00000000	0000000	00000000	00000000	0000000	00000100	00010000	00000100	00010000	0000000	00001110
2210		0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000
2211		00000010	00000010	00000010	00001010	00001010		00001110	00001110	00001110	00001110	00001110
2300		0000000	00000000	00000000	0000000	00000000		00000000	00000000	00000000	0000000	00000000
2040	CUR GAIN I	123	210	100	138	312	360	720	360	720	400	800
2041	CUR GAIN P	-510	-970	-430	-673	-1360	-1920	-3840	-1920	-3840	-1920	-3840
2042	CUR GAIN 3	-1069	-1146	-2463	-1205	-1203	-1237	-1237	-1237	-1237	-1253	-1253
2043	VEL GAIN I	-36	-33	-61			0 /8 809 1	-349	8/	39	-1008	-504
2045	VEL GAIN 3	0	0	0	0	00		043	000	043	0000	0
2046	VEL GAIN 4	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235
2047	OBSERVER POA1	-10638	-11550	-6249	-6462	-7176	-1089	-2178	-1089	-2178	-753	-1506
2048		0		0	0			0	0		0	0
2049	OBSERVER POK1	956	956	956	956	956	956	956	956	956	956	956
2051	OBSERVER POK2	510	510	510	510	510	510	510	510	510	510	510
2052	OVER SPEED	7000	7000	7000	7500	7500	5600	5600	5600	5600	5600	5600
2053	DB-CMP PPMAX	21	21	21	21	21	21	21	21	21	21	21
2054	DB-CMP PDDP	1894	1894	1894	1894	1894	1894	1894	1894	1894	1894	1894
2056	EMFCMP	013	013	-12850	-12850	-12850		013	013	013	013	013
2057	D-PHASE CUR	0	0	0	0	-15114	-10250	-10245	-10250	-10245	-7694	-7687
2058	D-PHASE CUR	0	0	0	0	-1200	-1000	-500	-1000	-500	-2800	-1400
2059		0	0	<u> </u>	0	7202	0 0	0	6554		0	2641
2000		1282	1202	0	1282	1202	0004	3211	0004	0	/202	3041
2062	OVC K1	32725	32725	32640	32674	32695	32531	32531	32652	32739	32289	32289
2063	OVC K2	533	533	1603	1178	915	2963	2963	1455	364	5988	5988
2064		4	4	4750	4	4	4	4	4017	4	4	4
2065	ACC FR GAIN	3103	3103	4759	3497	2/14	0011	2203	4317	10/9	1/6/3	4400
2067	TCMD FILTER	0	Ő	0	0	Č	0	0	Ő	0	0	Ő
2068-2073		0	0	0	0	C	0	0	C	0	0	0
2074	AALPH	20480	20480	20480	20480	20480	16384	0	16384	0	20480	0
2077-2083	RATED CURRENT	1929	1929	1605	1376	1212	1529	764	1529	764	2178	1089
2087-2089		0	0	0	0	0	0	0	0	0	0	0
2090	ROBSTL	0	0	0	0	C	0	0	C	0	0	0
2091-2098		0	0	0	0	0	0 0	0	0	0 0	0	0
2099		400	400	400	400	400	400	400	400	400	400	400
2100	INPA2	0	0	0	0	C	0	0	0	0	0	0
2102	DBLIM	0	0	0	0	C	0	0	C	0	0	0
2103	ABVOF	0	0	0	0	0	0	0	0	0	0	0
2104	TOROUE CONST	<u>0</u> ד	1/	0	10	L C	110	220	110	220	1/6	202
2106-2109		0	0	0	0	0		0	0	0	0	0
2110	MGSTCM	1	1	30	25	1556	1048	815	1048	815	780	532
2111	TQLIM IN DEC.	7710	7700	10290	10290	10290	11600	11600	11600	11600	7790	7790
2112		0	0	0	0			0	0	0	0	0
2127	NINTCT	379	852	400	504	881	1172	1172	1172	1172	796	796
2128	MFWKCE	0	3000	0	0	1500	2500	5000	2500	5000	3000	6000
2129	MFWKBL	0	3880	0	0	5135	3358	3358	3358	3358	3392	3392
2130-2132		7700	7605	7600	0	15400	7102	7102	7102	0	0002	0002
2133	PHDLY2	12825	12840	12820	12820	12840	8990	8990	8990	8990	12864	9024
2159	DGCSMM	0	0	0	0	C	0	0	0	0	0	0
2160	TRQCUP	0	0	0	0	C	0	0	0	0	0	0
2161	OVC STP	0	0	0	0	(ראדריכ	0 0 1 00766	0	120	120	20765	20765
2162	0VC2 K1	0	0	32700	32707	12	20	20	140	32705	42	42
2164	OVC2 LIMIT	0	0	4104	3015	2340	3723	931	2665	666	7551	1888
2165	MAX CURRENT	4	4	25	25	25	25	45	25	45	25	45
2302	INCORSIM	0	0	0	0			0	0	0	0	0
2304	ACDCEBD	0		0	0				(0	
2310	DCIDBS	0	0	0	0	0		0	C	0	0	0
2316		0	0	0	0	0	0	0	0	0	0	0
n	marka	1				1	1	1		1		
Re	sind I KS		1			1	1	1		1		1
1												

β*i*S series (2/3)

	Motor model	β iS4 4000 ES0 i	β iS4 4000 ES0i 404	β i S8 3000	β i S8 3000	β i S8 3000 ES0 i	β iS8 3000 ES0i 404	β iS12 2000	β iS12 2000	β iS12 2000 ES0i	β iS12 2000 ES0i 404	β iS12 3000
	Motor specification	0063-Bxx6	0063-Bxx6	0075-Bxx3	0075-Bxx3	0075-Bxx6	0075-Bxx6	0077-Bxx3	0077-Bxx3	0077-Bxx6	0077-Bxx6	0078
PRM NO	SERVO PRM.	00001000	00001000	200	203	200	234	203	200	00001000	00001000	00001000
2003		00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000
2005		0000000	00000000	00000000	0000000	00000000	00000000	00000000	00000000	00000000	0000000	0000000
2007 2008		000000000000000000000000000000000000000	00000000	00000000	00000000	0000000	0000000	000000000000000000000000000000000000000	0000000	000000000000000000000000000000000000000	00000000	0000000
2009		0000000	0000000	00000000	00000000	0000000	0000000	0000000	0000000	0000000	0000000	00000000
2010		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
2012		0000000	0000000	00000000	0000000	00000000	00000000	00000000	00000000	00000000	0000000	00000000
2014 2210		0000000	00001110	00000000	00001110	00000000	00001110	00000000	000001110	00000000	00001110	0000000
2211 2300		00001110	00001110	00001110	00001110	00001110	00001110	00001110	00001110	00001110	00001110	00001110
2301 2040	CUR GAIN I	00000000 400	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
2041	CUR GAIN P	-1920	-3840	-3831	-5600	-3831	-5600	-3289	-6578	-3289	-6578	-2217
2042	VEL GAIN I	112	56	164	82	164	82	230	115	230	115	170
2044 2045	VEL GAIN P VEL GAIN 3	-1008	-504	-14/6	-738	-14/6	-/38	-2054	-1027	-2054	-1027	-1530
2046 2047	OBSERVER POA1	-8235 -753	-8235	-8235	-8235	-8235	-8235	-8235 3695	-8235	-8235	-8235 7390	-8235 4960
2048 2049	BLACC CMP DPFMX	0	0	0	0	0	0	0	0	0	0	0
2050	OBSERVER POK1	956 510	956 510	956 510	956 510	956 510	956 510	956 510	956 510	956	956 510	956 510
2052		5600	5600	4200	4200	4200	4200	2800	2800	2800	2800	4200
2053	DB-CMP PDDP	1894	1894	1894	1894	1894	1894	1894	1894	1894	1894	1894
2055	EMFCMP PHYST	319	319	-2570	319	-2570	319	319	319	319	319	319
2057 2058	D-PHASE CUR D-PHASE CUR	-7694 -2800	-7687	-5140	-5131	-5140	-5131	-3884 -4350	-3862 -2175	-3884	-3862 -2175	-5140
2059 2060	PPBAS TCMD LIMIT	0 7282	0 3641	0	0 3641	0 7282	0 3641	0	0 3641	0 7282	0 3641	0 7282
2061	EMFLMT OVC K1	0	0 32709	32289	0	32381	32671	0	32646	0	0	32205
2063		2945	738	5994	5994	4835	1214	6045	1525	5566	1525	7041
2064	OVC LIMIT	8758	2189	17889	4472	14410	3603	18045	4511	16603	4511	21044
2066 2067	TCMD FILTER	0	0	0	0	0	0	0	0	0	0	0
2068-2 2074	073 AALPH	0 20480	0	0 16384	0	16384	0	0 8192	0	0 8192	0	16384
2077-2 2086	083 RATED CURRENT	0 2178	0 1089	0 2780	0	2780	1390	0 3126	0 1563	0 0 3126	0 1563	2363
2087-2	089 ROBSTI	0	0	0	0	0	0	0	0	0	0	0
2091-2		0	0	0	0	0	0	0	0	0	0	0
2099		400	0	0	400	400	400	0	400	400	400	400
2101	DBLIM	0	0	0	0	0	0	0	0	0	0	0
2103 2104	ABVOF	0	0	0	0	0	0	0	0	0	0	0
2105 2106-2	TORQUE CONST.	146	292	226	452	226	452	315	630 C	315 0	630 0	418 C
2110 2111	MGSTCM TQLIM IN DEC.	780 7790	532 7790	1807 7930	1045 7930	1807 7930	1045	1 3940	1282	3940	1282 3940	1814 7930
2112	AMRDML HRV FILT	0	0	0	0	0	0	0	0	0	0	0
2127		796	796	1442	1442	1442	1442	1350	1350	1350	1350	1194
2120	MFWKBL	3392	3392	1298	1298	1298	1298	280	280	280	280	2056
2130-2 2133	PHDLY1	8992	8992	3858	3858	3858	3858	3614	3614	3614	3614	5138
2134 2159	PHDLY2 DGCSMM	12864	9024	8990	8990	8990 0	8990 0	8980 0	4372	8980	4372	8990 C
2160 2161	TRQCUP OVC STP	0	0	0	0	0	0	0	0	0	0	C 0
2162 2163	0VC2 K1 0VC2 K2	32745	32762	32762	32762	32764	32767	32760	32766	32763	32767	32764
2164	OVC2 LIMIT	5407	1352	12305	3076	8896	2224	15559	3890	10250	2785	8891
2302		0	0	0	45	0	45	0	40	0	40	40
2304	ACCDSLM	0	0	0	0	0	0	0	0	0	0	C
2310 2316	DCIDBS	0	0	0	0	0		0		0	0	C
	Remarks											

9.PARAMETER LIST

β i S	series (3/3))									
	Motor model	β iS12 3000	βiS22 1500	β i S22 1500	β i S22 2000	β i S22 2000	β i S22 3000	β i S30 2000	β i \$40 2000		
	Notor operification	80A	FS0 i	FS0i, 40A	0085	80A 0085	0082	0087	0089		
	Motor ID No.	477	302	305	274	478	313	472	474		
PRM NO	SERVO PRM.	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000		
2003		000000011	000000000000000000000000000000000000000	000000011	00001000	000000011	000000011	000000000000000000000000000000000000000	00000011		
2005		00000000	00000000	00000000	00000000	00000000	00000000	0000000	0000000		
2006		00000000	00000000	00000000	00000000	00000000	00000000	00000000	0000000		
2008		00000000	00000000	00000000	00000000	00000000	00000000	0000000	0000000		
2009		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000		
2011		00000000	00000000	00000000	00000000	00000000	00000000	0000000	0000000		
2012		00000000	00000000	000001110	00000000	00000000	00001000	00000000	00000000		
2014		00001110	00000000	00001110	00000000	00001110	00001000	00000010	00000010		
2210	1	000001110	00001110	000001110	00000000	00000000	000001110	00001010	00000000	, ,	
2300		00000000	00000000	00000000	00000000	00000000	00000000	0000000	0000000		
2040	CUR GAIN I	804	2171	4342	1184	2368	1157	1650	1624		
2041	CUR GAIN P	-4434	-8178	-16356	-6800	-13600	-5102	-6565	-7197		
2042	VEL GAIN I	-1304	280	140	242	121	198	214	208		
2044	VEL GAIN P	-765	-2507	-1254	-2172	-1086	-1766	-1912	-1870		
2045	VEL GAIN 3	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235		
2047	OBSERVER POA1	9920	3027	6054	3496	6992	4297	3971	4057		
2040	DPFMX	0	0	0	0	0	0	0	0		
2050	OBSERVER POK1	956 510	956 510	956 510	<u>956</u> 510	956 510	956 510	956	956		
2052	OVER SPEED	4200	1800	1800	2800	2800	4200	2800	2600		
2053	DB-CMP PPMAX	21	21	21	21	21	21	21	21		
2055	DB-CMP PHYST	319	319	319	319	319	319	319	319		
2056	EMFCMP D-PHASE CUR	-5130	-2110	-2079	-5130	-5130	-6174	-4647	-3375		
2058	D-PHASE CUR	-1750	-4691	-2342	-3000	-1500	-2843	-3115	-3862		
2059 2060	PPBAS TCMD LIMIT	0 3641	0 7282	0 3641	0 7282	0 3641	0 5462	0 6554	6554		
2061	EMFLMT	0	0	0	0	0	0	0	0		
2062	OVC K1	31932	32319 5617	32655	32106	31/44 12801	32520	32413	32413		
2064	TGALMLV	4	4	4	4	4	4	4	4		
2065	ACC FB GAIN	5230	16/56	4189	24770	6422	9212	13201	13201		
2067	TCMD FILTER	0	0	0	0	0	0	0	0		
2068-2073	AALPH	0	8192	0	16384	0	12288	8192	8192		
2077-2083		0	0	0	0	0	0	0	0		
2080	RATED CORRENT	0	0	0	2010	1309	0	0	2154	, ,	
2090	ROBSTL	0	0	0	0	0	0	0	0		
2091 2090	ONEPSL	400	400	400	400	400	400	400	400		
2100	INPA1	0	0	0	0	0	0	0	0		
2102	DBLIM	0	0	0	0	0	0	0	0		
2103	ABVOF	0	0	0	0	0	0	0	0		
2105	TORQUE CONST.	836	597	1194	692	1384	848	1127	1503		
2106-2109	MGSTCM	812	1025	514	0	1280	1289	1546	263		
2111	TQLIM IN DEC.	7930	2248	2248	2866	2866	7268	4255	3065		
2112	HRV FILT	0	0	0	0	0	0	0	0		
2127		1194	3290	3290	2459	2459	1967	2095	2712		
2120	MFWKBL	2056	1032	1000	562	562	2315	1548	1038		
2130-2132	SMOOTH CMP	0 5120	2590	0	2250	2250	0	0	0		
2133	PHDLY2	4382	8990	4382	8979	4371	12820	12814	8967		
2159 2160	DGCSMM	0	0	0	0	0	0	0	0		
2161	OVC STP	0	0	0	0	0	0	0	0		
2162	0VC2 K1 0VC2 K2	32766	32763	32767	32763	32766	32765 40	32765	32765		
2164	OVC2 LIMIT	2752	10345	2586	10913	3379	7166	7387	7713		
2165	TOLIM AT STOP	85	25	45	45	85	85	85	85		
2304	ACCBSLM	0	0	0	0	0	0	0	0		
2305	DCIDBS	0	0	0	0	0	0	0	0		
2316		0	0	0	0	0	0	0	0		
R	emarks			I						<u>г г</u>	
								I		<u> </u>	 1

9.2.2 βi S Series HV

βi S	series	нν	
			Г

	Motor model	β iS2 4000HV	β i S4 4000HV	β i S8 3000HV	β i S12 3000HV	β i S22 2000HV	β i S22 3000HV	β i \$30 2000HV	β i S40 2000HV		
	Motor specification	0062	0064	0076	0079	0086	0083	0088	0090		
	Motor ID No.	251	264	267	270	278	314	473	475		
2003	SERVU PRM.	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000		
2000		00000011	00000011	00000011	00000011	00000011	00000011	00000011	00000011		
2005		0000000	00000000	0000000	00000000	0000000	0000000	0000000	0000000		
2006		0000000	0000000	00000000	0000000	0000000	0000000	0000000	0000000		
2008		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000		
2009		00000000	0000000	0000000	00000000	0000000	0000000	0000000	0000000		
2010		0000000	00000000	00000000	0000000	0000000	0000000	0000000	0000000		
2012		00000000	00000000	00000000	00000000	00000000	00000000	0000000	00000000)	
2013		00000100	00000000	00000000	00000000	0000000	00001000	00000010	00000010	<u> </u>	
2014		00000100	00000000	00000000	0000000	0000000	00001000	00000010	00000010	/	
2211		00001110	00001110	00001110	00001110	00001110	00001110	00001010	00001010)	
2300		00000000	00000000	0000000	00000000	0000000	0000000	0000000	0000000)	
2040	CUR GAIN I	348	331	605	427	1446	1146	1650	1624		
2041	CUR GAIN P	-1676	-1560	-3028	-2301	-5822	-5267	-6565	-7197	1	
2042	CUR GAIN 3	-1232	-1246	-1300	-1302	-1332	-1332	-2681	-1341		
2043	VEL GAIN P	-700	-1010	-1482	-1524	-2182	-1722	-1912	-1870	• •	
2045	VEL GAIN 3	0	0	0	0	0	0	0	0		[
2046	VEL GAIN 4	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235		
2047	BLACC CMP	-1065	-/31	0	4978	0	4406	0	4037		
2049	DPFMX	0	0	0	0	0	0	0	0		
2050	OBSERVER POK1	956 510	956	956	956 510	956	956	956	956		
2052	OVER SPEED	5600	5600	4200	4200	2700	4200	2800	2600	·	
2053	DB-CMP PPMAX	21	21	21	21	21	21	21	21		
2054	DB-CMP PDDP	1894	1894	1894	1894	1894	1894	1894	1894	-	
2055	EMFCMP	0	0	0	0	0	0	0	0		
2057	D-PHASE CUR	-10250	-7694	-5140	-5140	-3612	-6174	-4647	-3375		
2058	D-PHASE CUR	-1000	-2800	-3200	-3500	-3000	-2843	-3115	-3862		
2000	TCMD LIMIT	6554	7282	7282	7282	7282	5462	6554	6554		
2061	EMFLMT	0	0	0	0	0	0	0	0		
2062		32538	32299	32301	32435	32433	32548	32413	32413		
2003	TGALMLV	4	4	4	4104	4103	4	4431	4401		
2065	OVC LIMIT	8560	17504	17435	12399	12462	8192	13201	13201		
2066	ACC FB GAIN	0	0	0	0	0	0	0	0		
2068-2073		0	0	0	0	0	0	0	0	1	
2074	AALPH	20480	20480	20480	20480	8192	8192	8192	8192	1	
2077-2083	RATED CURRENT	1507	2155	2793	2356	2611	2069	2154	2154		
2087-2089		0	0	0	0	0	0	0	0		
2090	ROBSTL	0	0	0	0	0	0	0	0	<u> </u>	
2091-2098	ONEPSL	400	400	400	400	400	400	400	400	/	
2100	INPA1	0	0	0	0	0	0	0	0		
2101	INPA2	0	0	0	0	0	0	0	0		
2102	ABVOF	0	0	0	0	0	0	0	0	/	
2104	ABTSH	0	0	0	0	0	0	0	0		
2105	TORQUE CONST.	119	146	225	420	689	869	1127	1503		
2110 2109	MGSTCM	1048	780	1807	1814	0	1289	1546	263		
2111	TQLIM IN DEC.	11600	7790	7930	7930	2866	7268	4255	3065		
2112		0	0	0	0	0	0	0	0		
2127	NINTCT	2345	1592	2885	2388	5149	3894	2095	2712		
2128	MFWKCE	1000	500	1000	3000	3000	6000	3066	3354		
2129	SMOOTH CMP	3358 0	3339	1298	2056	562	2315	1548	1038		
2133	PHDLY1	7192	8972	3848	5138	3352	5647	4110	2567		
2134	PHDLY2	8990	12816	8990	6430	8989	12820	12814	8967		
2160	TRQCUP	0	0	0	0	0	0	0	0		
2161	OVC STP	0	0	0	0	0	0	0	0		
2162	UVC2 K1	32766	32765	32762	32764	32763	32765	32765	32765	·	
2164	OVC2 LIMIT	3617	7395	12424	8836	10854	6815	7387	7713		
2165	MAX CURRENT	10	10	10	25	25	45	45	45		
2302	ACCESLM	0	0	0	0	0	0	0	0		
2304	ACDCEBD	0	0	0	0	0	0	0	0	1	
2310	DCIDBS	0	0	0	0	0	0	0	0		
2316	LIMLIM	0	0	0	0	0	0	0	0		
F	Remarks										
				I							
1											

9.2.3 βi Sc Series

βiSc series

	Motor model	β iSc2 4000	β iSc2 4000 404	β iSc4 4000	β iSc4 4000 404	β iSc8 3000	β i Sc8 3000 404	β iSc12 2000	β iSc12 2000 404		
	Motor specification	0061-Bxx7	0061-Bxx7	0063-Bxx7	0063-Bxx7	0075-Bxx7	0075-Bxx7	0077-Bxx7	0077-Bxx7		
PRM NO	Motor ID No. SERVO PRM.	306	310	311	312	283	294	298	300		
2003		00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000)	
2004		00000000	00000000	00000000	00000000	00000000	00000000	00000000	0000000		
2006		00000000	0000000	00000000	00000000	0000000	0000000	0000000	0000000		
2007		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000		
2009		00000000	0000000	00000000	0000000	0000000	0000000	0000000	0000000		
2010		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000		
2012		00000000	00000000	00000000	00000000	0000000	00000000	0000000	00000000)	
2014		00000100	00010000	00000000	00001110	00000000	00001110	00000000	00001110		
2210		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000)	
2300		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000		
2301 2040	CUR GAIN I	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	1	
2041	CUR GAIN P	-1920	-3840	-1920	-3840	-3831	-5600	-3289	-6578	3	
2042	CUR GAIN 3	-1237	-1237	-1253	-1253	-1299	-1299	-1305	-1305	5	
2044	VEL GAIN P	-698	-349	-1008	-504	-1476	-738	-2054	-102	1	
2045	VEL GAIN 3 VEL GAIN 4	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	5	
2047	OBSERVER POA1	-1089	-2178	-753	-1506	5143	-1029	3695	7390		
2048	DPFMX	0	0	0	0	0	0	0)	
2050	OBSERVER POK1	956	956	956	956	956	956	956	956	6	
2051	OVER SPEED	510	510	510	510 5600	510 4200	510 4200	2800	2800		
2053	DB-CMP PPMAX	21	21	21	21	21	21	21	21		
2054 2055	DB-CMP PDDP DB-CMP PHYST	1894	1894	319	1894	1894	1894	1894	319	9	
2056	EMFCMP	0	0	0	0	-2570	0	0)		
2057	D-PHASE CUR	-10250	-10245	-7694	-1400	-3200	-1600	-3884 -4350	-3862	5	
2059	PPBAS	0	0	0	0	0	0	7000	(
2060	EMFLMT	0004	0	0	3041	0	0	1282	304)	
2062	OVC K1	32652	32739	32532	32709	32381	32671	32323	32646	6	
2063	TGALMLV	1400	304	2945	/38	4835	4	5500	1523	1	
2065	OVC LIMIT	4317	1079	8758	2189	14410	3603	16603	4511		
2066	TCMD FILTER	0	0	0	0	0	0	0	(
2068-2073		0	0	0	0	0	0	0 8102	(
2074		0	0	20400	0	0	0	0192	(
2086	RATED CURRENT	1529	764	2178	1089	2780	1390	3126	1563	3	
2007 2003	ROBSTL	0	0	0	0	0	0	0	(
2091-2098		0	0	0	0	0	0	400	400)	
2100	INPA1	0	0	0	0	0	0	0	(
2101	DBL IM	0	0	0	0	0	0	0	()	
2102	ABVOF	0	0	0	0	0	0	0	(
2104	ABISH TORQUE CONST	0	238	0	0 292	0 226	452	315	630		
2106-2109		0	0	0	0	0	0	010	(
2110 2111	MGSICM TOLIM IN DEC	1048	815	780	532 7790	1807	1045	3940	1282	2	
2112	AMRDML	0	0	0	0	0	0	0010	(
2113 2127	HRV FILT NINTCT	0	0 1172	0 796	0 796	0 1442	0 1442	1350	1350)	
2128	MFWKCE	2500	5000	3000	6000	3500	7000	4000	8000		
2129 2130-2132	MFWKBL SMOOTH CMP	3358	3358	3392	3392	1298	1298	280	280)	
2133	PHDLY1	7192	7192	8992	8992	3858	3858	3614	3614	1	
2134 2159	PHDLY2 DGCSMM	8990	8990	12864	9024	8990	8990	8980	43/2	2	
2160	TRQCUP	0	0	0	0	0	0	0	(
2161	OVC STP OVC2 K1	32757	32765	32745	32762	0 32764	32767	32763	32767	7	
2163	OVC2 K2	140	34	294	70	51	12	60	15	5	
2164 2165	MAX CURRENT	2665	666 45	5407 25	1352	8896	2224	10250	2/85	5	
2302	TQLIM AT STOP	0	0	0	0	0	0	0	()	
2304	ACCESLM	0	0	0	0	0	0	0)	
2310	DCIDBS	0	0	0	0	0	0	0	Ċ		
2316	LIMLIM	0	0	0	0	0	0	0	()	
R	emarks										
9.2.4 $\beta i F$ Series

β <i>i</i> F	series

	Motor model	β iF4 3000	β iF4 /3000	β iF8 /2000	β iF8 /2000	β iF12 /2000	β iF12 /2000	β iF22 /2000	β iF22 /2000	β iF30 /1500	
	Motor specification	0051	40A 0051	0052	40A 0052	0053	40A 0053	0054	80A 0054	0055	
PRM NO	Motor ID No. SFRVO PRM	483	484	485	486	487	488	489	490	491	
2003		00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	
2004		00000011	00000011	00000011	00000011	00000011	00000011	00000011	00000011	00000011	
2005		00000000	0000000	00000000	00000000	0000000	0000000	00000000	0000000		
2000		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	
2008		00000000	0000000	00000000	00000000	0000000	0000000	0000000	0000000	0000000	
2009		00000000	0000000	00000000	00000000	0000000	0000000	0000000	0000000		
2010		00000000	00000000	00000000	00000000	00100000	00100000	00000000	00000000	00000000	j j
2012		0000000	00000000	0000000	00000000	0000000	0000000	0000000	0000000	0000000	
2013		0000000	00001110	0000000	00001110	0000000	00001110	0000000	00001110	0000000	
2210		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000)
2211		00001010	00001010	00001010	00001010	00000010	00000010	00001010	00001010	00001010	
2300		00000000	00000000	00000000	00000000	0000000	0000000	00000000	00000000	00000000)
2040	CUR GAIN I	1240	2480	1276	2552	1875	3750	2320	4640	2238	3
2041	CUR GAIN P	-6415	-12830	-6288	-12576	-9137	-18274	-10593	-21186	-13330	
2042	VEL GAIN I	231	115	300	1520	559	280	542	271	332	2
2044	VEL GAIN P	-2068	-1034	-2685	-1342	-5008	-2504	-4851	-2426	-2973	3
2045	VEL GAIN 3	-8235	-8235	-8235	-8235	-8235	-8235	-8235	0	-8236	5
2040	OBSERVER POA1	3670	7339	2827	5654	1516	3031	1565	3129	2553	3
2048	BLACC CMP	0	0	0	0	0	0	0	0	(
2049	OBSERVER POK1	956	956	956	956	956	956	956	956	956	<u>)</u>
2051	OBSERVER POK2	510	510	510	510	510	510	510	510	510)
2052	OVER SPEED	4200	4200	2800	2800	2800	2800	2400	2400	2100)
2053	DB-CMP PDDP	1894	1894	1894	1894	1894	1894	1894	1894	1894	1
2055	DB-CMP PHYST	319	319	319	319	319	319	319	319	319	9
2056	EMFCMP	-5915	-5901	-3854	-3847	-1804	-1798	-2597	-2578	-1549	5
2058	D-PHASE CUR	-1500	-750	-1236	-618	-2500	-1250	-1942	-971	-1300)
2059	PPBAS	0	0	0	0	0	0	0	0	7000	
2060		/282	3641	/282	3641	/282	3641	7282	3641	/282	2
2062	OVC K1	32546	32537	32297	32297	31979	31986	32105	32105	32589	j l
2063		2781	2888	5890	5890	9861	9769	8282	8282	2239) A
2065	OVC LIMIT	7442	1860	14063	3516	20702	5175	18179	4545	5986	ð
2066	ACC FB GAIN	0	0	0	0	0	0	0	0	()
2067	ICMD FILTER	0	0	0	0	0	0	0	0)
2000 2073	AALPH	12288	0	8192	0	8192	0	4096	0	8192	2
2077-2083		0	007	0	0	0	0	0	1000	1400	
2086	RATED GURRENT	0	827	2269	0	2825	1412	2040	1323	1490	
2090	ROBSTL	0	0	0	0	0	0	0	C	()
2091-2098		0	0	0	0	0	0	0	0	100)
2100	INPA1	400	400	400	400	400	400	400	400	400)
2101	INPA2	0	0	0	0	0	0	0	0	(
2102	ABVOF	0	0	0	0	15000	/500	0	0		<u>/ </u>
2104	ABTSH	0	0	0	Ő	0	0	0	Č	(5
2105	IORQUE CONST.	190	380	277	554	350	700	680	1360	1630	<u> </u>
2110 21109	MGSTCM	1289	530	1552	800	0	1280	1548	792	2059	9
2111	TQLIM IN DEC.	3900	3900	3880	3880	2168	2168	2600	2600	2148	3
2112	AMRUML HRV FIIT	0	0	0	0	0	0	0	0		
2127	NINTCT	2544	2544	2380	2380	4150	4150	3695	3695	6680	ś – – – – – – – – – – – – – – – – – – –
2128	MFWKCE	5000	10000	4500	9000	12000	24000	4000	8000	14000	
2129	SMOOTH CMP	0	0	1550	1550	044	044	0	1046	0 539	
2133	PHDLY1	3855	3855	3860	3860	5150	5150	2070	2070	1054	1
2134	PHDLY2	8995	4387	8990	4382	8990	4382	9000	4392	9000)
2159	TRQCUP	0	0	0	0	0	0	0	0	()
2161	OVC STP	0	0	0	0	0	0	0	0) (
2162	0VC2 K1 0VC2 K2	32/55	32/55	32/56	32/56	32/56	32756	32/56	32/56	32/55	7
2164	OVC2 LIMIT	3708	927	7007	1752	10315	2579	9058	2265	2982	2
2165	MAX CURRENT	25	45	25	45	25	45	45	85	85	i
2302	ACCBSLM	0	0	0	0	0	0	0	0		
2305	ACDCEBD	0	0	0	0	0	0	0	0	0	
2310		0	0	0	0	0	0	0	0	(
2310		0	ı 0	0	0	0	<u>1</u> 0	<u>1</u> 0	L C	<u>'</u> (<u>n </u>
R	emarks										

9.3 STANDARD PARAMETERS FOR THE LINEAR MOTORS

Series 90G0 (for Series 30*i*/31*i*/32*i*/35*i*-B, Power Motion *i*-A) Series 90E0 and 90E1 (for Series 30*i*/31*i*/32*i*-A) Series 90D0 (for Series 30*i*/31*i*-A) Series 90C5 and 90C8 (for Series 0*i*-D) Series 90E5 and 90E8 (for Series 0*i*-D)

9.3.1 Linear Motor LiS Series [200V]

Linear motor L*i*S series [200V] (1/2)

	Motor model Motor specification Motor ID No.	LiS300 A1/4 (200V) 0441-B200 351	LiS600 A1/4 (200V) 0442-B200 353	LiS900 A1/4 (200V) 0443-B200 355	LiS1500 B1/4 (200V) 0444-B210 357	LiS3000 B2/2 (200V) 0445-B110 360	LiS3000 B2/4 (200V) 0445-B210 362	LiS4500 B2/2 (200V) 0446-B110 364	LiS4500 B2/4 (200V) 0446-B210 366	LiS6000 B2/2 (200V) 0447-B110 368	LiS6000 B2/4 (200V) 0447-B210 370	LiS7500 B2/2 (200V) 0448-B110 372
PRM NO	SERVO PRM.											
2003 2004 2005 2006 2007 2008 2009 2009		00001000 00000011 00000000 00000000 000000	00001000 00000011 00000000 00000000 000000	00001000 00000011 00000000 00000000 000000	00001000 00000011 00000000 00000000 000000	00001000 00000011 00000000 00000000 000000	00001000 00000011 00000000 00000000 000000	00001000 00000011 00000000 00000000 000000	00001000 00000011 00000000 00000000 000000	00001000 00000011 00000000 00000000 000000	00001000 00000011 00000000 00000000 000000	00001000 00000011 00000000 00000000 000000
2010 2011 2012 2013 2014 2210 2211 2300 2301 2040 2040		00000100 00000000 00000000 00000000 000000	00000100 00000000 00000000 00000000 000000	00000100 00000000 00000000 00000000 000000	00000100 00000000 00000000 00000000 000000	00000100 00000000 00000000 00000000 000000	00000100 00000000 00000000 00000000 000000	00000100 00000000 00000000 00000000 00000100 00001000 1000000	00000100 00000000 00000000 00000000 000000	00000100 00000000 00000000 00000000 000000	00000100 00000000 00000000 00000000 000000	00000100 00000000 00000000 00000000 00000100 00001000 1000000
2041 2042 2043 2044 2045 2046 2047 2048 2049	CUR GAIN P CUR GAIN 3 VEL GAIN 1 VEL GAIN P VEL GAIN 3 VEL GAIN 4 OBSERVER POA1 BLACC CMP DPEMX	-7136 -2618 166 -217 0 -8235 -8755 0 0	0336 -2618 9 9 -122 -122 -8235 -9339 -9339 0 0	0102 2618 13 179 0 8235 8235 6367 0 0	11486 2647 19 260 0 0 8235 4371 0 0	5781 -2667 14 -194 0 -8235 -5866 0 0	-4472 -2660 166 -214 0 -8235 -5321 0 0	-10802 -2696 100 -131 0 -8235 -8705 0 0	-21480 -2689 10 -131 0 -8235 -8705 0	-5255 -2660 13 -169 0 -8235 -6746 0	-10722 -2660 15 -202 0 -8235 -5642 0 0	5532 2696 8 103 0 8235 11014 0 0
2050 2051 2052 2053 2054 2055 2056 2056	DBSERVER POK1 OBSERVER POK2 OVER SPEED DB-CMP PPMAX DB-CMP PDDP DB-CMP PHYST EMFCMP	956 510 0 21 1894 319 -6400	956 510 0 21 1894 319 -6400	956 510 0 21 1894 319 -6400	956 510 0 21 1894 319 0	956 510 0 21 1894 319 0	956 510 0 21 1894 319 0	956 510 0 21 1894 319 0	956 510 0 21 1894 319 0	956 510 0 21 1894 319 0	956 510 0 21 1894 319 0	956 510 0 21 1894 319 -7936
2057 2058 2059 2060 2061 2062 2063 2064 2064 2065	D-PHASE CUR PPBAS TCMD LIMIT EMFLMT OVC K1 OVC K1 OVC K2 TGALMLV OVC LIMIT ACC FD CALN	0 0 5826 120 32720 596 4 589	0 0 0 6554 120 32720 596 4 589	0 0 7282 120 32721 583 4 1326	0 0 7282 120 32698 873 4 2590	0 0 0 7282 120 32711 719 4 2131	0 0 7282 120 32698 873 4 2590	0 0 5462 120 32707 758 4 1199	0 0 55462 120 32707 768 4 1214	0 0 7282 120 32711 719 4 2131	0 0 7282 120 32708 753 4 2233	0 0 4551 120 32707 765 4 832
2000 2067 2068-2073 2074 2077-2083 2086 2087-2089 2090	AGE TO GATH TCMD FILTER AALPH RATED CURRENT ROBSTL	0 0 -24576 0 564 0 0 0	0 0 8192 0 564 0 0 0	0 0 28672 0 847 0 0	0 0 0 0 1184 0 0 0	0 0 0 0 0 1074 0 0 0	0 0 0 0 1184 0 0 0	0 0 20480 0 805 0 0 0	0 0 0 0 0 810 0 0 0	0 0 0 0 0 1074 0 0 0	0 0 0 0 1184 0 0	0 0 -24576 0 671 0 0 0
2091-2098 2099 2100 2101 2102 2103 2103 2104	ONEPSL INPA1 INPA2 DBLIM ABVOF ABTSH	0 400 0 0 0 0 0 0	0 400 0 0 0 0 0 0	0 400 0 0 0 0 0	0 400 0 0 0 0 0 0	0 400 0 0 0 0 0 0	0 400 0 0 0 0 0	0 400 0 0 0 0 0 0	0 400 0 0 0 0 0 0	0 400 0 0 0 0 0	0 400 0 0 0 0 0	0 400 0 0 0 0 0
2105 2106-2109 2110 2111 2112 2113 2127 2128 2129 2130-2132	MGSTCM DETQLM AMRDML HRV FILT NINTCT MFWKCE MFWKBL SMOOTH CMP	0 793 0 0 0 0 0 0 0 0 0 0 0 0 0 0	137 0 792 0 0 0 0 0 0 0 0 0 0 0 0	137 0 786 0 0 0 0 0 0 0 0 0 0 0	227 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	502 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	455 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				911 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2132 2133 2134 2159 2160 2161 2162 2163 2164 2165 2165	PHDLY1 PHDLY1 DGCSMM TRQCUP OVC STP OVC2 K1 OVC2 K1 OVC2 LIMIT MAX CURRENT	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2302 2304 2305 2310 2316 When wate: 2062 2063 2065	ACCBSLM ACCEBL DC1DBS L1ML1M rcooling is used, mc POVC1 POVC2 POVC2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 1 listed above to 32490 3481 10358	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2086 2161 2162 2163 2164	RATED CURRENT OVCSTP POVC21 POVC22 POVCLMT2 Remarks	1129 - - - -	1129 		2368 - - - - -		2368 - - - - -	1611 - - - -		2148 - - - -	2368 140 - - -	

9.PARAMETER LIST

Linear motor L*i*S series [200V] (2/2)

	Motor model	LiS7500 B2/4 (200V)	L i S9000 B2/2 (200V)	LiS9000 B2/4 (200V)	LiS3300 C1/2 (200V)	L i S9000 C2/2 (200V)	LiS11000 C2/2 (200V)	LiS11000 C2/4 (200V)	LiS15000 C2/2 (200V)	LiS15000 C2/3 (200V)	LiS10000 C3/2 (200V)	LiS17000 C3/2 (200V)
	Motor specification	0448-B210 374	0449-B110 376	0449-B210 378	0451-B110 380	0454-B110 384	0455-B110 388	0455-B210 390	0456-B110 392	0456-B210 394	0457-B110 396	0459-B110 400
PRM NO	SERVO PRM.	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00000000	00001000
2003		00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	0000000	00001000
2005		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
2007		00000000	00000000	00000000	00000000	00000000	00000000	0000000	00000000	0000000	00000000	00000000
2008		0000000	0000000	0000000	00000000	0000000	0000000	00000000	0000000	0000000	0000000	0000000
2010		00000100	00000100	00000100	00000100	00000100	00000100	00000100	00000100	00000100	00000100	00000100
2012		0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000
2013		00001000	00000110	00001010	00000000	00000000	00000000	00000000	00001010	0000000	0000000	0000000
2210		00000100	00000100	00000100	00000100	00000100	00000100	00000000	00000100	00000100	00000100	00000100
2300		10000000	10000000	10000000	10000000	10000000	10000000	10000000	10000000	10000000	10000000	10000000
2301 2040	CUR GAIN I	00000000 946	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000 2182
2041	CUR GAIN P	-6400	-7877	-7099	-6448	-3839	-3377	-18246	-13440	-3379	-1761	-8540
2042	VEL GAIN I	-1331	12	10	-2095	-2090	10	-2093	-2003	-2057	10	-2090
2044 2045	VEL GAIN P	-101	-158	-141	-126	-110	-136	-121	-87	-128	-141	-99
2046	VEL GAIN 4	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235
2047	BLACC CMP	-11240	-/199	-8099	-9048	-10377	-8363	-9409	-13022	-8861	-8077	-11497
2049	DPFMX OBSERVER POK1	056	056	056	056	056	056	056	056	0	056	056
2050	OBSERVER POK2	510	510	510	510	510	510	510	510	510	510	510
2052	OVER SPEED DB-CMP PPMAX	21	21	21	21	21	21	21	21	21	21	21
2054	DB-CMP PDDP	1894	1894	1894	1894	1894	1894	1894	1894	1894	1894	1894
2055	EMFCMP	-7680	0	0	0	0	0	0	0	0	0	0
2057	D-PHASE CUR	0	0	0	0	0	0	0	0	0	0	0
2059	PPBAS	0	0	0	0	0	0	0	0	0	0	0
2060	EMFLMT	4046	120	4855	5462	6372	1282	120	4855	1282	1282	6887
2062	OVC K1	32687	32707	32696	32708	32729	32723	32729	32729	32732	32722	32711
2064	TGALMLV	4	4	4	49	409	4	492	403	452	4	4
2065 2066	OVC LIMIT ACC FB GAIN	799	1199	1151	1184	1112	1661	1311	621	1340	1719	981
2067	TCMD FILTER	0	0	0	0	0	0	0	0	0	0	0
2008-2073	AALPH	20480	0	0	0	-16384	-24576	0	0	0	-24576	20480
2077-2083	RATED CURRENT	658	805	0 789	801	0 776	948	842	579	0 852	964	0 729
2087-2089	DODOTI	0	0	0	0	0	0	0	0	0	0	0
2090	RUBSTL	0	0	0	0	0	0	0	0	0	0	0
2099	ONEPSL INPA1	400	400	400	400	400	400	400	400	400	400	400
2101	INPA2	0	0	0	0	0	0	0	0	0	0	0
2102 2103	ABVOF	0	0	0	0	0	0	0	0	0	0	0
2104	ABTSH TOROUE CONST	2051	2010	2051	0	2087	2087	2348	0	0	0	0
2105-2109		0	0	0	0	0	0	0	4050	0	0	0
2110 2111	MGSTCM	0	0	0	0	0	0	0	0	0	0	0
2112	AMRDML	0	0	0	0	0	0	0	0	0	0	0
2113	NINTCT	0	0	0	0	0	0	0	0	0	0	0
2128	MFWKCE	0	0	0	0	0	0	0	0	0	0	0
2129	SMOOTH CMP	0	0	0	0	0	0	0	0	0	0	0
2133 2134	PHDLY1 PHDLY2	0	0	0	0	0	0	0	0	0	0	0
2159	DGCSMM	0	0	0	0	0	0	0	0	0	0	0
2160	OVC STP	0	0	0	0	0	0	0	0	0	0	0
2162	0VC2 K1	0	0	0	0	0	0	0	0	0	0	0
2164	OVC2 LIMIT	0	0	0	0	0	0	0	0	0	0	0
2165	MAX CURRENT TOLIM AT STOP	365	165	365	85	165	165	365	365	365	165	365
2304	ACCBSLM	0	0	0	0	0	0	0	0	0	0	0
2305	DCIDBS	0	0	0	0	0	0	0	0	0	0	0
2316		0	0	0	0	0	0	0	0	0	0	0
2062	POVC1	aity the follow 32446	ing parameters 32526	trom the values	listed above to 32529	those listed be	10w. 32589	32598	32558	32572	32583	32542
2063	POVC2 POVCLMT	4026	3023	3570	2987 4738	1953	2236	2119	2623	2455 7296	2314	2829 3925
2086	RATED CURRENT	1316	1611	1579	1602	1552	1897	1685	1352	1988	1929	1458
2161 2162	POVCS1P	-	-	-	-	-	-	-	-	140	-	-
2163	POVC22	-	-	-	-	-	-	-	-	-	-	-
F	Remarks											-
-												

9.3.2 Linear Motor LiS Series [400V]

Linear motor L*i*S series [400V] (1/2)

	Motor model Motor specification	LiS1500 B1/4 (400V) 0444-B210	LiS3000 B2/2 (400V) 0445-B110	LiS4500 B2/2HV (400V) 0446-B010	LiS4500 B2/2 (400V) 0446-B110	LiS6000 B2/2HV (400V) 0447-B010	LiS6000 B2/2 (400V) 0447-B110	LiS7500 B2/2HV (400V) 0448-B010	Li \$7500 B2/2 (400V) 0448-B110	Li S9000 B2/2 (400V) 0449-B110	LiS3300 C1/2 (400V) 0451-B110	L i S9000 C2/2HV (400V) 0454-B010
PRM NO	Motor ID No. SERVO PRM.	308	301	303	300	307	309	3/1	3/3	311	381	383
2003		00001000	00000000	00001000	00001000	0000000	00001000	00001000	00001000	00000000	00001000	00001000
2004		00000011	00000011	00000011	00000011	00000011	00000011	00000011	00000011	00000011	00000011	00000011
2005		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
2007		00000000	00000000	00000000	00000000	0000000	00000000	00000000	00000000	00000000	00000000	00000000
2008		0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000
2009		0000000	00000000	00000000	00000000	00000000	00000000	00000000	0000000	00000000	00000000	00000000
2011		0000000	0000000	00000000	0000000	0000000	0000000	0000000	0000000	00000000	0000000	0000000
2012		0000000	0000000	00000000	00000000	00000000	0000000	0000000	00000000	00000000	00000000	0000000
2010		00000000	00000000	00000000	00000000	00000110	00000000	00000000	00001000	00000010	00000000	00000000
2210		00000100	00000100	00000100	00000100	00000100	00000100	00000100	00000100	00000100	00000100	00000000
2300		10000000	10000000	10000000	10000000	10000000	10000000	10000000	10000000	10000000	10000000	10000000
2301		0000000	0000000	0000000	00000000	0000000	0000000	0000000	0000000	00000000	00000000	0000000
2040	CUR GAIN I	-2068	-3127	-6505	-4726	-9936	-4195	-6205	-6625	-4701	-3246	-13899
2042	CUR GAIN 3	-2689	-1330	-2697	-2696	-1330	-2696	-2697	-2696	-1330	-2695	-1321
2043	VEL GAIN I	-260	14		-131	7	-160	9	7	9	9	-108
2044	VEL GAIN 3	0	0	0	0	0	0	0	0	0	0	0
2046	VEL GAIN 4	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235
2047	BLACC CMP	-43/1	-5600	-7058	-6705	-110/0	-0/40	-9690	0	-6929	-9048	-10490
2049	DPFMX	0	0	0	0	0	0	0	0	0	0	0
2050	OBSERVER POKI	956	956	956	956	956	956	956	956	956	956	956
2052	OVER SPEED	0	0	0	0	0	0	0	0	0	0	0
2053	DB-CMP PPMAX DB-CMP PDDP	21	21	1894	21	21	21	1894	21	21	21	21
2055	DB-CMP PHYST	319	319	319	319	319	319	319	319	319	319	319
2056	EMFCMP D-PHASE CUR	0	0	0	0	-/680	0	0	0	-9216	0	0
2058	D-PHASE CUR	0	0	0	0	0	0	0	0	0	0	0
2059	PPBAS	7282	7282	6554	5462	4360	7282	5462	0	5259	5462	6372
2060	EMFLMT	1202	1202	120	120	120	1202	120	120	120	120	120
2062	OVC K1	32698	32711	32714	32707	32749	32711	32714	32709	32709	32708	32729
2064	TGALMLV	4	4	4	4	4	4	4	4	4	4	403
2065	OVC LIMIT	2590	2131	1549	1199	688	2131	1075	858	947	1184	1112
2067	TCMD FILTER	0	0	0	0	Ő	0	0	0	0	0	0
2068-2073		0	20480	20480	0	20480	0	20480	0	20480	0	0
2077-2083		0	0	0	0	0	0	0	0	0	0	0
2086	RATED CURRENT	1184	10/4	915	805	610	10/4	/63	6/1	/16	801	//6
2090	ROBSTL	0	0	0	0	0	0	0	0	0	0	0
2091-2098	ONEPSL	400	400	400	400	400	400	400	400	400	400	400
2100	INPA1	0	0	0	0	0	0	0	0	0	0	0
2101 2102	DBL IM	0	0	0	0	0	0	0	0	0	0	0
2103	ABVOF	0	0	0	0	0	0	0	0	0	0	0
2104	ABISH TORQUE CONST.	227	502	884	1005	1768	1005	1768	2261	2261	741	2111
2106-2109	HOOTON	0	0	0	0	0	0	0	0	0	0	0
2110	MGSTCM DETQLM	0	0	0	0	0	0	0	0	0	0	0
2112	AMRDML	0	0	0	0	0	0	0	0	0	0	0
2113 2127	HRV FILI NINTCT	0	0	0	0	0	0	0	0	0	0	0
2128	MFWKCE	0	0	0	0	0	0	0	0	0	0	0
2129	SMOOTH CMP	0	0	0	0	0	0	0	0	0	0	0
2133	PHDLY1	0	0	0	0	0	0	0	0	0	0	0
2134	DGCSMM	0	0	0	0	0	0	0	0	0	0	0
2160	TRQCUP	0	0	0	0	0	0	0	0	0	0	0
2161	OVC STP OVC2 K1	0	0	0	0	0	0	0	0	0	0	0
2163	OVC2 K2	0	0	0	0	0	0	0	0	0	0	0
2164	MAX CURRENT	45	45	45	85	85	85	0	185	185	85	0
2302	TQLIM AT STOP	0	0	0	0	0	0	0	0	0	0	0
2304	ACCESLM	0	0	0	0		0	0	0	0	0	0
2310	DCIDBS	0	0	0	0	0	0	0	0	0	0	0
2316		0	0	0 6	0	0 <u>(</u>	0	0	0	0	0	0
2062 when water	POVC1	aity the follow 32490	ing parameters 32539	170m the values 32551	ansted above to 32526	unose listed be 32521	10W. 32539	32551	32532	32533	32529	32614
2063	POVC2	3481	2867	2718	3023	3085	2867	2713	2949	2940	2987	1925
2065	RATED CURRENT	10358	8523	6194	4/94	2/53	2148	4301	2631	3/88	4/38	4383
2161	OVCSTP	-	-	-	-	-	-	-	-	140	-	-
2162 2163	POVC21 POVC22	-	-	-		-	-	-	-	-	-	-
2164	POVCLMT2	-	-	-	-	-	-	-	-	-	-	-
R	lemarks											

9.PARAMETER LIST

Linear motor L*i*S series [400V] (2/2)

	Motor model	LiS9000 C2/2 (400V)	LiS11000 C2/2HV (400V)	LiS11000 C2/2 (400V)	LiS15000 C2/3HV (400V)	LiS15000 C2/2 (400V)	LiS10000 C3/2HV (400V)	LiS10000 C3/2 (400V)	LiS17000 C3/2HV (400V)	LiS17000 C3/2 (400V)		
	Motor specification	0454-B110 385	0455-B010 387	0455-B110 389	0456-B010 391	0456-B110 393	0457-B010 395	0457-B110 397	0459-B010 399	0459-B110 401		
PRM NO	SERVO PRM.	00001000	00001000	00001000	00001000	00000000	00001000	00001000	00000000			
2003		00001000	00001000	00001000	00001000	00000000	00001000	00001000	0000000	00001000		
2005 2006		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000		
2007		0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000		
2009		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000		
2010		00000000	00000000	00000000	00000000	00000000	00000100	00000000	0000000	00000100		
2012 2013		00000000	00000000	00000000	00000000	00000000	000000000000000000000000000000000000000	00000000	00000000	00000000		
2014		00000000	00000000	00000000	00000000	00000000	00000100	00000000	0000000	00000000		
2211		00001000	00001000	00001000	00001000	00000000	00001000	00000000	00000000	00000000		
2300		0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000		
2040 2041	CUR GAIN I CUR GAIN P	910 -4971	605 -3361		989 -6312	1243	3010 -6519	839 -4103	709 	253 -3693		
2042	CUR GAIN 3 VEL GAIN I	-2696	-2694	-2695	-2695	-2697	-2695	-2695	-1330	-2696		
2044	VEL GAIN P	-98	-136	-121	-131	-87	-129	-125	-99	-99		
2045	VEL GAIN 3	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235		
2047 2048	OBSERVER POA1 BLACC CMP	-11674 0	-8363	-9409	<u>-8681</u> 0	-13022	-8849	086 0	<u>-11497</u> 0	-11497		
2049 2050	DPFMX OBSERVER POK1	0 956	0 956	0 956	0 956	0 956	0 956	0 956	0	0 956		
2051	OBSERVER POK2	510	510	510	510	510	510	510	510	510		
2053	DB-CMP PPMAX	21	21	21	21	21	21	21	21	21		
2054 2055	DB-CMP PDDP DB-CMP PHYST	319	319	319	319	319	319	319	319	319		
2056 2057	EMFCMP D-PHASE CUR	0	0	0	0	0	0	0	-12032	0		
2058	D-PHASE CUR	0	0	0	0	0	0	0	0	0		
2060	TCMD LINIT	5663	7282	6877	7282	4855	7282	6877	5259	6877		
2061	OVC K1	32728	32723	32730	32730	32729	32722	32720	32711	32711		
2063 2064	OVC K2 TGALMLV	494	560	474	471	483	576	597	709	709		
2065 2066	OVC LIMIT ACC FB GAIN	879 0	1661 0	1312	1396 0	621 0	1707	1358	981 0	981		
2067	TCMD FILTER	0	0	0	0	0	0	0	0	0		
2074	AALPH	0	-24576	0	0	0	-4096	20480	-24576	20480		
2077-2083 2086	RATED CURRENT	689	948	843	869	578	961	857	729	729		
2087-2089 2090	ROBSTL	0	0	0	0	0	0	0	0	0		
2091-2098 2099	ONEPSI	0 400	0	0	0 400	0	0	0	0	0		
2100	INPA1	0	0	0	0	0	0	0	0	0		
2102	DBLIM	0	0	0	0	0	0	0	0	0		
2103	ABTSH	0	0	0	0	0	0	0	0	0		
2105 2106-2109	TORQUE CONST.	2348	2087	2348	3104	4566 0	2043	2098	419/	419/		
2110 2111	MGSTCM Detqlm	0	0	0	0	0	0	0	0	0		
2112	AMRDML HRV FILT	0	0	0	0	0	0	0	0	0		
2127		0	0	0	0	0	0	0	0	0		
2129	MFWKBL	0	0	0	0	0	0	0	0	0		
2130-2132 2133	PHDLY1	0	0	0	0	0	0	0	0	0		
2134 2159	PHDLY2 DGCSMM	0	0	0	0	0	0	0	0	0		
2160	TRQCUP OVC_STP	0	0	0	0	0	0	0	0	0		
2162	OVC2 K1	0	0	0	0	0	0	0	0	0		
2163	OVC2 K2 OVC2 LIMIT	0	0	0	0	0	0	0	0	0		
2165 2302	MAX CURRENT TQLIM AT STOP	185	85	185	185	365	85	185	185	365		
2304 2305	ACCBSLM ACDCEBD	0	0	0	0	0	0	0	0	0		
2310	DCIDBS	0	0	0	0	0	0	0	0	0		
When water	cooling is used, mo	dify the followi	ing parameters	from the values	listed above to	those listed be	low.	0	0	0	(
2062 2063	POVC1 POVC2	32610 1972	32589	32616	32563		32584	32577	32542	32542		
2065 2086	POVCLMT RATED CURRENT	3514	6644	5250 1686	7601 2029		6828 1923	5432	3925 1458	3925 1458		
2161	OVCSTP POVC21	-	-	140	140		-	140	-	-		
2163	POVC22	-	-	-	-		-	-	-	-		
2164 R	emarks	-	-	-	-		-	-	-	-		

9.4 STANDARD PARAMETERS FOR THE SYNCHRONOUS BUILT-IN SERVO MOTORS

Series 90G0 (for Series 30*i*/31*i*/32*i*/35*i*-B, Power Motion *i*-A) Series 90E0 and 90E1 (for Series 30*i*/31*i*/32*i*-A) Series 90D0 (for Series 30*i*/31*i*-A) Series 90C5 and 90C8 (for Series 0*i*-D) Series 90E5 and 90E8 (for Series 0*i*-D)

9.4.1 Synchronous Built-in Servo Motor D*i*S Series [200V]

Synchronous built-in servo motor DiS series [200]	/1 /	(1/4)

	Oyn	Motor model	Di S400 250 (200V)	Di S22 600 (200V)	Di S85 400 (200V)	DiS110 300 (200V)	Di S260 300 (200V)	DiS260 600 (200V)	DiS370 300 (200V)	Di \$800 250 (200V)	DiS1200 250 (200V)	DiS1500 200 (200V)	DiS2100 150 (200V)
		Motor specification Motor ID No.	0485-B20x 419	0482-B10x 421	0483-B20x 423	0484-B10x 425	0484-B30x 427	0484-B31x 429	0484-B40x 431	0485-B40x 433	0485-B50x 435	0486-B30x 437	0487-B30x 439
PRM 1 2003	NO	SERVO PRM.	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000
2004 2005			00000011	00000011	00000011	00000011	00000011	00000011	00000011	00000011	00000011	00000011	00000011
2006			00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
2008			00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
2010			00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
2012 2013 2014			00000000	00000000	00000000	00000000	00000000	00001000	00000000	00001000	00001000	00000000	00000000
2210			00000100	00000100	00000100	00000100	00000100	00000100	00000100	00000100	00000100	00000100	00000100
2300 2301			10000110 00000000	10000110 00000000	10000100 00000000	10000100 00000000	10000100 00000000	10000100 00000000	10000100 00000000	10000100 00000000	10000100 00000000	10000100 00000000	10000100 00000000
2040 2041		CUR GAIN I CUR GAIN P	494 -1949	621 -2202	344 -2368	156 -1045	313 -2146	571 -4138	478 -3338	738 -2500	517 -3361	640 -4779	637 -4762
2042 2043		CUR GAIN 3 VEL GAIN I	-2943	-2946	-2491 242	-2448	-2485	-2573 240	-2515	-2996	-2408 430	-2619 839	-2620
2044 2045		VEL GAIN P VEL GAIN 3	-3/13	-1410	-2164	-3/63	-2919	-2146	-2361	-3461	-3850	-/513	-15//0
2040		OBSERVER POA1	2271	5982	3897	2241	2889	3931	3572	2437	2190	1122	535
2040		DPFMX OBSERVER POK1	0	0	0	0	0	0	0	0	0	0	0
2051 2052		OBSERVER POK2 OVER SPEED	510 0	510 0	510 0	510	510	510 0	510 0	510 0	510 0	510	510
2053 2054		DB-CMP PPMAX DB-CMP PDDP	21 1894	21	21	21	21 1894	21	21 1894	21 1894	21 1894	21 1894	21 1894
2055		DB-CMP PHYSI EMFCMP	319	319	319	319	319	319	319	319	319	319	319
2057		D-PHASE CUR D-PHASE CUR DDRAS	0	0	0	0	0	0	0	0	0	0	0
2060 2060 2061		TCMD LIMIT EMFLMT	7282	7282	7282	7282	7282	5352	7282	5648 0	5648	7282	7282
2062 2063		OVC K1 OVC K2	32743 308	32689 988	32683 1069	32682 1069	32682 1069	32679 1111	32705 782	32713 690	32677 1113	32682 1069	32682 1069
2064 2065		TGALMLV OVC LIMIT	4 903	4 2826	4 3172	4 3173	4 3173	4	4	4	4 1940	4 3173	4 3173
2066	2072	ACC FB GAIN TCMD FILTER	0	0	0	0	0	0	0	0	0	0	0
2008	-2073	AALPH	20480	20480	0	0	0	0	0	0	0	0	0
2086 2087-	-2089	RATED CURRENT	753	1237	1310	1310	1310	963 0	1121	868	1028	1310	1310
2090 2091	-2098	ROBSTL	0	0	0	0	0	0	0	0	0	0	0
2099 2100		ONEPSL INPA1	400	400	400	400	400	400	400	400	400	400	400
2101 2102		DBLIM ABVOE	0	0	0	0	0	0	0	0	0	0	0
2103		ABTSH TOROUE CONST	0	0	0	0	0	0	0	0	0	0	0
2106- 2110	-2109	MGSTCM	0000	0	0	0	0070	0	0020	0	0	0	0
2111 2112		DETQLM AMRDML	1535 0	8568 0	0	0	0	0	0	0	0	0	0
2113 2127		HRV FILT NINTCT	0	0	0	0	0	0	0	0	0	0	0
2128 2129	0100	MFWKCE MFWKBL	167/6	0	0	0	0	0	0	0	0	0	0
2130- 2133 2134	-2132	PHDLY1 PHDLY2		0	0	0		0	0	0		0	0
2159		DGCSMM TRQCUP	0	0	0	0	0	0	0	0	0	0	0
2161 2162		OVC STP OVC2 K1	120	0	0	0	0	0	0	0	0	0	0
2163 2164		OVC2 K2 OVC2 LIMIT	0	0	0	0	0	0	0	0	0	0	0
2165 2302		MAX CURRENT TQLIM AT STOP	85	25	45	85	85	165	85	165	165	165	165
2304 2305 2310		ACDCEBD	0	0	0	0	0	0	0	0	0	0	0
2316 When	n liquid	LIMLIM cooling is used, mo	odify the follow	0 /ing parameters	from the value	0 s listed above to	those listed be	low.	0	0	0	0	0
2062 2063		POVC1 POVC2	32646 1528	32523 3069	32427 4258	32427 4260	32427 4260	32360 5100	32518 3121	32529 2989	32352 5196	32427 4259	32427 4259
2065 2086		POVCLMT RATED CURRENT	4290	8170 2104	12689 2621	12694 2621	12694 2621	6848 1926	9287 2242	4801	2033	12692 2621	12693 2621
2161 2162 2162		POVC21 POVC22	-	-	-	-	-		-	- 107			
2163		POVCLMT2	-	-	-	-	-	-	-	-	-	-	-
	R	emarks *5	*5 Supporting s	*5 ervo software	e is required								

Synchronous built-in servo motor D*i*S series [200V] (2/4)

	Motor model	DiS3000 150 (200V)	DiS85 1000 (200V)	DiS110 1000 (200V)	Di S260 1000 (200V)	DiS22 1500 (200V)					
	Motor specification	0487-B40x	0483-B22x	0484-B12x	0484-B32x	0482-B12x					
PRM NO	SERVO PRM.	441	443	445	447	443					
2003 2004		00001000 00000011	00001000 00000011	00001000 00000011	00001000 00000011	00001000					
2005		00000000	0000000	0000000	0000000	0000000					
2007		00000000	00000000	00000000	00000000	00000000					
2008		00000000	0000000	0000000	0000000	0000000					
2010 2011		00000000	00000000	00000000	00000000	000000000000000000000000000000000000000					
2012		0000000	00000000	00000000	00000000	00000000					
2014		00000000	00000000	00000000	00000000	00000000					
2210 2211		00000100	00000100	0000100	00000100	00000100					
2300 2301		10000100	10000110	10000110	10000110	10000110					
2040	CUR GAIN I	817	480	301	290	562					
2042	CUR GAIN 3	-2616	-3002	-3024	-3016	-2948					
2043 2044	VEL GAIN I	-14643	-1971	-2614	-2178	-1811					
2045 2046	VEL GAIN 3 VEL GAIN 4	-8235	-8235	-8235	-8235	-8235					
2047	OBSERVER POA1	576	4278	3227	3871	4657					
2049	DPFMX	0	0	0	0	0					
2050 2051	OBSERVER POKI OBSERVER POK2	956 510	956 510	956 510	956 510	956 510					
2052 2053	OVER SPEED DB-CMP PPMAX	0 21	0	21	0	0					
2054	DB-CMP PDDP DB-CMP PHYST	1894	1894	1894	1894	1894					
2056	EMFCMP	010	013	015	013	013					
2057 2058	D-PHASE CUR D-PHASE CUR	0	-12846 -2731	-20535	-10266 -1821	-1/944 -2257					
2059 2060	PPBAS TCMD LIMIT	0 7282	0	0 7282	0	0 7282					
2061	EMFLMT	32682	0	0	32580	0					
2063	OVC K2	1069	5276	4174	2354	4109					
2064 2065	OVC LIMIT	4 3173	4 15735	12437	6423	4 10559					
2066 2067	ACC FB GAIN	0	0	0	0	0					
2068-2073		0	0	0	0	0					
2074 2077–2083	AALFI	0	20480	0192	0192	0					
2086 2087-2089	RATED CURRENT	1310	<u>2919</u> 0	2595	1865	2576					
2090 2091–2098	ROBSTL	0	0	0	0	0					
2099	ONEPSL	400	400	400	400	400					
2100	INPAT INPAT	0	0	0	0	0					
2102 2103	ABVOF	0	0	0	0	0					
2104 2105	ABTSH TORQUE CONST	0 3667	0	0 2175	0 4784	0					
2106-2109	NOSTON	0	0	0	0	0					
2110	DETQLM	0	11647	14212	11620	16720					
2112 2113	AMRDML HRV FILT	0	0	0	0	0					
2127 2128	NINTCT MFWKCE	0	0 10500	0 15000	0 9800	0 6500					
2129	MFWKBL	0	278	533	287	792					
2130-2132	PHDLY1	0	0	0	0	30735					
2134 2159	DGCSMM	0	0	0	0	10270					
2160 2161	TRQCUP OVC_STP	0	0	0	0	0					
2162	0VC2 K1	0	0	0	0	0					
2163	OVC2 K2 OVC2 LIMIT	0	0	0	0	0					
2165	MAX CURRENT TQLIM AT STOP	165 0	45 0	85	165	25 0					
2304 2305	ACCBSLM	0	0	0	0	0					
2310	DCIDBS	0	0	0	0	0					
When liquid	cooling is used, mo	odify the follow	ing parameters	from the values	listed above to	those listed be	low.				
2062	POVCI POVC2	32427	-	-	-	-					
2065 2086	POVCLMT RATED CURRENT	12693 2621	-								
2161	OVCSTP POVC21	162	-	-	-	-					
2163	POVC22	-	-	-	-	-					
2164	PUVCLM12	-	-	E '							
K	cindi No *50		*0	*0	*0	*0	I			1	

9.PARAMETER LIST

Synchronous built-in servo motor D*i*S series [200V] (3/4)

	Motor model	DiS15 1000 (200V)	Di S60 400 (200V)	Di S70 300 (200V)	DiS150 300 (200V)	DiS200 300 (200V)	DiS250 250 (200V)	DiS500 250 (200V)	DiS1000 200 (200V)	DiS1500 100 (200V)	Di S2000 100 (200V)	DiS2000 150 (200V)
	Motor specification Motor ID No.	551	553	555	557	559	561	563	565	567	569	571
2003	SERVU PRM.	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000
2004		00000011	00000011	000000011	00000011	00000001	0000000	00000011	0000000	0000000	00000001	00000011
2006		0000000	00000010	00000010	00000010	00000010	00000000	00000000	00001010	00001010	00001010	00001010
2008		0000000	00000000	0000000	00000000	00000000	0000000	000000000000000000000000000000000000000	00000000	0000000	00000000	0000000
2010 2011		00000000	00000000	00000000	00000000	00000000	0000000	000000000000000000000000000000000000000	00000000	0000000	00000000	00000000
2012 2013		00000000	00000000	00000000 00000110	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000000	000000000000000000000000000000000000000	00000000	0000000	00000000	000000000000000000000000000000000000000
2014 2210		000000000000000000000000000000000000000	00001000	00000110	00000110	00000110	00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000	000000000000000000000000000000000000000	00000100
2211 2300		00011000 10000110	00001000 10000110	00001000 10000110	00001000 10000110	00011000 10000110	00001000	00001000	00011000	00011000	00011000	00001000 10000110
2301 2040	CUR GAIN I	00000000 309	00000000	00000000 296	00000000 379	00000000 451	0000000	00000000	10010100	1000000	1000000	1000000 448
2041 2042	CUR GAIN P CUR GAIN 3	-1713 -3067	-3794 -3102	-2764 -3117	-3215 -3128	-3966 -3135	-2458 -3129	-2569	-2352 -3173	-3676 -3176	-5353 -3177	-3457 -3177
2043 2044	VEL GAIN I VEL GAIN P	69 -618	86 -772	180 -1614	149 -1331	141 -1261	334 -2996	297 -2664	558 -4997	760 -6812	689 -6171	620 -5554
2045 2046	VEL GAIN 3 VEL GAIN 4	0 -8235	0 -8235	0 -8235	0 -8235	0 -8235	0 -8235	0 0	0	0 -8235	0	0 -8235
2047 2048	OBSERVER POA1 BLACC CMP	13637 0	10929	5224 0	6336 0	6686 0	2815	3165	1688	1238	1367	1518 0
2049 2050	DPFMX OBSERVER POK1	0 956	0	0 956	0 956	0 956	0 956	0	0 956	0 956	0 956	0 956
2051 2052	OBSERVER POK2 OVER SPEED	510 720	510 240	510 180	510	510	510	510	510	510	510	510
2053 2054	DB-CMP PPMAX DB-CMP PDDP	21 1894	21	21	21 1894	21	21	21	21	21	21	21 1894
2055 2056	DB-CMP PHYST EMFCMP	319 0	319 0	319 0	319 0	319 0	319 0	319 0 0	319 0	319 0	319 0	319 0
2057 2058	D-PHASE CUR D-PHASE CUR	0	0	0	0	0	0	0	0	0	-1038 -489	0
2059 2060	PPBAS TCMD LIMIT	0 7282	0 5462	0 6190	0 6190	0 6190	07282	0 0	0	07282	0 7282	0 6473
2061 2062	EMFLMT OVC K1	0 32675	0 32675	0 32684	0 32714	0 32721	0 32707	0 0 32723	0 0 32677	0 32682	0 32709	0 32707
2063 2064	OVC K2 TGALMLV	1160 4	1160 4	1056	679 4	590 4	761	567	1135	1078	740	763
2065 2066	OVC LIMIT ACC FB GAIN	3300 0	1856 0	2178 0	1419	1237	2196 0	1646 0 0	3231 0	3076 0	2136 0	1739 0
2067 2068-2073	TCMD FILTER	0	0	0	0	0	0	0 0	0	0	0	0
2074 2077-2083	AALPH	-20480 0	-32768	-24576	-20480 0	-4096	-4096	20480 0 0	-20480	28672	24576	12288
2086 2087-2089	RATED CURRENT	1440 0	845	1005	944	881	1175 0	1062 0	1421	1390	1176 0	1045 0
2090 2091-2098	ROBSTL	0	0	0	0	0	0	000000000000000000000000000000000000000	0	0	0	0
2099 2100	ONEPSL INPA1	400	400	400	400	400	400	400 0 0	400	400	400	400
2101 2102	DBLIM	0	0	0	0	0	0		0	0	0	0
2103	ABTSH	0	0	0	0	0	0		0	0	0	0
2105	TURQUE CUNST.	012	2800	3521	1830	0	10329	0 20150	00040	0040	0040	0010
2110	DETQLM	2305	6174	5173	5173	2625	3890	2049	2049	2049	1249	2049
2112 2113	HRV FILT	0	0	0	0	0	0		0	0	0	0
2127	MFWKCE	16000	4000	0	4000	6000	7000	5000	10000	5000	15000	10000
2129 2130-2132	SMOOTH CMP	0	0138	0	0	0	0		0	042	0	0
2134	PHDLY2	0	0	0	0	0	0	0	0	0	0	0
2160		0	0	0	0	0	0			0	0	0
2162	0VC2 K1	0	0	0	0	0	0			0	0	0
2164	OVC2 LIMIT	0	0	0	0	0	0	0	0	0	0	0
2302	TQLIM AT STOP	0	0	0	0	0	00	0	0	0	0	0
2305	ACDCEBD	72	0	0	0	36	0	0	24	12	12	0
2316 2574	LIMLIM	0	0	0	0	0	0		0	0	0	0
When liquic 2062	l cooling is used, mo POVC1	odify the follow 32401	ing parameters 32275	from the values	listed above to 32391	those listed be	low. When a 2- 32487	axis amplifier (32454 (32465)	xiSV160/160 is 32344 (32465)	used, set the va 32384 (32453)	lues enclosed in 32366 (32465)	parentheses. 32369
2063	POVC2 POVCLMT	4589 11603	6169 8321	3986 7432	4717 8580	5004 9014	3513	3923 (3783) 10144 (9830)	5300 (3782) 13083 (9827)	4796 (3942) 12041 (10187)	5019 (3782) 12508 (9827)	4992 9838
2086 2161	RATED CURRENT OVCSTP	2700 125	2294 127	2159 120	2201 120	2201	2201	2606 (2259) 110	2606 (2259) 110	2606 (2259)	2606 (2259) 110	2492 110
2162 2163	POVC21 POVC22	32601 2091	32581 2337	32629 1735	32599 2118	32594 2172	32623 1813	32596 (32600) 3 2156 (2103)	32686 (32700) 1027 (852)	32686 (32700) 1024 (853)	32713 (32705) 687 (789)	32705 792
2164	POVCLMT2 Remarks	8308 *2 *5	5958 *5	*5	*5	*2 *5	6595 *5	×5	9367 (7036) *2, *3 *5	8621 (7294) *2, *3* 5	8955 (7036) *2 *3 *5	7044 *3 *5
	*2, *3, *5	Supporting se	ervo software	e is required		,			, . 0, . 0	, -0-, 0	1 .2, .0, .0	

Synchronous built-in servo motor D*i*S series [200V] (4/4)

	Motor model	Di S60 2000	DiS70 1500	DiS150 1500	DiS500 1000	
	Motor specification	(200V) 0493–B220	(200V) 0494-B120	(200V) 0494–B320	(200V) 0495–B420	
PRM NO	Motor ID No. SERVO PRM	577 Liquid	579 Liquid	581 Liquid	583 Liquid	
2003		cooling only 00001000	cooling only 00001000	cooling only 00001000	cooling only 00001000	0
2004 2005		00000011 00000000	00000011	00000011 00000000	00000011 00000000	1
2006 2007		00001000	00001000	00001000	00001000	0 0 0
2008		0000000	0000000	0000000	0000000	
2010		00000001	00000001	00000001	00000001	
2012		00000000	00000000	00000000	00000000	
2013		00101000	00101000	00101000	00101010	
2210		00000100	00000100	00000100	00000100	
2300		01000000	01000000	01000000	01000000	
2040 2041	CUR GAIN I CUR GAIN P	337	227	3/3 -1809	469 -2197	9
2042 2043	CUR GAIN 3 VEL GAIN I	-3094 93	-3115 210	-3130 172	-3131 267	1 7 1
2044 2045	VEL GAIN P VEL GAIN 3	-837	-1883	-1537 0	-2395 0	5
2046 2047	VEL GAIN 4 OBSERVER POA1	-8235 10081	-8235 4479	-8235 5487	-8235 3521	5
2048	BLACC CMP DPFMX	0	0	0	0	
2050	OBSERVER POK1	956	956	956 510	956 510	
2052		1200	1200	1200	720	
2053	DB-CMP PDDP	1894	1894	1894	1894	
2055	EMFCMP	-9472	-9472	0	-8960	
2057 2058	D-PHASE CUR D-PHASE CUR	-10267 -1625	-5147	-2616 -2048	-1341 -1821	
2059 2060	PPBAS TCMD LIMIT	0 5370	0 5416	0 5416	0 5158	0 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
2061 2062	EMFLMT OVC K1	0 32517	0 32467	0 32438	0 32567	0 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
2063 2064	OVC K2 TGALMLV	3235 4	3761 4	4128 4	2517 4	7
2065 2066	OVC LIMIT ACC FB GAIN	4529 0	5409 0	5864 0	3427 0	
2067	TCMD FILTER	0	0	0	0	
2074	AALPH	-32768	-32768	0	-24576	
2086	RATED CURRENT	2293	2506	2610	1995	
2090	ROBSTL	60	70	130	250	
2091-2098	ONEPSL	400	400	400	400	
2100	INPAT INPA2	42	44	/0	0	
2102 2103	ABVOF	0	0	0	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2104 2105	ABTSH TORQUE CONST.	0 2642	0 3019	0 6781	0 22416	0 6
2106-2109 2110	MGSTCM	0 1793	0 2049	0 2049	0 1793	0
2111 2112	DETQLM AMRDML	0	0	0	0	0 0 0
2113 2127	HRV FILT NINTCT	0	0	0	0	
2128	MFWKCE	0	0	0	0	
2130-2132	SMOOTH CMP	0	0	0	0	
2133	PHDLY2	0	0	0	0	
2160	TRQCUP	0	0	0	0	
2161	OVC STP OVC2 K1	32633	32678	32643	32630	
2163 2164	OVC2 K2 OVC2 LIMIT	1683	1130	1558	323	9 3
2165 2302	MAX CURRENT TQLIM AT STOP	85	85 0	165 0	365 0	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2304 2305	ACCBSLM ACDCEBD	0	0	0	0	0 0 0
2310 2316	DCIDBS LIMLIM	0	0	0	0	
2574 When liquid	VELOVC cooling is used, mo	1200 dify the follow	1200 ing parameters	1200 from the values	720 listed above to	0
2062 2063	POVC1 POVC2	32517 3235	32467 3761	32438 4128	32567 2517	
2065 2086	POVCLMT RATED CURRENT	4529	5409 2506	5864	3427	7 5 5
2161	OVCSTP POVC21	106	106	2010	0	
2163	POVC22	1683	1130	1558	1719	9
2104 R	emarks	*3, *4, *6	*3, *4, *6	*3, *4, *6	32567 *3, *4, *6	
	*3, *5, *6	Supporting se	ervo software	is required		

9.4.2 Synchronous Built-in Servo Motor D*i*S Series [400V]

Synchronous built-in servo motor D/S series	[400\/]	(1/4)
		(1/7/

	Motor model	Di S400 250 (400V)	Di S22 600 (400V)	Di S85 400 (400V)	DiS110 300 (400V)	DiS260 300 (400V)	DiS260 600 (400V)	Di S370 300 (400V)	Di S800 250 (400V)	Di S1200 250 (400V)	Di \$1500 200 (400V)	Di S2100 150 (400V)
	Motor specification Motor ID No.	420	422	0483-B20x 424	426	428	430	432	434	436	438	440
2003	SERVU PRM.	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000
2004 2005		00000011	00000011	00000011	00000011	00000011	00000011	00000011	00000011	00000011	00000011	00000011
2006 2007		00000000	00000000	000000000000000000000000000000000000000	00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000	00000000	00000000	00000000	00000000
2008		0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	0000000	00000000
2010		00000000	00000000	00000000	00000000	00000000	00000000	00000000	0000000	00000000	00000000	00000000
2012		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
2013		0000000	0000000	0000000	0000000	0000000	00001000	0000000	00001000	00001000	0000000	0000000
2210 2211		0000100	0000100	00000100	00000100	00000100	00000100	00000100	00000100	00000100	00000100	00000100
2300 2301		10000110	10000110	10000100	10000100	10000100	10000100	10000100 00000000	10000100	10000100	10000100	10000100
2040 2041	CUR GAIN I CUR GAIN P	494 -1352	374	172 -1184		157 -1073	321 -2327	239 -1669	496 -1588	291 -1891	360	359
2042	CUR GAIN 3 VEL GAIN L	-2943	-2946	-2491	-2448	-2485	-2573	-2515	-2996	-2408	-2619	-2620
2044	VEL GAIN P	-3713	-1410	-2164	-3763	-2919	-1907	-2361	-3076	-3422	-6678	-14017
2046	VEL GAIN 4	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235
2048	BLACC CMP	0	0302	0	0	0	0	0	0	0	0	002
2049	OBSERVER POK1	956	956	956	956	956	956	956	956	956	956	956
2051	OVER SPEED	01	0	01	01	01	0	0	01	01	0	01
2053	DB-CMP PDDP	1894	1894	1894	1894	1894	1894	1894	1894	1894	1894	1894
2055	DB-CMP PHYST	319	319	319	319	319	319	0	319	319	319	319
2057 2058	D-PHASE CUR D-PHASE CUR	0	0	0	0	0	0	0	0	0	0	0
2059 2060	PPBAS TCMD LIMIT	0	0	0	0 7282	0 7282	0 4758	0	0 5020	0 5020	0 6473	0 7282
2061 2062	EMFLMT OVC K1	0 32743	0 32689	0 32683	32682	0 32682	0 32679	0 32705	0 32713	0 32678	0 32700	32682
2063 2064	OVC K2 TGALMLV	308	988	1069	1069	1069	1111 4	782 4	<u>690</u>	1130	845	1069
2065 2066	OVC LIMIT ACC FB GAIN	903 0	2826	3172 0	3173 0	3173 0	1351 0	2322	948 0	1529 0	2507 0	3173 0
2067 2068-2073	TCMD FILTER	0	0	0	0	0	0	0	0	0	0	0
2074 2077-2083	AALPH	20480	0	0	0	0	0	0	0	0	0	0
2086 2087-2089	RATED CURRENT	753 0	1237	1310	1310	1310	856 0	1121	772	914 0	1165 0	1310
2090	ROBSTL	0	0	0	0	0	0	0	0	0	0	0
2099	ONEPSL	400	400	400	400	400	400	400	400	400	400	400
2101	INPA2 DBL IM	0	0	0	0	0	0	0	0	0	0	0
2103	ABVOF	0	0	0	0	0	0	0	0	0	0	0
2105	TORQUE CONST.	8080	448	1167	1510	3570	5464	6020	18584	23902	23173	28839
2110-2109	MGSTCM	1281	1793	0	0	0	0	0	0	0	0	0
2111	AMRDML	0	25000	0	0	0	0	0	0	0	0	0
2113		0	0	0	0	0	0	0	0	0	0	0
2128	MFWKGE	0	0	0	0	0	0	0	0	0	0	0
2130-2132 2133	SMOOTH CMP PHDLY1	0	0	0	0	0	0	0	0	0	0	0
2134 2159	DGCSMM	0	0	0	0	0	0	0	0	0	0	0
2160 2161	TRQCUP OVC STP	0 120	0	0	0	0	0	0	0	0	0	0
2162 2163	OVC2 K1 OVC2 K2	0	0	0	0	0	0	0	0	0	0	0
2164 2165	OVC2 LIMIT MAX CURRENT	0	0 25	0 45	0	0 85	0	0	0 185	0	0	0
2302 2304	TQLIM AT STOP ACCBSLM	0	0	0	0	0	0	0	0	0	0	0
2305 2310	ACDCEBD DCIDBS	0	0	0	0	0	0	0	0	0	0	0
2316 When liquid	LIMLIM cooling is used, mo	odify the follow	ing parameters	from the value	s listed above to	0 those listed be	low.	0	0	0	0	0
2062 2063	POVC1 POVC2	32646 1528	32523 3069	32427 4258	32427 4260	32427 4260	32360 5095	32518 3121	32529 2989	32352 5196	32498 3369	32427 4259
2065 2086	POVCLMT RATED CURRFNT	4290	8170 2104	12689 2621	12694 2621	12694 2621	5406 1712	9287 2242	3793 1544	6118 1807	10029	12693 2621
2161 2162	OVCSTP POVC21	-	-	-	-	-	-	-	-		109	122
2163	POVC22 POVCI MT2	-	-	-	-	-	-	-	-		-	-
R	emarks	*5	*5									
	*5	Supporting s	ervo software	e is required								

Synchronous built-in servo motor D*i*S series [400V] (2/4)

	Motor model	DiS3000 150								
	Motor specification	(400V) 0487–B40x								
PRM NO	Motor ID No. SERVO PRM	442								
2003		00001000								
2004 2005		00000011								
2006		0000000								
2007		00000000								
2009 2010		00000000							 	
2011		0000000						 	 	
2012		00000000								
2014		00000000							 	
2211		00000000								
2300 2301		10000100								
2040	CUR GAIN I	459								
2042	CUR GAIN 3	-2616								
2043 2044	VEL GAIN I VEL GAIN P	-13016								
2045	VEL GAIN 3	0							 	
2046	OBSERVER POA1	-8235								
2048	BLACC CMP	0								
2050	OBSERVER POK1	956							 	
2051 2052	UBSERVER POK2	510								
2053	DB-CMP PPMAX	21								
2054 2055	DB-CMP PDDP DB-CMP PHYST	319								
2056	EMFCMP	0								
2058	D-PHASE CUR	0								
2059	PPBAS TCMD_LIMIT	7282								
2061	EMFLMT	0							 	
2062 2063	OVC K1	32682								
2064		2172								
2065	ACC FB GAIN	0								
2067 2068-2073	TCMD FILTER	0								
2074	AALPH	0							 	
2077-2083 2086	RATED CURRENT	1310								
2087-2089	ROBSTI	0								
2091-2098		0								
2099 2100	INPA1	400								
2101	INPA2	0								
2102	ABVOF	0								
2104 2105	ABTSH TORQUE CONST.	4125							 	
2106-2109	Исстон	0							 	
2110	DETQLM	0								
2112	AMRDML HRV FILT	0							 	
2127	NINTCT	0								
2128 2129	MFWKGE	0								
2130-2132	SMOOTH CMP	0								
2134	PHDLY2	0							 	
2159 2160	DGCSMM TROCUP	0							 	
2161	OVC STP	0							 	
2162	OVC2 K1	0								
2164	OVC2 LIMIT	0							 	
2302	TQLIM AT STOP	0								
2304 2305	ACDCEBD	0								
2310	DCIDBS	0							 	
When liquid	cooling is used, mo	dify the follow	ing parameters	from the values	listed above to	those listed be	low.	 	 	
2062	POVC1 POVC2	32427 4259								
2065		12693							 	
2161	OVCSTP	122								
2162	POVC21	-								
2164	POVCLMT2	-								
R	emarks									

9.PARAMETER LIST

Synchronous built-in servo motor D*i*S series [400V] (3/4)

	Motor model	DiS15 1000 (400V)	Di S60 400 (400V)	Di S70 300 (400V)	DiS150 300 (400V)	DiS200 300 (400V)	DiS250 250 (400V)	DiS500 250 (400V)	DiS1000 200 (400V)	DiS1500 100 (400V)	DiS2000 100 (400V)	Di S2000 150 (400V)
	Motor specification Motor ID No.	552	554	556	558	560	0495-B200 562	564	566	568	570	572
2003	SERVO FRM.	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000
2004		00000000	00000000	0000000	00000000	00000000	00000011	00000000	00000000	00000000	00000000	00000011
2008		00000000	0000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
2008		00000000	0000000	0000000	00000000	00000000	0000000	0000000	00000000	0000000	0000000	0000000
2010 2011		0000000	0000000	0000000	00000000	00000000	0000000	00000000	0000000	00000000	0000000	0000000
2012 2013		00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
2014 2210		000000000000000000000000000000000000000	00001000	00000110	00000110	00000110	000000000000000000000000000000000000000	00000100	00000100	00000100	00000100	00000100
2211 2300		00001000 10000110	00001000 10000110	00001000 10000110	00001000 10000110	00011000 10000110	00001000 10000110	00001000 10000110	00001000 10000110	00001000 10000110	00011000 10000110	00001000 10000110
2301 2040	CUR GAIN I	00000000 154	00000000 269	00000000 148	00000000 189	00000000 226	00000000 158	00000000 181	10010100 244	1000000 276	1000000 358	1000000 224
2041 2042	CUR GAIN P CUR GAIN 3	-857 -3067	-1897 -3102	-1382 -3117	-1607 -3128	-1983 -3135	-1150 -3129	-1445 -3138	-1323 -3173	-2068 -3176	-3011 -3177	-1729 -3177
2043 2044	VEL GAIN I VEL GAIN P	69 -618	86 -772	180 -1614	149 -1331	141	334 -2996	264 -2368	496 -4442	676 -6055	612 -5485	620 -5554
2045	VEL GAIN 3	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235
2047	OBSERVER POA1	13637	10929	5224	6336	6686	2815	3561	1899	1393	1537	1518
2040		056	0	056	056	056	056	0	056	056	0	0
2050	OBSERVER POK2	510	510	510	510	510	510	510	510	510	510	510
2052	DB-CMP PPMAX	21	21	21	21	21	21	21	240	21	21	21
2054	DB-CMP PDDP DB-CMP PHYST	319	319	319	319	319	319	319	319	319	319	319
2056	D-PHASE CUR	0	0	0	0	0	0	-11264	-11204	-11264	-11264	0
2058	D-PHASE CUR PPBAS	0	0	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0	0 0	0	0	-430	0
2060 2061	EMFLMT	/282	5462	6190	6190	6190	/282	64/3	64/3	64/3	64/3	64/3
2062 2063	OVC K1 OVC K2	32675	32675	32684	32/14	32/21	32/0/	32/23	32677	32682	32709	32/0/ 763
2064 2065	TGALMLV OVC LIMIT	4 3300	4 1856	4 2178	4 1419	4 1237	4 2196	4 1301	4 2553	2430	4 1688	4 1739
2066 2067	ACC FB GAIN TCMD FILTER	0	0	0	0	0	0	0	0	0	0	0
2068-2073 2074	AALPH	0 -20480	-32768	0 -24576	0 -20480	0 -4096	0-8192	0 20480	0 -20480	0 28672	0 24576	0 12288
2077-2083 2086	RATED CURRENT	0 1440	0 845	0 1005	0944	0	0 1175	0 944	0	0 1235	0 1045	0 1045
2087-2089 2090	ROBSTL	0	0	0	0	0	0	0	0	0	0	0
2091-2098 2099	ONEPSL	0 400	0 400	0 400	0 400	0 400	0 400	0 400	0 400	0 400	0 400	0 400
2100 2101	INPA1 INPA2	0	0	0	0	0	0	0	0	0	0	0
2102 2103	DBL I M ABVOF	0	0	0	0	0	0	0	0	0	0	0
2104 2105	ABTSH TORQUE_CONST.	0	0 2865	0	0 7830	0	0	0 22669	03768	0 6206	0	0 8984
2106-2109	MGSTCM	0 2049	0	0	0	0	0	0 2049	0 2305	0 2049	0 2049	0 2049
2111	DETQLM	0	0	0	0	7710	12900	11311	6229	3212	2161	4727
2112		0	0	0	0	0	0	0	0	0	0	0
2128	MFWKCE	0	0	0	0	0	0	0	0	0	0	0
2130-2132	SMOOTH CMP	0	0	0	0	0	0	0	0	0	0	0
2134	PHDLY2	0	0	0	0	0	0	0	0	0	0	0
2160	TROCUP	0	0	0	0	0	0	0	0	0	0	0
2162	OVC2 K1	0	0	0	0	0	0	0	0	0	0	0
2163		0	0	0	0	0	0	0	0	0	0	0
2302	TQLIM AT STOP	25	45	45	0	0	0	0	0	0	0	365
2304	ACDCEBD	0	0	0	0	72	0	0	0	0	24	0
2310		0	0	0	0	0	0	0	0	0	0	0
Vhen liquid	VELUVC 1 cooling is used, mc	0 odify the follow	ing parameters	from the value	s listed above to	those listed be	low.	0	0		0	0
2062	POVCI POVC2	32401	6169	32449	4717	5004	32487	32454	32286	32384	32366	32369 4992
2005	RATED CURRENT	2595	8321	2108	2108	9014 2108	9212	2317	2760	9514 2445	9883	9838
2161 2162	POVCS1P POVC21	125 32601	127 32581	120 32629	120 32599	123 32594	110 32623	110 32596	110 32686	112 32686	110 32713	110 32705
2163 2164	POVC22 POVCLMT2	2091 8308	2337	1735	2118	2172	1813	2156 5738	1029 8212	1024 6812	687 687	792
	Remarks *2, *3, *5 \$	*5 Supporting se	*5 ervo software	*5 e is required	*5	*2, *5	*5	*5	*5	*3, *5	*2, *3, *5	

Synchronous built-in servo motor D*i*S series [400V] (4/4)

	Motor model	DiS5000 50	D i S60 2000	DiS70 1500	DiS150 1500	Di S500 1000	
	Motor specification	(400V) 0488-B400	(400V) 0493-B220	(400V) 0494-B120	(400V) 0494-B320	(400V) 0495-B420	
	Motor ID No.	573	578 Liquid	580 Liquid	582 Liquid	584 Liquid	
PRM NU	SERVO PRM.	00001000	cooling only	cooling only	cooling only	cooling only	
2003		00001000	00001000	00001000	00000011	00001000	
2005 2006		00000000	00000000	00000000	00000000	00000000	0
2007		0000000	0000000	0000000	0000000	00000000	
2009		00000000	00000000	00000000	00000000	0000000	
2010		0000000	00000001	00000001	00000001	0000000	0
2012		0000000	00000000	00000000	00000000	00000000	
2014		00000000	00101000	00101000	00101010	00101010	
2210		0000100	00000100	00000100	00000100	00000100	0
2300 2301		10000110	10000100	10000100	10000100	10000100	
2040	CUR GAIN I	417	183	128	180	224	
2041	CUR GAIN 3	-3181	-943	-724	-3130	-3131	1
2043	VEL GAIN I VEL GAIN P	1096	93	210	153 -1366	267	7
2045	VEL GAIN 3	-0225	0	0	0		
2040	OBSERVER POA1	859	10081	4479	6173	3521	
2048 2049	BLACC CMP DPFMX	0	0	0	0	(0
2050	OBSERVER POK1	956 510	956 510	956 510	956 510	956	
2052	OVER SPEED	60	2400	1800	1800	1200	0
2053	DB-CMP PPMAX DB-CMP PDDP	21 1894	1894	1894	21 1894	1894	4
2055	DB-CMP PHYST	319	319	319	319 -8704	319	9
2057	D-PHASE CUR	-527	-10267	-5147	-2610	-1341	
2058	D-PHASE COR PPBAS	-665	-1625	-1821	-1821	-1821	0
2060 2061	TCMD LIMIT EMFLMT	7282	5370	5416	4814	5158	8 0 0
2062	OVC K1	32731	32517	32467	32438	32567	
2063	TGALMLV	459	3235	3/01	4128	2017	4
2065	OVC LIMIT ACC FB GAIN	1337	4529	5409	4633	3427	7
2067	TCMD FILTER	0	0	0	0	(
2000 2073	AALPH	24576	-32768	24576	8192	(0
2077-2083	RATED CURRENT	916	2293	2506	2320	1995	5
2087-2089	ROBSTI	0	0	0	0 213	310	0 9
2091-2098		0	0	0	0	(
2099	INPA1	400	400	400	400	110	0
2101 2102	INPA2 DBLIM	0	0	0	0	(0
2103	ABVOF	0	0	0	0	(
2104	TORQUE CONST.	22101	2642	3019	7628	22416	6
2106-2109	MGSTCM	0 1793	0 1793	2049	0 2049	1793	U
2111	DETQLM	767	0	0	0	(
2113	HRV FILT	0	0	0	0	(
2127	MFWKCE	0 16000	0	0	0	(
2129 2130-2132	MFWKBL SMOOTH CMP	540	0	0	0	() ()	
2133	PHDLY1	0	0	0	0	(
2154	DGCSMM	0	0	0	0	(
2160 2161	TRQCUP OVC STP	0	0	0	0	(0
2162	0VC2 K1	0	32633	32678	32643	32630	
2163	OVC2 LIMIT	0	347	455	181	116	6
2165 2302	MAX CURRENI TQLIM AT STOP	185	85	85	185	365	5 0
2304	ACCBSLM	0	0	0	0	(
2310	DCIDBS	0	0	0	0	(
2574		0	2400	0 1800	0 0	<u>12</u> 00	
When liquid 2062	cooling is used, mo POVC1	odify the follow 32559	ing parameters 32517	from the values 32467	listed above to 32438	those listed be 3256	elow. 7
2063	POVC2	2617	3235	3761	4128	251	
2005		2097	4529	2506	2320	342 1995	5
2161 2162	OVCSTP POVC21	110 32722	106 32633	106 32678	32643	32630	
2163	POVC22 POVCLMT2	569	1683	1130	1558	1719	9
2104 R	emarks	*2, *3. *5	*3, *4. *6	*3, *4. *6	*3, *4. *6	*3, *4. *6	
	*2, *3, *5, *6	Supporting s	ervo software	e is required		-, , , , , ,	

APPENDIX

ANALOG SERVO ADAPTER SETTING PROCEDURE

(1) Overview

Appendix A describes the method of setting parameters required when using the analog servo function with an analog servo adapter.

- 1 For the CNCs that support this function, contact FANUC.
- 2 For analog servo axes, only the feed-forward, backlash compensation, pitch error compensation, and position gain switch functions can be used as digital servo functions.

(2) Series and editions of applicable servo software

CNC		Servo software	Demerika		
CNC	Series	Edition	Remarks		
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions			
Power Motion <i>i</i> -A					
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	J(10) and subsequent editions			
	90E1	01.0 and subsequent editions			
Series 30i/31i-A	90D0	J(10) and subsequent editions	HRV4		
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions			
	90C8	A(01) and subsequent editions			
	90E5	A(01) and subsequent editions			
	90E8	A(01) and subsequent editions			

(3) Setting parameters

- (1) Setting start: Switch on the CNC power from an emergency stop.
- (2) Set up the FSSB. Switch the power off and on again.
- (3) Initialize the servo parameters. Switch the power off and on again.
- (4) Enable the analog servo interface function. Switch the power off and on again. Now setting is completed.

(4) FSSB setting

(a) Connecting the analog servo adapter requires that the FSSB be set up manually. (The FSSB setting screen cannot be used.)

	#7	#6	#5	#4	#3	#2	#1	#0			
1902		FMD									
FMD (#0)	Specifies the FSSB set mode as follows:										
	0: Automatic setting mode										
	1: Manua	al setting m	ode \leftarrow To	o be set							

(b) Directly enter all parameters listed in the following table. Before doing this, understand the meaning of each parameter sufficiently. For detailed descriptions about parameter setting, refer to the respective CNC Connection Manuals and Parameter Manuals. Analog and digital servo axes can be used together as shown in the reference examples below.

A. ANALOG SERVO ADAPTER SETTING PROCEDURE

APPENDIX

	Parameter number		Moaning			
30 <i>i</i> -B Series	30 <i>i</i> -A Series	0 <i>i</i> -D Series	Meaning			
1023	1023	1023	Servo axis number for each axis			
-	1905#6,7,1,2	1905#6,7	Selection of interface unit used			
24000 to 24031 24032 to 24063	14340 to 14357 14358 to 14375	14340 to 14357	Conversion table value for slave number (*1)			
24096	1936	1936	Connector number for interface unit 1 (*2)			
24097	1937	1937	Connector number for interface unit 2 (*2)			
24098	1938	-	Connector number for interface unit 3 (*2)			
24099	1939	-	Connector number for interface unit 4 (*2)			
24100	-	-	Connector number for interface unit 5			
24101	-	-	Connector number for interface unit 6			
24102	-	-	Connector number for interface unit 7			
24103	-	-	Connector number for interface unit 8			
24104 to 24111	14376 to 14383	14376 to 14383	Conversion table value for connector number of interface unit 1			
24112 to 24119	14384 to 14391	14384 to 14391	Conversion table value for connector number of interface unit 2			
24120 to 24127	14392 to 14399	-	Conversion table value for connector number of interface unit 3			
24128 to 24135	14400 to 14407	-	Conversion table value for connector number of interface unit 4			
24136 to 24143	-	-	Conversion table value for connector number of interface unit 5			
24144 to 24151	-	-	Conversion table value for connector number of interface unit 6			
24152 to 24159	-	-	Conversion table value for connector number of interface unit 7			
24160 to 24167	-	-	Conversion table value for connector number of interface unit 8			
24064 to 24095	14408 to 14425	-	Conversion table value for slave number on additional-axis board			
24168 to 24175	14444 to 14451	-	Conversion table value for connector number of interface unit 1 on additional-axis board			
24176 to 24183	14452 to 14459	-	Conversion table value for connector number of interface unit 2 on additional-axis board			
24184 to 24191	-	-	Conversion table value for connector number of interface unit 3 on additional-axis board			
24192 to 24199	-	-	Conversion table value for connector number of interface unit 4 on additional-axis board			

NOTE

1 The FSSB settings for the analog servo adapter are also used for the separate detector interface unit.

(Bits 6, 7, 1, and 2 of No. 1905 (30*i*-A Series, 0*i*-D Series) are shared.)

2 The slave number of an analog servo axis must be added to behind the last slave number of the units actually connected to the FSSB line. (See the setting examples provided below.)

3 With the 30*i*-A Series, 0*i*-D Series, up to two interface units (separate detector interface unit and (or) analog servo interface unit) can be connected per FSSB line. Therefore, the first and second interface units are connected to the FSSB1 line, and the third and fourth interface units are connected to the FSSB2 line. With the 30*i*-B Series, a total of up to four separate detector interface units and analog servo adapters can be connected per FSSB line.

APPENDIX

(Reference) FSSB setting example where an analog servo adapter is used

[Setting example 1: Two analog servo axes]

Let the analog servo adapter be slave 1. Assume that analog amplifiers are connected behind the analog servo adapter, and let them be slaves 2 and 3 sequentially.

	FSSB	Analog servo adapter	JV11L	Analog amplifier 1	X-axis	
		' 		Slave 2		
CNC		(Basic unit)	JV12L	Analog amplifier 2	Y-axis	
		Slave 1	-	Slave 3	-	

For 30*i*-B Series

Parameter No.	24000	24001	24002	24003 to 24095
Set value	3001	1001	1002	1000
Parameter No.	1023	24096	24097 to 24103	
X axis	1	1	0	
Y axis	2	2	0	
Parameter No.	24104	24105	24106 to 24111	
Set value	1001	1002	1000	

For 30*i*-A Series, 0*i*-D Series

Y axis

Parameter No.	14340	14341	14342	14343 to 14357
Set value	64	0	1	-96
Parameter No.	1023	1905	1936	1937
X axis	1	0100000	0	0

0100000

1

0

Parameter No.	14376	14377	14378 to 14407
Set value	0	1	32

[Setting example 2: One digital servo axis + one analog servo axis]

2

The digital servo amplifier and analog servo adapter are slaves 1 and 2, as in the sequence in which they are connected to the FSSB. Assuming that the axis connected to the analog servo amplifier is behind the analog servo adapter, it is slave 3.

A. ANALOG SERVO ADAPTER SETTING PROCEDURE

APPENDIX

B-65270EN/08

For 30*i*-B Series

Parameter No.	24000	24001	24002	24003 to 24095
Set value	1001	3001	1002	1000

Parameter No.	1023	24096	24097 to 24103
X axis	1	0	0
Y axis	2	1	0

Parameter No.	24104	24105 to 24111
Set value	1002	1000

30*i*-A Series, 0*i*-D Series

Parameter No.	14340	14341	14342	14343 to 14357
Set value	0	64	1	-96

Parameter No.	1023	1905	1936	1937
X axis	1	0000000	0	0
Y axis	2	0100000	0	0

Parameter No.	14376	14377 to 14407
Set value	1	32

[Setting example 3: Five analog servo axes + two digital servo axes]

The first analog servo adapter (including expansion) is slave 1, two digital servo amplifiers are slaves 2 and 3, the second analog servo adapter is slave 4, as in the sequence in which they are connected to the FSSB. Assuming that the analog amplifiers are connected behind the analog servo adapter, they are slaves 5 to 9.

B-65270EN/08

For 30*i*-B Series

Parameter No.	24000	24001	24002	24003	24004	24005	24006	24007	24009	24010 to 24095	
Set value	3001	1005	1006	3002	1001	1002	1003	1004	1007	1000	
Parameter	·No.	1(023	24096			24097		240	24097 to 24103	
X axis			1		1		0			0	
Y axis	Yaxis 2		2	2			0			0	
Z axis			3	3			0			0	
A axis			4	4			0			0	
B axis	i		5	0			0			0	
C axis	C axis 6		0			0			0		
U axis	U axis 7		0			1			0		
		1									

Parameter No.	24104	24105	24106	24107	24108 to 24111	24112	24113 to 24119
Set value	1001	1002	1003	1004	1000	1007	1000

For 30*i*-A Series, 0*i*-D Series

Parameter No.	14340	14341	14342	14343	14344	14345	14346	14347	14348	14349 to 14357
Set value	64	4	5	-56	0	1	2	3	6	-96

Parameter No.	1023	1905	1936	1937
X axis	1	0100000	0	0
Y axis	2	0100000	1	0
Z axis	3	0100000	2	0
A axis	4	0100000	3	0
B axis	5	0000000	0	0
C axis	6	00000000	0	0
U axis	7	1000000	0	0

A. ANALOG SERVO ADAPTER SETTING PROCEDURE

APPENDIX

Parameter No.	14376	14377	14378	14379	14380 to 14383	14384	14385 to 14407
Set value	0	1	2	3	32	6	32

(5) Servo parameter initialization

For axes connected to an analog servo circuit, initialize the servo parameters as listed below.

Parameter No.	Name	Set value
2000	Initialization bit	0000000
2020	Motor ID number	252 (for HRV2)
2001	AMR	0000000
1820	CMR	Derform the come initialization on fer digital parts according to your
2084	FFG (numerator)	Perform the same initialization as for digital servo according to your
2085	FFG (denominator)	
2022	Direction of movement	111 (counterclockwise) or –111 (clockwise)
1821	Reference counter	Specify the number of pulses per motor revolution (after FFG) in the same manner as for the digital servo circuit.
2023	Number of velocity pulses	Set value = $1536.797 \times E$ where E is the voltage (V) that corresponds to a velocity command of 1000 min ⁻¹ .
2024	Number of position pulses	Specify the number of pulses per motor revolution (before FFG) in the same manner as for the digital servo circuit.

NOTE

Although difference in HRV setting is not directly related to analog servo axes, they must be initialized with the same HRV setting by reason of the relationship with the settings of other digital servo axes.

(6) Setting the analog servo function

To enable the analog servo function, set the following parameters for the axes to be connected to an analog servo circuit. (It is also necessary to enable the dummy serial feedback function.)

Specify 0 for the axis to be connected to an analog servo circuit.

Β

PARAMETERS SET WITH VALUES IN DETECTION UNITS

If the detection unit is changed with a CMR or flexible feed gear, it is also necessary to change the parameters that are set with values in detection units. This appendix lists these parameters. For details of these parameters, refer to the respective CNC parameter manuals.

Appendix B, "PARAMETERS SET WITH VALUES IN DETECTION UNITS", consists of the following sections:

B .1	PARAMETERS FOR 30i-A Series, 30i-B Series.	484
B.2	PARAMETERS FOR Power Motion <i>i</i> -A	486
B.3	PARAMETERS FOR 0 <i>i</i> -D Series	487
B.4	PARAMETERS FOR Series 16i, 18i, 21i, 0i/0i Mate -C	489
B.5	PARAMETERS FOR Power Mate <i>i</i>	490
B.6	PARAMETERS FOR Series 15 <i>i</i>	492

B-65270EN/08

B.1

PARAMETERS FOR 30*i*-A Series, 30*i*-B Series

No.	Description	30 <i>i –</i> A	30 <i>i-</i> B
		Series	Series
1821	Reference counter capacity for individual axis	0	0
1826	Effective area (in-position check) for individual axis	0	0
1827	Effective area (in-position check) for individual axis at cutting feed	0	0
1828	Position error limit for individual axis during movement	0	0
1829	Position error limit for individual axis at stop	0	0
1830	Position error limit for individual axis with servo off	0	0
1832	Position error limit for individual axis with feed at stop	0	0
1836	Servo error amount within which reference position return is assumed to be possible	0	0
1844	Distance to first grid point when reference position shift of reference position shift function	0	0
	is set to 0 or when reference position return is performed with grid shift	0	0
1846	Distance for starting second stage compensation in smooth backlash compensation	0	0
1847	Distance for ending second stage compensation in smooth backlash compensation	0	0
1848	First stage compensation value in smooth backlash compensation	0	0
1850	Grid shift/reference position shift for individual axis	0	0
1851	Backlash compensation for individual axis	0	0
1852	Backlash compensation for individual axis at rapid traverse	0	0
1882	Mark 2 intervals on linear scale interface with absolute address reference mark	0	0
	Distance from scale origin to reference position 1 (linear scale with absolute address		
1992	reference marks) or	\circ	\circ
1005	Distance from base point to reference position 1 (linear scale with an absolute address	0	0
	origin)		
	Distance from scale origin to reference position 2 (linear scale with absolute address		
1997	reference marks) or	\circ	\circ
1004	Distance from base point to reference position 2 (linear scale with an absolute address	0	0
	origin)		
1885	Permissible cumulative movement value during torque control	0	0
1886	Position error with torque control canceled	0	0
2033	For vibration damping control : position pulses conversion coefficient	0	0
2078	Dual position feedback function : conversion coefficient (numerator)	0	0
2079	Dual position feedback function : conversion coefficient (denominator)	0	0
2082	Second stage start/end parameter (when the two-stage backlash acceleration function is	0	0
2101	Oversheet componentian enable level	0	\circ
2101		0	0
2103	Divel position footback function a clere detection level of Comi Full error	0	0
2110	Dual position recuback function , alarm detection level of Semi-Full error	0	0
2119	Function for changing the proportional gain in the stop state : stop judgment level	0	0
2173	Lift amount in lifting function against gravity at emergency stop (Bit 7 of No. 2298=0 when SWDBSx=1)	0	0
2263	Detection unit parameter	0	0
2373	Lift amount in lifting function against gravity at emergency stop (Bit 7 of No. 2298=0 when SWDBSx=0)	0	0
2382	Torsion preview control: maximum compensation value (LSTCM)	0	0
2386	Torsion preview control: Acceleration torsion compensation value K1 (LSTK1)	0	0
2387	Torsion preview control: Acceleration torsion compensation value K2 (LSTK2)	0	0
2388	Torsion preview control: Acceleration torsion compensation value K3 (LSTK2)	0	0
2300	Torsion preview control: Acceleration torsion compensation value K1N (LSTK1N)	0	0
2307	Torsion preview control: Acceleration torsion compensation value K2N (LSTK1N)	0	0
2303	Torsion preview control: Acceleration torsion componention value K2N (LSTK2N)	0	0
2393	Synchronous axes automatic componention : Maximum componention	0	0
2404	Ditch orror componention value at reference position when meyoment to reference	0	0
3627	position is made in the direction opposite to reference position return direction	0	0

B.PARAMETERS SET WITH VALUES IN DETECTION UNITS

No.	Description	30 <i>i</i> –A	30 <i>i</i> -B
2720	Number of pulses from position order	Series	Series
5010	Number of pulses from position coder	0	0
5194	In position width for other than help bettem (permal operation)	0	0
5185	In-position width for other than hole bottom (for retraction in peck drilling cycle)	0	0
5105	In-position width for other than hole bottom (for shift operation in boring cycle (G76		0
5186	(G87))	0	0
5187	In-position width for hole bottom	0	0
5214	Synchronization error width setting for rigid tapping	0	0
5300	First-spindle rigid tapping effective area (in-position check) for tapping axis	0	0
5301	In-position width for spindle in rigid tapping	0	0
5302	Second-spindle rigid tapping effective area (in-position check) for tapping axis	0	0
5304	Third-spindle rigid tapping effective area (in-position check) for tapping axis	0	0
5306	Fourth-spindle rigid tapping effective area (in-position check) for tapping axis	0	0
5310	First-spindle rigid tapping position error limit for tapping axis during movement	0	0
5311	Rigid tapping position error limit for spindle during movement	0	0
5312	First-spindle rigid tapping position error limit for tapping axis at stop	0	0
5213	Rigid tapping position error limit for spindle at stop	0	0
5321	Backlash amount for spindle in rigid tapping (first gear)	0	0
5322	Backlash amount for spindle in rigid tapping (second gear)	0	0
5323	Backlash amount for spindle in rigid tapping (third gear)	0	0
5324	Backlash amount for spindle in rigid tapping (fourth gear)	0	0
5350	Second-spindle rigid tapping position error limit for tapping axis during movement	0	0
5352	Second-spindle rigid tapping position error limit for tapping axis at stop	0	0
5354	Third-spindle rigid tapping position error limit for tapping axis during movement	0	0
5356	Third-spindle rigid tapping position error limit for tapping axis at stop	0	0
5358	Fourth-spindle rigid tapping position error limit for tapping axis during movement	0	0
5360	Fourth-spindle rigid tapping position error limit for tapping axis at stop	0	0
5761	Compensation at compensation point number a for movement axis 1	0	0
5762	Compensation at compensation point number b for movement axis 1	0	0
5763	Compensation at compensation point number c for movement axis 1	0	0
5764	Compensation at compensation point number d for movement axis 1	0	0
5771	Compensation at compensation point number a for movement axis 2	0	0
5772	Compensation at compensation point number b for movement axis 2	0	0
5773	Compensation at compensation point number c for movement axis 2	0	0
5774	Compensation at compensation point number d for movement axis 2	0	0
5781	Compensation at compensation point number a for movement axis 3	0	0
5782	Compensation at compensation point number b for movement axis 3	0	0
5783	Compensation at compensation point number c for movement axis 3	0	0
5784	Compensation at compensation point number d for movement axis 3	0	0
5071	Compensation α at compensation point number a for individual axis (gradient	0	0
1 100	compensation)	0	0
5872	Compensation β at compensation point number b for individual axis (gradient	0	0
	compensation)		
5873	Compensation γ at compensation point number c for individual axis (gradient	0	0
	Compensation s at compensation point number d for individual axis (gradient		
5874	compensation)	0	0
6287	Position error limit at torque limit skip	0	0
7772	Number of pulses from position detector per rotation of tool axis	0	0
7773	Number of pulses from position detector per rotation of workpiece axis	0	0
7782	Number of pulses from position detector per rotation of EGB master axis [axis type]	0	0
7783	Number of pulses from position detector per rotation of EGB slave axis [axis type]	0	0
8181	Synchronous error limit for each axis (synchronous and composite control)	0	0
8323	Limit of position error check in feed axis synchronous control	0	0

APPENDIX

B. PARAMETERS SET WITH VALUES IN DETECTION UNITS APPENDIX

B-65270EN/08

No.	Description	30 <i>i</i> –A Sorios	30 <i>i</i> -B
8326	Difference in reference counter value between master axis and slave axis	Genes	
8331	Maximum permissible synchronous error in synchronous error excess alarm 1	0	0
8332	Maximum permissible synchronous error in synchronous error excess alarm 7	0	0
0002 9333	Synchronous error zero width for each avis	0	0
0333	Synchronous error zero width 2 for each axis	0	0
0333	Dermissible error at start of chapping companyation	0	0
0311	Componentian 1 at componentian point 1 for componented avia 1 of three dimensional	0	0
10964	Compensation 1 at compensation point 1 for compensated axis 1 of three-dimensional		
10004		0	~
~ 10972	Componentian 10 at componentian point 10 for componented axis 1 of three dimensional	0	0
10073	machine position compensation		
	Componentian 1 at componentian point 1 for componented axis 2 of three dimensional		
10074	Compensation 1 at compensation point 1 for compensated axis 2 of three-unnensional		
10074		0	0
10993	Componention 10 at componention point 10 for componented axis 2 of three dimensional	0	0
10005	machine position compensation		
	Compensation 1 at compensation point 1 for compensated axis 3 of three dimensional		
10884	machine position compensation		
~		0	0
10803	Compensation 10 at compensation point 10 for compensated axis 3 of three dimensional	0	0
10095	machine position compensation		
11013	Position error limit for individual axis during movement	0	0
11014	Position error limit for individual axis at ston	0	0
11211	l inear gradient compensation CMP0	0	0
13351	Compensation at compensation point number a for movement axis 4		
~		0	0
13354	Compensation at compensation point number d for movement axis 4	0	Ŭ
13361	Compensation at compensation point number a for movement axis 5		
~		0	0
13364	Compensation at compensation point number d for movement axis 5	0	Ŭ
13371	Compensation at compensation point number a for movement axis 6		
~		0	0
13374	Compensation at compensation point number d for movement axis 6	0	
10074	Maximum permissible movement amount at reference position setup of linear scale with		
14010	absolute addressing reference marks	0	0

* O Supported, – Not supported

• Setting data for shifting external machine coordinate systems

B.2

PARAMETERS FOR Power Motion *i*-A

No.	Description
1821	Reference counter capacity for individual axis
1826	Effective area (in-position check) for individual axis
1827	Effective area (in-position check) for individual axis at cutting feed
1828	Position error limit for individual axis during movement
1829	Position error limit for individual axis at stop
1830	Position error limit for individual axis with servo off
1832	Position error limit for individual axis with feed at stop
1836	Servo error amount within which reference position return is assumed to be possible
1844	Distance to first grid point when reference position shift of reference position shift function is set to 0 or
	when reference position return is performed with grid shift
1850	Grid shift/reference position shift for individual axis

B-65270EN/08

APPENDIX

No.	Description
1851	Backlash compensation for individual axis
1852	Backlash compensation for individual axis at rapid traverse
1872	Servo position error check value
1882	Mark 2 intervals on linear scale interface with absolute address reference mark
4000	Distance from scale origin to reference position 1 (linear scale with absolute address reference marks) or
1883	Distance from base point to reference position 1 (linear scale with an absolute address origin)
1001	Distance from scale origin to reference position 2 (linear scale with absolute address reference marks) or
1004	Distance from base point to reference position 2 (linear scale with an absolute address origin)
1885	Permissible cumulative movement value during torque control
1886	Position error with torque control canceled
2033	For vibration damping control : position pulses conversion coefficient
2078	Dual position feedback function : conversion coefficient (numerator)
2079	Dual position feedback function : conversion coefficient (denominator)
2082	Second stage start/end parameter (when the two-stage backlash acceleration function is used)
2101	Overshoot compensation enable level
2103	Unexpected disturbance torque detection amount retrace distance
2118	Dual position feedback function : alarm detection level of Semi-Full error
2119	Function for changing the proportional gain in the stop state : stop judgment level
2173	Lift amount in lifting function against gravity at emergency stop (Bit 7 of No. 2298=0 when SWDBSx=1)
2263	Detection unit parameter
2373	Lift amount in lifting function against gravity at emergency stop (Bit 7 of No. 2298=0 when SWDBSx=0)
2382	Torsion preview control: maximum compensation value (LSTCM)
2386	Torsion preview control: Acceleration torsion compensation value K1 (LSTK1)
2387	Torsion preview control: Acceleration torsion compensation value K2 (LSTK2)
2388	Torsion preview control: Acceleration torsion compensation value K3 (LSTK3)
2391	Torsion preview control: Acceleration torsion compensation value K1N (LSTK1N)
2392	Torsion preview control: Acceleration torsion compensation value K2N (LSTK2N)
2393	Torsion preview control: Acceleration torsion compensation value K3N (LSTK3N)
2404	Synchronous axes automatic compensation : Maximum compensation
3627	Pitch error compensation value at reference position when movement to reference position is made in the
3027	direction opposite to reference position return direction
6287	Position error limit at torque limit skip
8323	Limit of position error check in feed axis synchronous control
8326	Difference in reference counter value between master axis and slave axis
8331	Maximum permissible synchronous error in synchronous error excess alarm 1
8332	Maximum permissible synchronous error in synchronous error excess alarm 2
8333	Synchronous error zero width for each axis
8335	Synchronous error zero width 2 for each axis
8694	Servo position error limit in pressure and position control mode
14010	Maximum permissible movement amount at reference position setup of linear scale with absolute
14010	addressing reference marks

• Setting data for shifting external machine coordinate systems

B.3 PARAMETERS FOR 0*i*-D Series

No.	Description
1821	Reference counter capacity for individual axis
1826	Effective area (in-position check) for individual axis
1827	Effective area (in-position check) for individual axis at cutting feed
1828	Position error limit for individual axis during movement
1829	Position error limit for individual axis at stop
1830	Position error limit for individual axis with servo off
1832	Position error limit for individual axis with feed at stop

B. PARAMETERS SET WITH VALUES IN DETECTION UNITS APPENDIX

B-65270EN/08

No.	Description
1836	Servo error amount within which reference position return is assumed to be possible
1844	Distance from the point at which deceleration dog is turned off to first grid point when reference position
	shift of the reference position shift function is set to 0
1846	Distance for starting second stage compensation in smooth backlash compensation
1847	Distance for ending second stage compensation in smooth backlash compensation
1848	First stage compensation value in smooth backlash compensation
1850	Grid shift/reference position shift for individual axis
1851	Backlash compensation for individual axis
1852	Backlash compensation for individual axis at rapid traverse
1882	Mark 2 intervals on linear scale interface with absolute address reference mark
1883	Distance from scale origin to reference position 1 (linear scale with absolute address reference marks) or
	Distance from base point to reference position 1 (linear scale with an absolute address origin)
1884	Distance from scale origin to reference position 2 (linear scale with absolute address reference marks) or
4005	Distance from base point to reference position 2 (linear scale with an absolute address origin)
1885	Permissible cumulative movement value during torque control
1886	Position error with torque control canceled
2033	Por vibration damping control : position pulses conversion coefficient (numerator)
2078	Dual position feedback function : conversion coefficient (numerator)
2079	Second stage start/and parameter (when the two stage backlash acceleration function is used)
2002	Overshoot compensation enable level
2101	Unexpected disturbance torque detection amount retrace distance
2103	Dual position feedback function : alarm detection level of Semi-Full error
2110	Function for changing the proportional gain in the stop state : stop judgment level
2173	I iff amount in lifting function against gravity at emergency stop (Bit 7 of No. 2298=0 when SWDBSx=1)
2263	Detection unit parameter
2373	Lift amount in lifting function against gravity at emergency stop (Bit 7 of No. 2298=0 when SWDBSx=0)
2382	Torsion preview control: maximum compensation value (LSTCM)
2386	Torsion preview control: Acceleration torsion compensation value K1 (LSTK1)
2387	Torsion preview control: Acceleration torsion compensation value K2 (LSTK2)
2388	Torsion preview control: Acceleration torsion compensation value K3 (LSTK3)
2391	Torsion preview control: Acceleration torsion compensation value K1N (LSTK1N)
2392	Torsion preview control: Acceleration torsion compensation value K2N (LSTK2N)
2393	Torsion preview control: Acceleration torsion compensation value K3N (LSTK3N)
2404	Synchronous axes automatic compensation : Maximum compensation
3627	Pitch error compensation value at reference position when movement to reference position is made in the
0021	direction opposite to reference position return direction
3720	Number of pulses from position coder
5214	Synchronization error width setting for rigid tapping
5300	First-spindle rigid tapping effective area (in-position check) for tapping axis
5301	In-position width for spindle in rigid tapping
5302	Second-spindle rigid tapping effective area (in-position check) for tapping axis
5310	First-spindle rigid tapping position error limit for tapping axis during movement
5311	Rigid tapping position error limit for spindle during movement
5212	Pirist-spindle rigid tapping position error limit for apping axis at stop
5213	Racklash amount for spindle in rigid tapping (first dear)
5322	Backlash amount for spindle in rigid tapping (inst gear)
5323	Backlash amount for spindle in rigid tapping (boond goar)
5324	Backlash amount for spindle in rigid tapping (durd gool)
5350	Second-spindle rigid tapping position error limit for tapping axis during movement
5352	Second-spindle rigid tapping position error limit for tapping axis at stop
5761	Compensation at compensation point number a for movement axis 1
5762	Compensation at compensation point number b for movement axis 1
5763	Compensation at compensation point number c for movement axis 1

APPENDIX

No.	Description
5764	Compensation at compensation point number d for movement axis 1
5871	Compensation α at compensation point number a for individual axis (gradient compensation)
5872	Compensation β at compensation point number b for individual axis (gradient compensation)
5873	Compensation γ at compensation point number c for individual axis (gradient compensation)
5874	Compensation ϵ at compensation point number d for individual axis (gradient compensation)
6287	Position error limit at torque limit skip
7772	Number of pulses from position detector per rotation of tool axis
7773	Number of pulses from position detector per rotation of workpiece axis
8181	Synchronous error limit for each axis (synchronous and composite control)
8323	Limit of position error check in feed axis synchronous control
8326	Difference in reference counter value between master axis and slave axis
11013	Position error limit for individual axis during movement
11014	Position error limit for individual axis at stop
14010	Maximum permissible movement amount at reference position setup of linear scale with absolute
14010	addressing reference marks

• Setting data for shifting external machine coordinate systems

B.4

PARAMETERS FOR Series 16*i*, 18*i*, 21*i*, 0*i*/0*i* Mate -C

No.	Description
1821	Reference counter capacity for individual axis
1826	Effective area (in-position check) for individual axis
1827	Effective area (in-position check) for individual axis at cutting feed
1828	Position error limit for individual axis during movement
1829	Position error limit for individual axis at stop
1830	Position error limit for individual axis with servo off
1832	Position error limit for individual axis with feed at stop
1836	Servo error amount within which reference position return is assumed to be possible
1846	Distance for starting second stage compensation in smooth backlash compensation
1847	Distance for ending second stage compensation in smooth backlash compensation
1848	First stage compensation value in smooth backlash compensation
1850	Grid shift/reference position shift for individual axis
1851	Backlash compensation for individual axis
1852	Backlash compensation for individual axis at rapid traverse
1876	Inductosyn 1-pitch interval
1877	Inductosyn shift
1882	Mark 2 intervals on linear scale having reference marks
1883	Distance from origin to reference position on linear scale having reference marks
1884	Distance from origin to reference position on linear scale having reference marks
1885	Permissible cumulative movement value during torque control (PMC axis control)
1886	Position error with torque control canceled (PMC axis control)
2033	For vibration damping control : position pulses conversion coefficient
2078	Dual position feedback function : conversion coefficient (numerator)
2079	Dual position feedback function : conversion coefficient (denominator)
2082	Second stage start/end parameter (when the two-stage backlash acceleration function is used)
2101	Overshoot compensation enable level
2103	Unexpected disturbance torque detection amount retrace distance
2118	Dual position feedback function : alarm detection level of Semi-Full error
2119	Function for changing the proportional gain in the stop state : stop judgment level
2173	Lifting function against gravity at emergency stop : distance to lift (When SWDBSx=1)
2263	Detection unit parameter
2373	Lifting function against gravity at emergency stop : distance to lift (When SWDBSx=0)

B. PARAMETERS SET WITH VALUES IN DETECTION UNITS APPENDIX

B-65270EN/08

No.	Description
2382	Torsion preview control: maximum compensation value (LSTCM)
2386	Torsion preview control: Acceleration torsion compensation value K1 (LSTK1)
2387	Torsion preview control: Acceleration torsion compensation value K2 (LSTK2)
2388	Torsion preview control: Acceleration torsion compensation value K3 (LSTK3)
2391	Torsion preview control: Acceleration torsion compensation value K1N (LSTK1N)
2392	Torsion preview control: Acceleration torsion compensation value K2N (LSTK2N)
2393	Torsion preview control: Acceleration torsion compensation value K3N (LSTK3N)
2404	Synchronous axes automatic compensation : Maximum compensation
3623	Pitch error compensation magnification for individual axis
5300	Rigid tapping effective area (in-position check) for tapping axis
5302	Second-spindle rigid tapping effective area (in-position check) for tapping axis
5304	Third-spindle rigid tapping effective area (in-position check) for tapping axis
5310	Rigid tapping position error limit for tapping axis during movement
5312	Rigid tapping position error limit for tapping axis at stop
5314	Rigid tapping position error limit for tapping axis during movement
5350	Second-spindle rigid tapping position error limit for tapping axis during movement
5352	Second-spindle rigid tapping position error limit for tapping axis at stop
5354	Third-spindle rigid tapping position error limit for tapping axis during movement
5356	Third-spindle rigid tapping position error limit for tapping axis at stop
5761	Compensation at compensation point number a for movement axis 1 (straightness compensation)
5762	Compensation at compensation point number b for movement axis 1 (straightness compensation)
5763	Compensation at compensation point number c for movement axis 1 (straightness compensation)
5764	Compensation at compensation point number d for movement axis 1 (straightness compensation)
5771	Compensation at compensation point number a for movement axis 2 (straightness compensation)
5772	Compensation at compensation point number b for movement axis 2 (straightness compensation)
5773	Compensation at compensation point number c for movement axis 2 (straightness compensation)
5774	Compensation at compensation point number d for movement axis 2 (straightness compensation)
5781	Compensation at compensation point number a for movement axis 3 (straightness compensation)
5782	Compensation at compensation point number b for movement axis 3 (straightness compensation)
5783	Compensation at compensation point number c for movement axis 3 (straightness compensation)
5784	Compensation at compensation point number d for movement axis 3 (straightness compensation)
5871	Compensation α at compensation point number a for individual axis (gradient compensation)
5872	Compensation β at compensation point number b for individual axis (gradient compensation)
5873	Compensation γ at compensation point number c for individual axis (gradient compensation)
5874	Compensation ϵ at compensation point number d for individual axis (gradient compensation)
8313	Limit to difference in position error between master and slave axes (pair under simplified synchronization control)
8315	Maximum compensation for synchronization (pair under simplified synchronization control)
8316	Difference in reference counter value between master axis and slave axis (pair under simplified synchronization control)
8323	Limit to difference in position error between master and slave axes (more than one pair under simplified synchronization control)
8325	Maximum compensation for synchronization (more than one pair under simplified synchronization control)
8326	Difference in reference counter value between master axis and slave axis (more than one pair under simplified synchronization control)

Setting data for shifting external machine coordinate systems

B.5 PARAMETERS FOR Power Mate *i*

No.	Description
1821	Reference counter capacity for individual axis
1826	Effective area (in-position check) for individual axis

B.PARAMETERS SET WITH VALUES IN DETECTION UNITS

B-65270EN/08

No.	Description			
1827	Effective area (in-position check) for individual axis at cutting feed			
1828	Position error limit for individual axis during movement			
1829	Position error limit for individual axis at stop			
1830	Position error limit for individual axis with servo off			
1832	Position error limit for individual axis with feed at stop			
1026	Servo error amount within which reference position return is assumed to be possible (This parameter is			
1830	used when ISC is used.)			
1850	Grid shift/reference position shift for individual axis			
1851	Backlash compensation for individual axis			
1852	Backlash compensation for individual axis at rapid traverse			
1872*	Servo position error check value			
1882	Mark 2 intervals on linear scale having reference marks			
1883	Distance from origin to reference position on linear scale having reference marks			
1884	Distance from origin to reference position on linear scale having reference marks			
1885	Permissible cumulative movement value during torque control (PMC axis control)			
1886	Position error with torque control canceled (PMC axis control)			
2033	For vibration damping control : position pulses conversion coefficient			
2078	Dual position feedback function : conversion coefficient (numerator)			
2079	Dual position feedback function : conversion coefficient (denominator)			
2082	Second stage start/end parameter (when the two-stage backlash acceleration function is used)			
2101	Overshoot compensation enable level			
2103	Unexpected disturbance torque detection amount retrace distance			
2118	Dual position feedback function : alarm detection level of Semi-Full error			
2119	Function for changing the proportional gain in the stop state : stop judgment level			
21/3	Lifting function against gravity at emergency stop : distance to lift (When SWDBSx=1)			
2263				
2373	Lifting function against gravity at emergency stop : distance to lift (when SWDBSx=0)			
2404	Synchronous axes automatic compensation : Maximum compensation			
3023 5200(D)	Plich enor compensation magnification for individual axis (H is optional.)			
5300(D)	Rigid tapping enective area (in-position check) for tapping axis			
5310(D)	Rigid tapping position error limit for tapping axis during movement			
5314(D)	Rigid tapping position error limit for tapping axis at stop			
5761	Compensation at compensation point number a for movement axis 1 (straightness compensation)			
5762	Compensation at compensation point number b for movement axis 1 (straightness compensation)			
5763	Compensation at compensation point number c for movement axis 1 (straightness compensation)			
5764	Compensation at compensation point number d for movement axis 1 (straightness compensation)			
5771	Compensation at compensation point number a for movement axis 2 (straightness compensation)			
5772	Compensation at compensation point number b for movement axis 2 (straightness compensation)			
5773	Compensation at compensation point number c for movement axis 2 (straightness compensation)			
5774	Compensation at compensation point number d for movement axis 2 (straightness compensation)			
5781	Compensation at compensation point number a for movement axis 3 (straightness compensation)			
5782	Compensation at compensation point number b for movement axis 3 (straightness compensation)			
5783	Compensation at compensation point number c for movement axis 3 (straightness compensation)			
5784	Compensation at compensation point number d for movement axis 3 (straightness compensation)			
8313	Limit to difference in position error between master and slave axes (pair under simplified synchronization			
0010	control)			
8315	Maximum compensation for synchronization (pair under simplified synchronization control)			
8316	Difference in reference counter value between master axis and slave axis (pair under simplified			
	synchronization control)			
8323(H)	Limit to difference in position error between master and slave axes (more than one pair under simplified			
	synchronization control)			
8325(H)	Naximum compensation for synchronization (more than one pair under simplified synchronization control)			
8326(H)	simplified synchronization control)			

B. PARAMETERS SET WITH VALUES IN DETECTION UNITS APPENDIX

The parameter No. indicated with an asterisk (*) is related to a function unique to the Power Mate. The parameter No. suffixed with "(D)" are related to the functions dedicated to the Power Mate *i*-D. The parameter No. suffixed with "(H)" are related to the functions dedicated to the Power Mate *i*-H.

B.6 PARAMETERS FOR Series 15*i*

No.	Description
1718	For vibration damping control : position pulses conversion coefficient
1729	Dual position feedback function : alarm detection level of Semi-Full error
1730	Function for changing the proportional gain in the stop state : stop judgment level
1827	Effective area (in-position check) for individual axis
1828	Position error limit for individual axis during movement
1829	Position error limit for individual axis at stop
1830	Position error limit for individual axis with servo off
1832	Position error limit for individual axis with feed at stop
1837	Rigid tapping position error limit during movement
1841	Servo error amount within which reference position return is assumed to be possible
1843	Position error limit at torque limit skip
1844	Grid shift for reference position shift function
1846	Distance for starting second stage compensation in smooth backlash compensation
1847	Distance for ending second stage compensation in smooth backlash compensation
1848	First stage compensation value in smooth backlash compensation
1849	Backlash compensation for individual axis at rapid traverse
1850	Grid shift for individual axis
1851	Backlash compensation for individual axis
1881	Permissible error at start of chopping compensation
1896	Mark 1 intervals on linear scale interface with absolute address reference mark
1912	Synchronous error zero width for each axis
1913	Maximum permissible synchronization error for each axis at rapid traverse
1914	Maximum permissible synchronization error for each axis at stop
1917	Synchronous error zero width 2 for each axis
1971	Dual position feedback function : conversion coefficient (numerator)
1972	Dual position feedback function : conversion coefficient (denominator)
1975	Second stage start/end parameter (when the two-stage backlash acceleration function is used)
1994	
1996	Detection write personator
2070	Detection unit parameter
2700	Lin amount in lining function against gravity at emergency stop
2795	Torsion preview control: Acceleration tersion compensation value (LSTCM)
2799	Torsion preview control: Acceleration torsion compensation value K1 (LSTK1)
2000	Torsion preview control: Acceleration torsion compensation value K2 (LSTK2)
2001	Torsion preview control: Acceleration torsion compensation value K1N (LSTK1N)
2805	Torsion preview control: Acceleration torsion compensation value K2N (LSTK2N)
2806	Torsion preview control: Acceleration torsion compensation value K3N (LSTK2N)
2817	Synchronous axes automatic compensation : Maximum compensation
5226	Mark 2 intervals on linear scale having reference marks
5227	Distance from origin to reference position on linear scale having reference marks
5423	Pitch error compensation magnification
5433	Second cyclic pitch error compensation magnification
5428	Pitch error compensation value at reference position when movement to reference position is made in the
0120	direction opposite to reference position return direction (absolute value)
5449	Three-dimensional error compensation magnification
5450	Three-dimensional error compensation magnification

B-65270EN/08

APPENDIX

No.	Description
5451	Three-dimensional error compensation magnification
5471	Compensation α at compensation point number a for individual axis
5472	Compensation β at compensation point number b for individual axis
5473	Compensation γ at compensation point number c for individual axis
5474	Compensation ϵ at compensation point number d for individual axis
5504	Compensation point number d for movement axis 1 subjected to straightness compensation
5551	Compensation at compensation point number a for movement axis 1
5552	Compensation at compensation point number b for movement axis 1
5553	Compensation at compensation point number c for movement axis 1
5554	Compensation at compensation point number d for movement axis 1
5561	Compensation at compensation point number a for movement axis 2
5562	Compensation at compensation point number b for movement axis 2
5563	Compensation at compensation point number c for movement axis 2
5564	Compensation at compensation point number d for movement axis 2
5571	Compensation at compensation point number a for movement axis 3
5572	Compensation at compensation point number b for movement axis 3
5573	Compensation at compensation point number c for movement axis 3
5574	Compensation at compensation point number d for movement axis 3
5591	Compensation magnification for movement axis 1 subjected to straightness compensation
5592	Compensation magnification for movement axis 2 subjected to straightness compensation
5593	Compensation magnification for movement axis 3 subjected to straightness compensation
5594	Compensation magnification for movement axis 4 subjected to straightness compensation
5595	Compensation magnification for movement axis 5 subjected to straightness compensation

HIGH-SPEED AND HIGH PRECISION OPERATIONS

C. PARAMETERS RELATED TO

PARAMETERS RELATED TO HIGH-SPEED AND HIGH PRECISION OPERATIONS

The i series CNCs are provided with some functions for high-speed and high precision operations. This appendix lists parameters categorized by model and function and their standard setting values so as to make it easy to tune the functions.

Appendix D consists of the following two items:

- CNC model-specific information This section lists high-speed and high precision functions and parameters related to them for individual CNC models. The parameter tables in this section contain standard setting values.
 Servo parameters
 - This section lists servo parameters common to all CNC models and standard setting values for them.

NOTE

1 Use the standard setting values included in the parameter tables as reference data for initialization.

If a parameter needs tuning based on the machine type, determine a final setting for the parameter according to the characteristic of the machine and how to use it.

To reduce machining time, change parameters from standard settings to speed priority I to speed priority II while checking the operation status. (The settings for speed priority II can reduce much more machining time than the settings for speed priority I.)

- 2 For the specifications of CNC models and detailed explanations about their functions, refer to the respective CNC manuals.
- 3 In the following table, the circle indicates that the item is supported, the triangle indicates partial support, and the cross indicates non-support.

Appendix C, "PARAMETERS SET WITH VALUES IN DETECTION UNITS", consists of the following sections:

C.1	MODEL-SPECIFIC INFORMATION		
	C.1.1	Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A/B	
	C.1.2	Series35 <i>i</i> -B, Power Motion <i>i</i> -A	
	C.1.3	Series 0 <i>i</i> -D	
	C.1.4	Series 16i/18i/21i/0i/0i Mate -MB, 0i/0i Mate-MC/20i-FB	
	C.1.5	Series 15 <i>i</i> -MB	
C.2	SERVO	D PARAMETERS RELATED TO HIGH-SPEED AND HIGH PRECISION	
	OPER/	ATIONS	
C.1 MODEL-SPECIFIC INFORMATION

C.1.1 Series 30*i*/31*i*/32*i*-A/B

[Functions related to high-speed and high precision operations]

High-speed high precision functions	Al contour control I	Al contour control II ^(Note 1)	Al contour control II + High-speed processing ^(Note 2)
Series30/A/B	0	0	0
Series31/A/B / A5/B5	0	0	0
Series32/A/B	0	0	×
Acc./dec. before interpolation			
Туре	Linear/ Bell-shaped	Linear/ Bell-shaped/ Smooth bell-shaped	Linear/ Bell-shaped/ Smooth bell-shaped
Acceleration setting for each axis	0	0	0
Velocity control			
Velocity control by speed difference among axes	0	0	0
Velocity control by acceleration in circular interpolation	0	0	0
Acceleration-based velocity control	0	0	0
Cutting load-based velocity control	×	0	0
Jerk control	×	0	0
Optimum torque acc./dec.	0	0	0
Other functions			
Nano interpolation	0	0	0
5-axis machining functions (Note 3)	0	0	0
Smooth interpolation (Note 4)	0	0	0
NURBS (Note 4)	0	0	0
Nano smoothing (Note 5)	0	0	0

NOTE

- 1 In FS30*i* systems controlling more than four paths and more than 20 axes, this function cannot be used.
- 2 In FS30*i* and FS31*i* systems controlling more than two paths and more than 12 axes, this function cannot be used.
- 3 These functions can be used with the FS30*i*-A/B and FS31*i*-A5/B5 only.
- 4 These functions cannot be used with the FS32*i*.
- 5 These functions cannot be used with the FS32*i*-A.

[Parameters]

Described below are the parameters that must be specified for individual high-speed and high precision cutting machines separately.

Use the standard setting values included in the parameter tables as reference data for initialization. If a parameter needs tuning based on the machine type, determine a final setting for the parameter according to the characteristic of the machine and how to use it.

• Standard settings (precision priority) When there is vibration or significant impact, or when machining is to be performed more precisely, make settings based on the standard settings. • Cutting time-priority setting

To reduce machining time, make settings for speed priority I then for speed priority II in stages. The settings for speed priority II can reduce much more machining time than the settings for speed priority I.

(1) Al contour control I, Al contour control II

• Parameters that need tuning based on the machine type

Demonstern	Standard setting value		value	
No.	Standard setting	Speed priority I	Speed priority II	Description
1420	-	-	-	Maximum rapid traverse rate (mm/min) for individual axes
1432	-	-	-	Maximum cutting feedrate (mm/min) for individual axes
1620	-	-	-	Time constant (msec) for linear-shaped acc./dec. in rapid-traverse for individual axes
1621	-	-	-	Time constant T2 (msec) for bell-shaped acc./dec. in rapid-traverse for individual axes
11242	24	16	16	Time constant (msec) for acc./dec. after rapid traverse interpolation for individual axes in acc./dec. mode before rapid traverse interpolation
1769	24	16	16	Time constant (msec) for acc./dec. after cutting feed interpolation for individual axes
1660	700.0	2000.0	4000.0	Acceleration in acc./dec. before cutting feed interpolation (for constant-acceleration part) (Acceleration is specified in mm/sec ² for individual axes.)
1772	64	48	32	Time constant of bell-shaped acc./dec. before interpolation (msec) (for constant-acceleration part)
1783	400.0	500.0	1000.0	Allowable speed difference (mm/min) in acceleration-dependent on speed difference at corners
1737	525.0	1500.0	3000.0	Permissible acceleration in deceleration by acceleration (Acceleration is specified in mm/sec ² for individual axes.)
1735	525.0	1500.0	3000.0	Permissible acceleration in deceleration by acceleration in circular interpolation (Acceleration is specified in mm/sec ² for individual axes.)

Parameter No.	Standard setting value	Description
	0	Rapid traverse is of a non-linear type.
1401#1	1	Rapid traverse is of a linear type (Set this parameter to 1 if acc./dec. before rapid traverse interpolation is to be used.)
	#6,#3	
1602#6,#3	1,0	Acc./dec. after interpolation is of a linear type
	1,1	Acc./dec. after interpolation is of a bell-shaped type (Note 1)
7055#3	1/0	To be set to 1 if a function of changing the time constant for bell-shaped acc./dec. before interpolation is to be used.
7066	mm / inch 10000.0/3937.0	Reference speed (mm/min / inch/min) for a function of changing the time constant for bell-shaped acc./dec. before interpolation
19501#5	0/1	Set this parameter to 1 if acc./dec. before rapid traverse interpolation is to be used.
19503#0	0/1	When using smooth velocity control as velocity control by acceleration, set 1. (Note 2)
8451#4	0/1	Set this parameter to 1 if cutting load-dependent override is to be used. (This parameter is used if the mechanical rigidity of the Z-axis is low.) (Note 2)
19515#1	0/1	When using the slant type for override by cutting load, set 1. (Note 2)

C.PARAMETERS RELATED TO HIGH-SPEED AND HIGH PRECISION OPERATIONS

B-65270EN/08

APPENDIX

Parameter No.	Standard setting value	Description
19516	80	Region 1 override (%) for the cutting load-based deceleration function (needn't be specified if bit 4 of parameter No. 8451 or bit 1 of parameter No. 19515 = 0) (Note 2)
8456	80	Region 2 override (%) for the cutting load-based deceleration function (needn't be specified if bit 4 of parameter No. 8451 = 0)
8457	70	Region 3 override (%) for the cutting load-based deceleration function (needn't be specified if bit 4 of parameter No. 8451 = 0)
8458	60	Region 4 override (%) for the cutting load-based deceleration function (needn't be specified if bit 4 of parameter No. 8451 = 0)

NOTE

1 To perform bell-shaped acc./dec. after cutting feed interpolation, the option for bell-shaped acc./dec. after cutting feed interpolation is required.

2 These functions cannot be used with AI contour control I.

C.1.2 Series 35*i*-B, Power Motion *i*-A

[Functions related to high-speed and high precision operations]

Link anothink provision functions	Advanced preview control			
High-speed high precision functions	Series 35 <i>i</i> -B	Power Motion <i>i</i> -A		
Acc./dec. before interpolation				
Туре	Lin	ear		
Acceleration setting for each axis	(0		
Velocity control				
Velocity control by speed difference	C	C		
among axes				
Velocity control by acceleration in circular	×	0		
interpolation				
Acceleration-based velocity control	>	×		
Cutting load-based velocity control	>	×		
Jerk control	>	×		
Optimum torque acc./dec.	>	×		
Other functions				
Nano interpolation	>	×		
5-axis machining functions	>	×		
Smooth interpolation	>	×		
NURBS	>	×		
Nano smoothing	>	×		

[Parameters]

Described below are the parameters that must be specified for individual high-speed and high precision cutting machines separately.

Use the standard setting values included in the parameter tables as reference data for initialization. If a parameter needs tuning based on the machine type, determine a final setting for the parameter according to the characteristic of the machine and how to use it.

- Standard settings (precision priority) When there is vibration or significant impact, or when machining is to be performed more precisely, make settings based on the standard settings.
- Cutting time-priority setting

C. PARAMETERS RELATED TO HIGH-SPEED AND HIGH PRECISION OPERATIONS

APPENDIX

To reduce machining time, make settings for speed priority I then for speed priority II in stages. The settings for speed priority II can reduce much more machining time than the settings for speed priority I.

(1) Advanced preview control

• Parameters that need tuning based on the machine type

Deremeter	Standard setting value		value	
No.	Standard	Speed	Speed	Description
	setting	priority I	priority II	
1420	-	-	-	Rrapid traverse rate (mm/min) for individual axes
1432	-	-	-	Maximum cutting feedrate (mm/min) for individual axes
1620	_	_	_	Time constant (msec) for linear-shaped acc./dec. in
1020	_	_	_	rapid-traverse for individual axes
1621		_		Time constant T2 (msec) for bell-shaped acc./dec. in
1021	-	_	-	rapid-traverse for individual axes
				Time constant (msec) for acc./dec. after rapid traverse
11242	24	16	16	interpolation for individual axes in acc./dec. mode before
				rapid traverse interpolation
1769	24	16	16	Time constant (msec) for acc./dec. after cutting feed
1705	27	10	10	interpolation for individual axes
				Acceleration in acc./dec. before cutting feed interpolation
1660	700.0	2000.0	4000.0	(for constant-acceleration part)
				(Acceleration is specified in mm/sec ² for individual axes.)
1783	400.0	500.0	1000.0	Allowable speed difference (mm/min) in
1705	400.0	500.0	1000.0	acceleration-dependent on speed difference at corners
				Permissible acceleration in deceleration by acceleration in
1725	525.0	525.0 1500.0	2000.0	circular interpolation
1755	525.0	1500.0	3000.0	(Acceleration is specified in mm/sec ² for individual axes.) (Note 1)

Parameters that do not usually need tuning so often and can be left at fixed values

Parameter No.	Standard setting value	Description		
	0	Rapid traverse is of a non-linear type.		
1401#1 1		Rapid traverse is of a linear type (Set this parameter to 1 if acc./dec. before rapid traverse interpolation is to be used.)		
1602#6	#6	Set this parameter to 1 if linear-type acc./dec. after interpolation is to be used.		
19501#5	0/1	Set this parameter to 1 if acc./dec. before rapid traverse interpolation is to be used.		

NOTE

1 These functions cannot be used with the FS35*i*-B.

C.1.3 Series 0*i*/0*i* Mate-D

[Functions related to high-speed and high precision operations]

High-speed high precision functions	Advanced preview control	Al advanced preview control	Al contour control I	Al contour control
Series0 <i>i</i> -MD	×	0	0	0
Series0 <i>i</i> -TD	0	×	0	0
Series0 <i>i</i> Mate-MD	×	0	0	×
Series0 <i>i</i> Mate-TD	×	×	0	×
Acc./dec. before interpolation				
Туре	Linear	Linear	Linear/ Bell-shaped	Linear/ Bell-shaped/ Smooth bell-shaped
Acceleration setting for each axis	0	0	0	0
Function for changing the time constant of bell-shaped acc./dec.	×	×	0	0
Velocity control				
Velocity control by speed difference among axes	0	0	0	0
Velocity control by acceleration in circular interpolation	0	0	0	0
Acceleration-based velocity control	×	0	0	0
Smooth velocity control	×	×	×	0
Cutting load-based velocity control	×	×	×	0
Jerk control	×	×	×	0
Function for ignoring the velocity command	×	×	×	0
Other functions				
Nano interpolation	0	0	0	0
Nano smoothing	×	×	×	0

NOTE

1 The function for changing the time constant of bell-shaped acc./dec. is contained in the option for bell-shaped acc./dec. before look ahead interpolation.

[Parameters]

Described below are the parameters that must be specified for individual high-speed and high precision cutting machines separately.

Use the standard setting values included in the parameter tables as reference data for initialization. If a parameter needs tuning based on the machine type, determine a final setting for the parameter according to the characteristic of the machine and how to use it.

- Standard settings (precision priority) When there is vibration or significant impact, or when machining is to be performed more precisely, make settings based on the standard settings.
- Cutting time-priority setting To reduce machining time, make settings for speed priority I then for speed priority II in stages. The settings for speed priority II can reduce much more machining time than the settings for speed priority I.

APPENDIX

(1) Advanced preview control

Parameters that need tuning based on the machine type

Deremeter	Stand	lard setting	value	
No.	Standard	Speed	Speed	Description
	setting	priority I	priority II	
1420	-	-	-	Rrapid traverse rate (mm/min) for individual axes
1432	-	-	-	Maximum cutting feedrate (mm/min) for individual axes
				Time constant (msec) for linear-shaped acc./dec. in
1000				rapid-traverse for individual axes
1620	-	-	-	/ Time constant T1 (msec) for bell-shaped acc./dec. in
				rapid-traverse for individual axes
1001			-	Time constant T2 (msec) for bell-shaped acc./dec. in
1621	-	-		rapid-traverse for individual axes
1760	24	16	16	Time constant (msec) for acc./dec. after cutting feed
1769	24	10		interpolation for individual axes
				Acceleration of acc./dec. before interpolation (portion with the
1660	700.0	2000.0	4000.0	acceleration fixed)
				(Acceleration is specified in mm/sec ² for individual axes.)
1702	400.0	500.0	1000.0	Allowable speed difference (mm/min) in
1703		500.0		acceleration-dependent on speed difference at corners
1727	525 O	1500.0	2000.0	Permissible acceleration in deceleration by acceleration
1737	525.0	1500.0	3000.0	(Acceleration is specified in mm/sec ² for individual axes.)
				Permissible acceleration in deceleration by acceleration in
1735	525.0	5.0 1500.0	3000.0	circular interpolation

• Parameters that do not usually need tuning so often and can be left at fixed values

Parameter No.	Standard setting value	Description
	0	Rapid traverse is of a non-linear type.
1401#1	1	Rapid traverse is of a linear type (Set this parameter to 1 if acc./dec. before rapid traverse interpolation is to be used.)
	#6,#3	
1602#6,#3	1,0	Acc./dec. after interpolation is of a linear type
	0,1	Acc./dec. after interpolation is of a bell-shaped type (Note 1)
19501#5	0/1	Set this parameter to 1 if acc./dec. before rapid traverse interpolation is to be used.

NOTE

.

1 Performing bell-shaped acc./dec. after cutting feed interpolation requires the bell-shaped acc./dec. after cutting feed interpolation option (FS0*i*-MD). With the FS0*i*-TD, bell-shaped acc./dec. after cutting feed interpolation cannot be used.

(2) Al advanced preview control

Parameters that need tuning based on the machine type

Standard setting value		value		
No.	Standard setting	Speed priority I	Speed priority II	Description
1420	-	-	-	Rrapid traverse rate (mm/min) for individual axes
1432	_	-	_	Maximum cutting feedrate (mm/min) for individual axes

C.PARAMETERS RELATED TO HIGH-SPEED AND HIGH PRECISION OPERATIONS

B-65270EN/08

APPENDIX

Deremeter	Stand	lard setting	value	
No.	Standard	Speed	Speed	Description
	setting	priority	priority ii	
				Time constant (msec) for linear-shaped acc./dec. in
1620	-	-	-	/ Time constant T1 (msec) for bell-shaped acc./dec. in
				rapid-traverse for individual axes
1621	_	_	_	Time constant T2 (msec) for bell-shaped acc./dec. in
1021		-	-	rapid-traverse for individual axes
1769	24	16	16	Time constant (msec) for acc./dec. after cutting feed
1700	27	10	10	interpolation for individual axes
				Acceleration of acc./dec. before interpolation (portion with the
1660	700.0	2000.0	4000.0	acceleration fixed)
				(Acceleration is specified in mm/sec ² for individual axes.)
1793	400.0	500.0	1000.0	Allowable speed difference (mm/min) in
1705	400.0	500.0	1000.0	acceleration-dependent on speed difference at corners
1727	525.0	1500.0	3000.0	Permissible acceleration in deceleration by acceleration (Note 1)
1757	525.0	1500.0	3000.0	(Acceleration is specified in mm/sec ² for individual axes.)
				Permissible acceleration in deceleration by acceleration in
1735	525.0	1500.0	3000.0	circular interpolation
				(Acceleration is specified in mm/sec ² for individual axes.)

• Parameters that do not usually need tuning so often and can be left at fixed values

Parameter No.	Standard setting value	Description			
	0	Rapid traverse is of a non-linear type.			
1401#1	1	Rapid traverse is of a linear type (Set this parameter to 1 if acc./dec. before rapid traverse interpolation is to be used.)			
	#6,#3				
1602#6,#3	1,0	Acc./dec. after interpolation is of a linear type			
	0,1	Acc./dec. after interpolation is of a bell-shaped type (Note 2)			
19501#5	0/1	Set this parameter to 1 if acc./dec. before rapid traverse interpolation is to be used.			

NOTE

- 1 This function cannot be used with advanced preview control.
- 2 Performing bell-shaped acc./dec. after cutting feed interpolation requires the bell-shaped acc./dec. after cutting feed interpolation option (FS0*i*-MD). With the FS0*i*-TD, bell-shaped acc./dec. after cutting feed interpolation cannot be used.

(3) Al contour control I, Al contour control II

• Parameters that need tuning based on the machine type

Deremeter	Standard setting value			
No.	Standard setting	Speed priority I	Speed priority II	Description
1420	-	-	-	Rrapid traverse rate (mm/min) for individual axes
1432	-	-	-	Maximum cutting feedrate (mm/min) for individual axes
1620	-	-	-	Time constant (msec) for linear-shaped acc./dec. in rapid-traverse for individual axes / Time constant T1 (msec) for bell-shaped acc./dec. in rapid-traverse for individual axes
1621	-	-	-	Time constant T2 (msec) for bell-shaped acc./dec. in rapid-traverse for individual axes

C. PARAMETERS RELATED TO HIGH-SPEED AND HIGH PRECISION OPERATIONS

APPENDIX

B-65270EN/08

Baramatar	Standard setting value			
No.	Standard setting	Speed priority I	Speed priority II	Description
1769	24	16	16	Time constant (msec) for acc./dec. after cutting feed interpolation for individual axes
1660	700.0	2000.0	4000.0	Acceleration of acc./dec. before interpolation (portion with the acceleration fixed) (Acceleration is specified in mm/sec ² for individual axes.)
1772	64	48	32	Time constant of bell-shaped acc./dec. before interpolation (msec) (for constant-acceleration part)
1783	400.0	500.0	1000.0	Allowable speed difference (mm/min) in acceleration-dependent on speed difference at corners
1737	525.0	1500.0	3000.0	Permissible acceleration in deceleration by acceleration (Acceleration is specified in mm/sec ² for individual axes.)
1735	525.0	1500.0	3000.0	Permissible acceleration in deceleration by acceleration in circular interpolation (Acceleration is specified in mm/sec ² for individual axes.)

Parameters that do not usually need tuning so often and can be left at fixed values

Parameter No.	Standard setting value	Description		
	0	Rapid traverse is of a non-linear type.		
1401#1	1	Rapid traverse is of a linear type (Set this parameter to 1 if acc./dec. before		
	#6 #3			
1602#6 #3	10	Acc /dec. after interpolation is of a linear type		
1002#0,#3	1,0	Acc./dec. after interpolation is of a hell shaped type (Note 1)		
	0,1	To be set to 1 if a function of changing the time constant for bell-shaped		
7055#3	0/1	acc /dec before interpolation is to be used		
7066	mm / inch 10000.0/3937.0	Reference speed (mm/min / inch/min) for a function of changing the time constant for bell-shaped acc./dec. before interpolation		
19501#5	0/1	Set this parameter to 1 if acc./dec. before rapid traverse interpolation is to be used.		
19503#0	0/1	When using smooth velocity control as velocity control by acceleration, set 1. $_{(Note \ 2)}$		
8451#4	0/1	Set this parameter to 1 if cutting load-dependent override is to be used. (This parameter is used if the mechanical rigidity of the Z-axis is low.)		
8451#7	0/1	Set this parameter to 1 if the function for ignoring the velocity command is to be used.		
19515#1	0/1	When using the slant type for override by cutting load, set 1. (Note 2)		
19516	80	Region 1 override (%) for the cutting load-based deceleration function (needn't be specified if bit 4 of parameter No. 8451 or bit 1 of parameter No. 19515 = 0) $(Note 2)$		
8456	80	Region 2 override (%) for the cutting load-based deceleration function (needn't be specified if bit 4 of parameter No. $8451 = 0$) (Note 2)		
8457	70	Region 3 override (%) for the cutting load-based deceleration function (needn't be specified if bit 4 of parameter No. 8451 = 0)		
8458	60	Region 4 override (%) for the cutting load-based deceleration function (needn't be specified if bit 4 of parameter No. 8451 = 0) $(Note 2)$		

NOTE

 Performing bell-shaped acc./dec. after cutting feed interpolation requires the bell-shaped acc./dec. after cutting feed interpolation option (FS0*i*-MD). With the FS0*i*-TD, bell-shaped acc./dec. after cutting feed interpolation cannot be used.

2 These functions can be used only with AI contour control II.

C.1.4 Series 16*i*/18*i*/21*i*/0*i*/0*i*Mate-MB, 0*i*/0*i* Mate-MC/20*i*-FB

[Functions related to high-speed and high precision operations]

High-speed high precision functions	Advanced preview control (APC)	Al advanced preview control (AI—APC)	Al contour control (AICC)	Al nano contour control (Al nano CC)	High precision contour control (HPCC)	Al high precision contour control (AI-HPCC)	Al nano high precision contour control (Al nano HPCC)
Series 0 <i>i</i> Mate -MC	×	0	×	×	×	×	×
Series 0 <i>i</i> -MC	×	0	0	х	х	×	×
Series20 <i>i</i> -FB	0	×	0	х	х	×	×
Series 0 <i>i</i> Mate -MB	×	0	×	х	х	×	×
Series 0 <i>i</i> -MB	×	0	0	×	×	×	×
Series21 <i>i</i> -MB	0	0	0	0	×	×	×
Series18 <i>i</i> -MB	0	×	0	0	0	0	0
Series16 <i>i</i> -MB	0	×	0	0	0	0	0
Acc./dec. before interpolation							
Туре	Linear	Linear/ Bell-shaped	Linear/ Bell-shaped/ Smooth bell-shaped	Linear/ Bell-shaped/ Smooth bell-shaped	Linear/ Bell-shaped	Linear/ Bell-shaped/ Smooth bell-shaped	Linear/ Bell-shaped/ Smooth bell-shaped
Time constant setting for individual axes	×	×	×	×	×	0	0
Velocity control							
Automatic corner deceleration	0	0	0	0	0	0	0
Arc radius-based velocity control	0	0	0	0	0	0	0
Acceleration-based velocity control	×	0	0	0	0	0	0
Cutting load-based velocity control	×	×	×	×	0	0	0
Jerk control (Note 1)	×	×	Δ	Δ	×	0	0
Optimum torque acc./dec.	×	×	×	×	×	0	0
Other functions							
Nano interpolation	×	×	×	0	×	×	0
5-axis machining functions	×	×	×	×	×	0	0
Smooth interpolation	×	×	×	×	0	0	0
NURBS	×	×	×	×	0	0	0
Nano smoothing	×	×	×	×	×	0	0
Additional hardware	None	None	None	None	RISC	board is nec	essary.

NOTE

1 Jerk control can be used in the Series 16*i*-MB/18*i*-MB.

APPENDIX

[Parameters]

Described below are the parameters that must be specified for individual high-speed and high precision cutting machines separately.

Use the standard setting values included in the parameter tables as reference data for initialization. If a parameter needs tuning based on the machine type, determine a final setting for the parameter according to the characteristic of the machine and how to use it.

- Standard settings (precision priority) When there is vibration or significant impact, or when machining is to be performed more precisely, make settings based on the standard settings.
- Cutting time-priority setting To reduce machining time, make settings for speed priority I then for speed priority II in stages. The settings for speed priority II can reduce much more machining time than the settings for speed priority I.

NOTE

- 1 Performing bell-shaped acc./dec. after interpolation requires the look-ahead bell-shaped acc./dec. after interpolation option.
- 2 Performing linear-shaped acc./dec. after cutting feed interpolation requires the linear-shaped acc./dec. after cutting feed interpolation option.
- 3 To perform bell-shaped acc./dec. after cutting feed interpolation, the option for bell-shaped acc./dec. after cutting feed interpolation is required.
- 4 Performing bell-shaped acc./dec. in rapid-traverse requires the bell-shaped acc./dec. in rapid-traverse option.

(1) Advanced preview control

Parameters that need tuning based on the machine type

Deremeter	Standard setting value			
No.	Standard setting	Speed priority I	Speed priority II	Description
1432	-	-	-	Maximum cutting feedrate (mm/min) for individual axes
1620	-	-	-	Time constant (msec) for linear-shaped acc./dec. in rapid-traverse for individual axes
1621	-	-	-	Time constant T2 (msec) for bell-shaped acc./dec. in rapid-traverse for individual axes
1730	3060	5150	7275	Feedrate upper limit (mm/min) for arc radius R
1731	5000	5000	5000	Arc radius R (1 μ m) for arc radius-based feedrate upper limit
1732	100	100	100	Arc radius-based feedrate clamp lower speed limit (mm/min)
1768	24	16	16	Time constant (msec) for acc./dec. after cutting feed interpolation
1770	10000	10000	10000	Maximum cutting feedrate (mm/min) during acc./dec. before interpolation
1771	240	80	40	Time (msec) allowed before a maximum cutting feedrate during acc./dec. before interpolation is reached
1783	400	500	1000	Allowable speed difference (mm/min) in acceleration-dependent on speed difference at corners
1784	-	-	-	Speed (mm/min) at occurrence of overtravel alarm To be specified according to the overrun distance at overtravel

Parameter No.	Standard setting value	Description
1602#0	1	The type of linear-shaped acc./dec. before interpolation is B.

C.PARAMETERS RELATED TO HIGH-SPEED AND HIGH PRECISION OPERATIONS

B-65270EN/08

APPENDIX

Parameter No.	Standard setting value	Description		
1602#4	1	Automatic deceleration at corners is under speed difference-dependent control		
	#6,#3			
1602#6,#3	1,0	Acc./dec. after interpolation is of a linear type (to be specified when FAD is used)		
	1,1	Acc./dec. after interpolation is of a bell-shaped type (to be specified when FAD is not used)		
1802#7	0/1	To be set to 1 if the CMR setting is 2 or greater (parameter No. 1820 setting is 4 or greater).		
3403#0	1	To be set to the standard setting value.		

(2) Al advanced preview control

• Parameters that need tuning based on the machine type

Doromotor	Standard setting value			
Parameter	Standard	Speed	Speed	Description
NO.	setting	priority I	priority II	
1432	-	-	-	Maximum cutting feedrate (mm/min) for individual axes
4000				Time constant (msec) for linear-shaped acc./dec. in
1620	-	-	-	rapid-traverse for individual axes
1001				Time constant T2 (msec) for bell-shaped acc./dec. in
1621	-	-	-	rapid-traverse for individual axes
1730	3060	5150	7275	Feedrate upper limit (mm/min) for arc radius R
1731	5000	5000	5000	Arc radius R (1 μ m) for arc radius-based feedrate upper limit
1732	100	100	100	Arc radius-based feedrate clamp lower speed limit (mm/min)
4700	24	10	10	Time constant (msec) for acc./dec. after cutting feed
1700	24	10	10	interpolation
4770	10000	000 10000	10000	Maximum cutting feedrate (mm/min) during acc./dec. before
1770				interpolation
1771	240	40 80	40	Time (msec) allowed before a maximum cutting feedrate
1771				during acc./dec. before interpolation is reached
1772	64	48	32	Time constant of bell-shaped acc./dec. before interpolation
1772				(for constant-time part) (msec)
1783	400	400 500	1000	Allowable speed difference (mm/min) in
1705	400	500	1000	acceleration-dependent on speed difference at corners
				Speed (mm/min) at occurrence of overtravel alarm
1784	-	-	-	To be specified according to the overrun distance at
				overtravel
				Parameter (msec) for determining an allowable acceleration
				in determining acceleration-dependent speed.
1785	320	320 112	56	The parameter is to be set with the time allowed before a
1700	020		00	maximum cutting feedrate (parameter No. 1432) is reached.
				A maximum cutting feedrate of 10000 mm/min is used as the
				standard setting value.

Parameter No.	Standard setting value	Description
	#6,#3	
1602#6,#3	1,0	Acc./dec. after interpolation is of a linear type (to be specified when FAD is used)
	1,1	Acc./dec. after interpolation is of a bell-shaped type (to be specified when FAD is not used)
1603#7	1	Acc./dec. before interpolation is of bell-shaped type. (0: Linear-shaped acc./dec. before interpolation)

C. PARAMETERS RELATED TO HIGH-SPEED AND HIGH PRECISION OPERATIONS

APPENDIX

Parameter No.	Standard setting value	Description
1802#7	0/1	To be set to 1 if the CMR setting is 2 or greater (parameter No. 1820 setting is 4 or greater).

(3) AI contour control

• Parameters that need tuning based on the machine type

Deremeter	Stand	ard setting	value	
Parameter	Standard	Speed	Speed	Description
NO.	setting	priority I	priority II	
1432	-	-	-	Maximum cutting feedrate (mm/min) for individual axes
1620				Time constant (msec) for linear-shaped acc./dec. in
1620	-	-	-	rapid-traverse for individual axes
1601				Time constant T2 (msec) for bell-shaped acc./dec. in
1021	-	-	-	rapid-traverse for individual axes
1730	3060	5150	7275	Feedrate upper limit (mm/min) for arc radius R
1731	5000	5000	5000	Arc radius R (1 μ m) for arc radius-based feedrate upper limit
1732	100	100	100	Arc radius-based feedrate clamp lower speed limit (mm/min)
1769	24	16	16	Time constant (msec) for acc./dec. after cutting feed
1700	24	10	10	interpolation
1770	10000	10000	10000	Maximum cutting feedrate (mm/min) during acc./dec. before
1770	10000	10000	10000	interpolation
1771	240	240 80	40	Time (msec) allowed before a maximum cutting feedrate
1771	240	00	40	during acc./dec. before interpolation is reached
1772	64	64 48	32	Time constant of bell-shaped acc./dec. before interpolation
1112	04	40	52	(for constant-time part) (msec)
1783	400	400 500	1000	Allowable speed difference (mm/min) in
1705	400	500	1000	acceleration-dependent on speed difference at corners
				Speed (mm/min) at occurrence of overtravel alarm
1784	-	-	-	To be specified according to the overrun distance at
				overtravel
				Parameter (msec) for determining an allowable acceleration in
				determining acceleration-dependent speed.
1705	320	320 112	56	The parameter is to be set with the time allowed before a
1705			50	maximum cutting feedrate (parameter No. 1432) is reached.
				A maximum cutting feedrate of 10000 mm/min is used as the
				standard setting value.

Parameter No.	Standard setting value	Description
	#6,#3	
1602#6,#3	1,0	Acc./dec. after interpolation is of a linear type (if bell-shaped acc./dec. before interpolation is used)
	1,1	Acc./dec. after interpolation is of a bell-shaped type (if linear-shaped acc./dec. before interpolation is used)
1603#7	1	Acc./dec. before interpolation is of bell-shaped type. (0: Linear-shaped acc./dec. before interpolation)
1802#7	0/1	To be set to 1 if the CMR setting is 2 or greater (parameter No. 1820 setting is 4 or greater).
7050#5	1	To be set to the standard setting value.
7050#6	0	To be set to the standard setting value.
7052#0	0/1	To be set to 1 for the PMC and Cs axes.
7055#3	1/0	To be set to 1 if a function of changing the time constant for bell-shaped acc./dec. before interpolation is to be used.

C.PARAMETERS RELATED TO HIGH-SPEED AND HIGH PRECISION OPERATIONS

B-65270EN/08

Parameter No.	Standard setting value	Description
7058	0	To be set to the standard setting value.
7066	mm / inch	Reference speed (mm/min / inch/min) for a function of changing the time
	10000/3937	constant for bell-shaped acc./dec. before interpolation

(4) Al nano contour control

• Parameters that need tuning based on the machine type

Parameter	Standard setting value				
No	Standard	Speed Speed		Description	
NO.	setting	priority I	priority II		
1432	-	-	-	Maximum cutting feedrate (mm/min) for individual axes	
1620	4000			Time constant (msec) for linear-shaped acc./dec. in	
1620	-	-	-	rapid-traverse for individual axes	
1601				Time constant T2 (msec) for bell-shaped acc./dec. in	
1021	-	-	-	rapid-traverse for individual axes	
1730	3060	5150	7275	Feedrate upper limit (mm/min) for arc radius R	
1731	5000	5000	5000	Arc radius R (1 μ m) for arc radius-based feedrate upper limit	
1732	100	100	100	Arc radius-based feedrate clamp lower speed limit (mm/min)	
1769	24	16	16	Time constant (msec) for acc./dec. after cutting feed	
1700	24	10	10	interpolation	
1770	10000	10000	10000	Maximum cutting feedrate (mm/min) during acc./dec. before	
1770	10000	10000	10000	interpolation	
1771	240	90	40	Time (msec) allowed before a maximum cutting feedrate	
1771	240	80	40	during acc./dec. before interpolation is reached	
1772	64	18	32	Time constant of bell-shaped acc./dec. before interpolation	
1772	04	40	(for constant-time part) (msec)		
1783	400	500	1000	Allowable speed difference (mm/min) in	
1705	400	500	1000	acceleration-dependent on speed difference at corners	
				Speed (mm/min) at occurrence of overtravel alarm	
1784	-	-	-	To be specified according to the overrun distance at	
				overtravel	
				Parameter (msec) for determining an allowable acceleration	
				in determining acceleration-dependent speed.	
1785	320	112	56	The parameter is to be set with the time allowed before a	
1705			50	maximum cutting feedrate (parameter No. 1432) is reached.	
				A maximum cutting feedrate of 10000 mm/min is used as	
				the standard setting value.	

Parameter No.	Standard setting value	Description			
	#6,#3				
1602#6,#3	1,0	Acc./dec. after interpolation is of a linear type (if bell-shaped acc./dec. before interpolation is used)			
	1,1	Acc./dec. after interpolation is of a bell-shaped type (if linear-shaped acc./de pefore interpolation is used)			
1603#7	1	Acc./dec. before interpolation is of bell-shaped type. (0: Linear-shaped acc./dec. before interpolation)			
1802#7	0/1	To be set to 1 if the CMR setting is 2 or greater (parameter No. 1820 setting is 4 or greater).			
7052#0	0/1	To be set to 1 for the PMC and Cs axes.			
7053#0	0	Al nano contour control (1: Al contour control is enabled.)			
7055#3	1/0	To be set to 1 if a function of changing the time constant for bell-shaped acc./dec. before interpolation is to be used.			

C. PARAMETERS RELATED TO HIGH-SPEED AND HIGH PRECISION OPERATIONS

APPENDIX

Parameter No.	Standard setting value	Description		
7058	0	To be set to the standard setting value.		
7066	mm / inch	Reference speed (mm/min / inch/min) for a function of changing the time		
7066	10000/3937	constant for bell-shaped acc./dec. before interpolation		

(5) High-precision contour control

• Parameters that need tuning based on the machine type

Parameter	Standard setting value				
No.	Standard setting	Speed priority I	Speed priority II	Description	
1432	-	-	-	Maximum cutting feedrate (mm/min) for individual axes	
1620	-	-	-	Time constant (msec) for linear-shaped acc./dec. in rapid-traverse for individual axes	
1621	-	-	-	Time constant T2 (msec) for bell-shaped acc./dec. in rapid-traverse for individual axes	
1768	24	16	16	16 Time constant (msec) for acc./dec. after cutting feed interpolation	
8400	10000	10000	10000 Maximum cutting feedrate (mm/min) during acc./dec. before interpolation		
8401	240	80	40	Time (msec) allowed before a maximum cutting feedrate during acc./dec. before interpolation is reached	
8410	400	500	1000	Allowable speed difference (mm/min) in acceleration-dependent on speed difference at corners	
8416	64	48	32	32 Time constant of bell-shaped acc./dec. before interpolation (for constant-time part) (msec)	
8470	320	112	56	 (for constant-time part) (msec) Parameter (msec) for determining an allowable acceleration in determining acceleration-dependent speed. The parameter is to be set with the time allowed before a maximum cutting feedrate (parameter No. 1432) is reached. A maximum cutting feedrate of 10000 mm/min is used as the standard setting value. 	

Parameter No.	Standard setting value	Description
	#6,#3	
1602#6,#3	1,0	Acc./dec. after interpolation is of a linear type (if bell-shaped acc./dec. before interpolation is used)
	1,1	Acc./dec. after interpolation is of a bell-shaped type (if linear-shaped acc./dec. before interpolation is used)
1802#7	0/1	To be set to 1 if the CMR setting is 2 or greater (parameter No. 1820 setting is 4 or greater).
7510	-	Largest of controlled-axis numbers for which high precision contour control is performed
8402#7,#1,	1,1,	Acc./dec. before interpolation is of bell-shaped type. (with the acceleration
1603#3	1	change fixed)
8402#4	0	To be set to the standard setting value.
8402#5	1	To be set to the standard setting value.
8403#7,#1,	1,1	No alarm is raised on an M, S, T, B, or rapid traverse command.
8404#1,#0	1,1	Rapid traverse is processed on the RISC side.
8420	180	Number of blocks to be looked ahead (0: 120 blocks)
8451#0	1	To be set to the standard setting value.
8451#4	0/1	Set this parameter to 1 if cutting load-dependent override is to be used. (This parameter is used if the mechanical rigidity of the Z-axis is low.)

C.PARAMETERS RELATED TO HIGH-SPEED AND HIGH PRECISION OPERATIONS

B-65270EN/08

APPENDIX

Parameter No.	Standard setting value	Description	
8456	80	Region 2 override (%) for the cutting load-based deceleration function (needn't be specified if bit 4 of parameter No. 8451 = 0)	
8457	70	Region 3 override (%) for the cutting load-based deceleration function (needn't be specified if bit 4 of parameter No. 8451 = 0)	
8458	60	Region 4 override (%) for the cutting load-based deceleration function (needn't be specified if bit 4 of parameter No. 8451 = 0)	
8459#0	0	To be set to the standard setting value.	
8459#1	1	To be set to the standard setting value.	
8475#2	1	Automatic deceleration at corners is enabled.	
8475#3	1	Acceleration-dependent determination of speed during arc interpolation is enabled.	
8480#4	0/1	To be set to 1 if the software series on the RISC side is B435. Otherwise, to be reset to 0.	
8480#5	0	To be set to the standard setting value.	
8480#6	0	To be set to the standard setting value.	
8485#0	1/0	Scaling/coordinate system rotation in high precision contour control mode is enabled/disabled. (An option is necessary.)	
8485#1	1/0	A canned cycle in high precision contour control mode is enabled/disabled. (An option is necessary.)	
8485#2	1/0	A helical interpolation in high precision contour control mode is enabled/disabled. (An option is necessary.)	
8485#4	1/0	A involute interpolation in high precision contour control mode is enabled/disabled. (An option is necessary.)	
8485#5	1/0	A smooth interpolation in high precision contour control mode is enabled/disabled. (An option is necessary.)	

(6) AI high precision contour control, AI nano high precision contour control

• Parameters that need tuning based on the machine type

Deremeter	Standard setting value				
No.	Standard setting	Speed priority I	Speed priority II	Description	
1432	-	-	-	Maximum cutting feedrate (mm/min) for individual axes	
1620	-	-	-	Time constant (msec) for linear-shaped acc./dec. in rapid-traverse for individual axes	
1621	-	-	-	Time constant T2 (msec) for bell-shaped acc./dec. in rapid-traverse for individual axes	
1768	24	16	16	Time constant (msec) for acc./dec. after cutting feed interpolation	
8400	10000	10000	10000	Maximum cutting feedrate (mm/min) during acc./dec. before interpolation	
19510	240	80	40 If this parameter is 0, a setting in parameter No. 8401 is used.		
8410	400	500	1000	Allowable speed difference (mm/min) in acceleration-dependent on speed difference at corners	
8416	64	48	32	Time constant of bell-shaped acc./dec. before interpolation (for constant-time part) (msec)	

C. PARAMETERS RELATED TO HIGH-SPEED AND HIGH PRECISION OPERATIONS

APPENDIX

Deremeter	Standard setting value				
No.	Standard Speed setting priority I		Speed priority II	Description	
8470	320	112	56	Parameter (msec) for determining an allowable acceleration in determining acceleration-dependent speed. The parameter is to be set with the time allowed before a maximum cutting feedrate (parameter No. 1432) is reached. A maximum cutting feedrate of 10000 mm/min is used as the standard setting value.	

Parameter No.	Standard setting value	Description		
	#6,#3			
1602#6,#3	1,0	Acc./dec. after interpolation is of a linear type (if bell-shaped acc./dec. before interpolation is used)		
	1,1	Acc./dec. after interpolation is of a bell-shaped type (if linear-shaped acc./dec. before interpolation is used)		
1802#7	0/1	To be set to 1 if the CMR setting is 2 or greater (parameter No. 1820 setting is 4 or greater).		
7510	-	Largest of controlled-axis numbers for which high precision contour control is performed		
8402#7,#1,	1,1,	Acc./dec. before interpolation is of bell-shaped type. (with the acceleration change fixed)		
8403#1	1	No alarm is raised on an M, S, T, B, or rapid traverse command.		
8451#4	0/1	Set this parameter to 1 if cutting load-dependent override is to be used. (This parameter is used if the mechanical rigidity of the Z-axis is low.)		
19516	80	Region 1 override (%) for the cutting load-based deceleration function (needn't be specified if bit 4 of parameter No. 8451 = 0)		
8456	80	Region 2 override (%) for the cutting load-based deceleration function (needn't be specified if bit 4 of parameter No. 8451 = 0)		
8457	70	Region 3 override (%) for the cutting load-based deceleration function (needn't be specified if bit 4 of parameter No. 8451 = 0)		
8458	60	Region 4 override (%) for the cutting load-based deceleration function (needn't be specified if bit 4 of parameter No. 8451 = 0)		
8480#4	0	To be set to the standard setting value.		
8480#5	0	To be set to the standard setting value.		
8480#6	0	To be set to the standard setting value.		
19501#6	1/0	To be set to 1 if a function of changing the time constant for bell-shaped acc./dec. before interpolation is to be used.		
19504#0	1	Bell-shaped rapid traverse acc./dec. is used.		
19520	mm / inch 10000/3937	Reference speed (mm/min / inch/min) for a function of changing the time constant for bell-shaped acc./dec. before interpolation		
19600#0	0/1	Scaling is performed on the CNC side or, as 5-axis control mode, on the RISC side. (An option is necessary.)		
19600#1	0/1	Programmable mirror image is performed on the CNC side or, as 5-axis control mode, on the RISC side. (An option is necessary.)		
19600#2	0/1	Rotary dynamic fixture offset is performed on the CNC side or, as 5-axis control mode, on the RISC side. (An option is necessary.)		
19600#3	0/1	Coordinate rotation is performed on the CNC side or, as 5-axis control mode, on the RISC side. (An option is necessary.)		
19600#4	0/1	Three-dimensional coordinate conversion is performed on the CNC side or, as 5-axis control mode, on the RISC side. (An option is necessary.)		
19600#5	0/1	Cutter compensation C is performed on the CNC side or, as 5-axis control mode, on the RISC side. (An option is necessary.)		

C.1.5 Series 15*i*-MB

[Functions related to high-speed and high precision operations]

High-speed high precision functions	Look-ahead acc./dec. before interpolation	Fine HPCC
Series 15 <i>i</i> -MB	0	0
Acc./dec. before interpolation		
Туре	Linear/ Bell-shaped	Linear/ Bell-shaped/ Smooth bell-shaped
Time constant setting for individual axes	0	0
Velocity control		
Automatic corner deceleration	0	0
Arc radius-based velocity control	0	0
Acceleration-based velocity control	×	0
Cutting load-based velocity control	×	0
Jerk control	×	0
Optimum torque acc./dec.	0	0
Other functions		
Nano interpolation	0	0
5-axis machining functions	0	0
Smooth interpolation	0	0
NURBS	0	0
Nano smoothing	0	0
Additional hardware	None	None

APPENDIX

[Parameters]

Use the standard setting values included in the parameter tables as reference data for initialization. If a parameter needs tuning based on the machine type, determine a final setting for the parameter according to the characteristic of the machine and how to use it.

- Standard settings (precision priority)
 - When there is vibration or significant impact, or when machining is to be performed more precisely, make settings based on the standard settings.
- Cutting time-priority setting To reduce machining time, make settings for speed priority I then for speed priority II in stages. The settings for speed priority II can reduce much more machining time than the settings for speed priority I.

Deveneter	Standard setting value			
No.	Standard setting	Speed priority I	Speed priority II	Description
1478	400.0	500.0	1000.0	Allowable speed difference (mm/min) in acceleration-dependent on speed difference at corners
1635	24	16	16	Time constant (msec) for acc./dec. after interpolation
1656	64	48	32	Time constant (msec) for bell-shaped acc./dec. before interpolation (portion with the time fixed)
1660	700.0	2000.0	4000.0	Acceleration of linear-/bell-shaped acc./dec. before interpolation (portion with the acceleration fixed) (Acceleration is specified in mm/sec ² for individual axes.)
1663	525.0	1500.0	3000.0	Permissible acceleration in deceleration by acceleration (HPCC mode) (Acceleration is specified in mm/sec ² for individual axes.)

Parameters that need tuning based on the machine type

C. PARAMETERS RELATED TO HIGH-SPEED AND HIGH PRECISION OPERATIONS

APPENDIX

Deverseter	Standard setting value			
No.	Standard setting	Speed priority I	Speed priority II	Description
1665	525.0	1500.0	3000.0	Permissible acceleration in deceleration by acceleration in circular interpolation (non-HPCC mode) (Acceleration is specified in mm/sec ² for individual axes.)

Parameters that do not usually need tuning so often and can be left at fixed values

Parameter No.	Standard setting value	Description		
1483	100.0	Lower speed limit to acceleration-dependent deceleration (HPCC mode) (mm/min)		
1491	100.0	Lower speed limit to deceleration acceleration-dependent (non-HPCC mode) (mm/min)		
1517#6	0	 Speed difference- or acceleration-dependent deceleration type 0: Compatible with the 15B (by making the most of allowable speed difference and acceleration for each axis) 1: Fixed speed regardless of the direction of movement as long as the same contour is involved. 		
1600#4	0	0: Linear- or bell-shaped acc./dec. after interpolation enabled ^(Note 1) 1: Exponential acc./dec. after interpolation enabled		
1603#6	1/0	To be set to 1 if a function of changing the time constant for bell-shaped acc./dec. before interpolation is to be used.		
1473	mm / inch 10000.0/3937.0	Reference speed (mm/min / inch/min) for a function of changing the time constant for bell-shaped acc./dec. before interpolation		
2401#6	0	Setting this parameter to 1 enables look-ahead acc./dec. before interpolation and multibuffer when the power is switched on and in the cleared state. Fine HPCC is also enabled if available. If it is reset to 0, it is turned on with the G05.1Q1 command.		
7565#7	0	Setting this parameter to 1 causes a specified speed to be ignored and assumes that a speed set in parameter No. 7567 is specified		
7567	0	Specified clamp value in the fine HPCC mode (mm/min (input unit)) If the parameter setting is 0, no clamp takes place except for the maximum cutting speed specified in parameter No. 1422.		
7565#4	0/1	Set this parameter to 1 if the cutting load-based deceleration function is to be enabled. (This parameter is used if the mechanical rigidity of the Z-axis is low.)		
7697#1	0/1	When using the slant type for override by cutting load, set 1. (Note 2)		
7698	80	Override of area 1 in deceleration by cutting load (This setting is unnecessary if bit 4 of parameter No. 7565 is set to 0 or bit 1 of parameter No. 7697 is set to 0.) (%)		
7591	80	Region 2 override (%) for the cutting load-based deceleration function (needn't be specified if bit 4 of parameter No. 7565 = 0)		
7592	70	Region 3 override (%) for the cutting load-based deceleration function (needn't be specified if bit 4 of parameter No. 7565 = 0)		
7593	60	Region 4 override (%) for the cutting load-based deceleration function (needn't be specified if bit 4 of parameter No. 7565 = 0)		
8495#0	0/1	When using smooth velocity control as velocity control by acceleration, set 1. (Note 2)		

NOTE

1 To perform bell-shaped acc./dec. after cutting feed interpolation, the option for bell-shaped acc./dec. after cutting feed interpolation is required.

2 Only fine HPCC can be used.

C.2 SERVO PARAMETERS RELATED TO HIGH-SPEED AND HIGH PRECISION OPERATIONS

Described below are the servo parameters that need setting and tuning for high-speed and high precision operations.

To specify parameters, follow this procedure.

- 1. First specify one of items (1) to (3) about fixed parameters that are dependent on the CNC model and mode to be used.
- 2. Specify item (4) about parameters to be tuned in common to all CNC models and modes. (See Chapters 3 and 4 of this parameter manual for explanations about how to tune the parameters and detailed descriptions of the related functions.)
- 3. If you want to use SERVO HRV control, specify item (5).

(1) When HRV2 and fine ACC./Dec. is used (Series 16*i*/18*i*/21*i*/20*i*/0*i*-B/C)

- Using advanced preview control in the Series 16*i*/18*i*/21*i*
- Using AI advanced preview control in the Series 21*i*/20*i*/0*i*-B/C (servo software Series 90B0)

For the above cases, make the following settings for using HRV2 control and fine acc./dec.

- Parameters that do not usually need tuning so often and can be left at fixed values

Parameter No. FS16 <i>i</i> , etc.	Standard setting value	Description
2003#3	1	Enables PI control function
2003#5	1	Enables backlash acceleration
2004	0X000011 (Note 1)	HRV2 current control
2005#1	1	Enables feed-forward
2006#4	1	Uses the latest feedback data for velocity feedback.
2007#6	1	Enables FAD (Fine acc./dec.)
2015#6	1	Enables stage-2 backlash acceleration.
2016#3	1	Enables variable proportional gain in the stop state
2017#7	1	Enables velocity loop high cycle management function
2018#2	1	Changes the second override format for stage-2 backlash acceleration
2040	Standard parameter for HRV2 (Note 2)	Current integral gain
2041	Standard parameter for HRV2 (Note 2)	Current proportional gain
2092	10000	Advanced preview (position) feed-forward coefficient
0440	2 (detection unit 1 μm)	For variable proportional gain function in the stop state :
2119	20 (detection unit 0.1µm)	judgment level for stop state (specified in detection units)
2146	50	Stage-2 backlash acceleration end timer
2202#1	1	Cutting/rapid traverse velocity loop gain variable
2209#2	1	Enables FAD of linear type.

NOTE

- 1 Keep the bit indicated with X (bit 6) at the standard setting.
- 2 For motors not supporting the HRV2 standard parameters, change the parameter settings to the settings for HRV2 according to the instructions described in Section G.4.

- Parameters whose settings must be changed according to the size of the machine but needn't tuning once set up

	Standard setting value			
Parameter No.	Standard setting	Speed priority I	Speed priority II	Description
2109	24	16	16	FAD time constant

(2) When HRV2 is used, but fine acc./dec. is not (Series 30*i*/31*i*/32*i*/15*i*/16*i*/18*i*/21*i*/0*i*)

When using AI contour control I, AI contour control II, look-ahead acc./dec. before interpolation, Fine HPCC, AI nano high precision contour control, AI high precision contour control, AI nano contour control, AI contour control, or high precision contour control, make the following settings.

Parameter No. FS30 <i>i</i> ,16 <i>i</i> , etc. FS15 <i>i</i>	Standard setting value	Description
2003#3 1808#3	1	Enables PI control function
2003#5 1808#5	1	Enables backlash acceleration
2004 1809	0X000011 (Note 1)	HRV2 current control
2005#1 1883#1	1	Enables feed-forward
2006#4 1884#4	1	Uses the latest feedback data for velocity feedback.
2015#6 1957#6	1	Enables two-stage backlash acceleration
2016#3 1958#3	1	Enables variable proportional gain in the stop state
2017#7 1959#7	1	Enables velocity loop high cycle management function
2018#2 1960#2	1	Changes the second override format for stage-2 backlash acceleration.
2040 1852	Standard parameter for HRV2 (Note 2)	Current integral gain
2041 1853	Standard parameter for HRV2 (Note 2)	Current proportional gain
2092 1985	10000	Advanced preview (position) feed-forward coefficient
2119 1730	2 (detection unit 1 μ m) 20 (detection unit 0.1 μ m)	For variable proportional gain function in the stop state : judgment level for stop state (specified in detection units)
2146 1769	50	Stage-2 backlash acceleration end timer
2202#1 1742#1	1	Cutting/rapid traverse velocity loop gain variable

APPENDIX

NOTE

B-65270EN/08

- 1 Keep the bit indicated with X (bit 6) at the standard setting.
- 2 For motors not supporting the HRV2 standard parameters, change the parameter settings to the settings for HRV2 according to the instructions described in Section G.4.

(3) When using HRV1 and FAD (Series 21*i*/0*i*-B/C)

To use AI advanced preview control in the Series 21i/0i-B/C (servo software Series 9096), make the following settings for using HRV1 control and fine acc./dec.

- Parameters that do not usually need tuning so often and can be left at fixed values

Parameter No. FS21 <i>i</i>	Standard setting value	Description
2003#3	1	Enables PI control function
2003#5	1	Enables backlash acceleration
2004	Standard parameter for HRV1	HRV1 current control
2005#1	1	Enables feed-forward
2006#4	1	Uses the latest feedback data for velocity feedback.
2007#6	1	Enables FAD (Fine acc./dec.)
2015#6	1	Enables two-stage backlash acceleration
2016#3	1	Enables variable proportional gain in the stop state
2017#7	1	Enables velocity loop high cycle management function
2018#2	1	Changes the second override format for stage-2 backlash acceleration.
2040	Standard parameter for HRV1	Current integral gain
2041	Standard parameter for HRV1	Current proportional gain
2092	10000	Advanced preview (position) feed-forward coefficient
2119	2 (detection unit 1 μm) 20 (detection unit 0.1μm)	For variable proportional gain function in the stop state : judgment level for stop state (specified in detection units)
2146	50	Stage-2 backlash acceleration end timer
2202#1	1	Cutting/rapid traverse velocity loop gain variable
2209#2	1	Enables FAD of linear type.

- Parameters whose settings must be changed according to the size of the machine but needn't tuning once set up

	Standard setting value			
Parameter No.	Standard setting	Speed priority I	Speed priority II	Description
2109	24	16	16	FAD time constant

-

APPENDIX

(4) Parameters common to all CNC models (requiring tuning)

Parameters requiring tuning for finding optimum values

Parameter No. FS30 <i>i</i> ,16 <i>i</i> , etc. FS15 <i>i</i>	Setting at tuning start	Description	Items to be referenced in tuning
2021 1875	300	Load inertia ratio (velocity gain) * When the cutting/rapid velocity gain switching function is used, this parameter is applied to rapid traverse.	While checking vibration at stop, abnormal sound during low-speed movement, vibration during high-speed rotation, and so on, find the vibration limit, and set about 70% of the limit. \rightarrow See 4.3.1(6)
2107 1700	150	Cutting load inertia ratio override (in % units) * When the cutting/rapid velocity gain switching function is used, the gain magnified by this parameter setting is applied to cutting.	While checking vibration at stop, abnormal sound during low-speed movement, vibration during high-speed rotation, and so on, find the vibration limit, and set about 70% of the limit. \rightarrow See 4.3.1(6) and 5.2.
1825	Standard: 3000 Speed priority I: 5000 Speed priority II: 10000	Position gain	After determining the velocity loop gain, find the upper limit of the range in which hunting (low frequency vibration) does not occur. \rightarrow See 4.3.1(7).
2069 1962	Standard: 50 When nano interpolation is used, see Note 2. 200	Velocity feed-forward coefficient	Make adjustment while observing the shape of rounded corners. \rightarrow See 4.3.1(9).
2047 1859	Standard parameter	Observer parameter	Make adjustment while observing estimated disturbance value on the SERVO GUIDE. \rightarrow See 5.9.1.
2087 1980	0	Torque offset	Make adjustment while measuring positive and negative torque commands at a constant low feedrate.
2048 1860	30	Stage-1 acceleration amount for two-stage backlash acceleration	Make adjustment while observing the quadrant protrusion size. \rightarrow See 5.5.5.
2039 1724	100	2nd-stage acceleration amount	Make adjustment while observing the quadrant protrusion size.
2082 1975	10	Stage-2 start distance (detection unit)	Make adjustment while observing the quadrant protrusion size.
2089 1982	50	Stage-2 end distance (set with a ratio to the start distance specified in 10% units)	Make adjustment while observing the quadrant protrusion size.
2114 1725	10	Stage-2 override	Make adjustment while observing the quadrant protrusion size.

NOTE

1 There is the following relationship between the load inertia ratio and velocity loop gain (%).

Velocity loop gain (%) = $(1 + \text{load inertia ratio}/256) \times 100$

NOTE

2 The phrase "using nano interpolation" means using AI contour control I, AI contour control II, Fine HPCC, look-ahead acc./dec. before interpolation, AI nano high precision contour control, or AI nano contour control.

APPENDIX

(5) Parameters common to all CNC models (parameters needed to use HRV3)

Parameters that do not usually need tuning so often and can be left at fixed values

Parameter No. FS30 <i>i</i> ,16 <i>i</i> , etc. FS15 <i>i</i>	Standard setting value	Description
2004 1809	0X000011 ^(Note 1)	HRV2 current control (in a mode other than high-speed HRV control)
2013#0 1707#0	1	In the G05.4Q1 command, high-speed HRV control (HRV3 current control)
2202#1 1742#1	1	Cutting/rapid velocity loop gain switching function
2040 1852	Standard parameter for HRV2 (Note 2)	Current integral gain
2041 1853	Standard parameter for HRV2 (Note 2)	Current proportional gain
2334 2747	150	Current loop gain magnification for high-speed HRV current control

NOTE

- 1 Keep the bit indicated with X (bit 6) at the standard setting.
- 2 For motors not supporting the HRV2 standard parameters, change the parameter settings to the settings for HRV2 according to the instructions described in Section G.4.

Parameters that need tuning

Parameter No. FS30 <i>i</i> ,16 <i>i</i> , etc. FS15 <i>i</i>	Setting	Description	Items to be referenced in tuning
2107 1700	150	Cutting load inertia ratio override (in % units)	While checking vibration at stop, abnormal sound during low-speed movement, vibration during high-speed rotation, and so on, find the vibration limit, and set about 70% of the limit.
2335 2748	200	Cutting load inertia ratio override (in % units) when high-speed HRV current control is in use	While checking vibration at stop, abnormal sound during low-speed movement, vibration during high-speed rotation, and so on, find the vibration limit, and set about 70% of the limit.

(6) Parameters for Series 30*i*/31*i*-A/B (parameters needed to use HRV4)

Parameter No. FS30 <i>i</i>	Standard setting value	Description
2004	0X000011 (Note 1)	HRV3 current control (in a mode other than high-speed HRV control)
2014#0	1	In the G05.4Q1 command, high-speed HRV control (HRV4 current control)

C. PARAMETERS RELATED TO HIGH-SPEED AND HIGH PRECISION OPERATIONS

APPENDIX

Parameter No. FS30 <i>i</i>	Standard setting value	Description
2300#0	1	Extended HRV function
2202#1	1	Cutting/rapid velocity loop gain switching function
2040	Standard parameter for HRV2	Current integral gain
2041	Standard parameter for HRV2	Current proportional gain
2334	150	Current loop gain magnification for high-speed HRV current control

NOTE

1 Keep the bit indicated with X (bit 6) at the standard setting.

- Parameters that need tuning

Parameter No. FS30 <i>i</i> , etc.	Setting	Description	Items to be referenced in tuning
2107	150	Cutting load inertia ratio override (in % units)	While checking vibration at stop, abnormal sound during low-speed movement, vibration during high-speed rotation, and so on, find the vibration limit, and set about 70% of the limit.
2335	200	Cutting load inertia ratio override (in % units) when high-speed HRV current control is in use	While checking vibration at stop, abnormal sound during low-speed movement, vibration during high-speed rotation, and so on, find the vibration limit, and set about 70% of the limit.

D

VELOCITY LIMIT VALUES IN SERVO SOFTWARE

(1) Overview

The feed axis velocity is subject to the feedrate limits that depend on the internal processing of the system itself and that of the servo software. These velocity limit values on the feed axis are explained below.

NOTE

The permissible speeds listed below do not take detector hardware limitations into account.

- For the maximum permissible speed of a motor, refer to the specifications of the motor.
- For the maximum permissible speed of a detector itself, refer to the specifications of the detector.

(2) Velocity feedback (rotation speed) limit

[Limit values related to rotary motors]

The following limits apply to the rotation speed of motors according to the type of motor speed detector.

Detector type	Resolution	Allowable rotation speed (30 <i>i</i> A ,0 <i>i</i> D)	Allowable rotation speed (30 <i>i</i> B)
ai Pulsecoder	2 ²⁰ ,2 ²⁴ pulse/rev	7500min ⁻¹	7500min ⁻¹
Heidenhain RCN223F, 723F	2 ²³ pulse/rev	937min⁻¹ (*1)	7500min ⁻¹
Heidenhain RCN727F	2 ²⁷ pulse/rev	937min ^{₋1} (*1)	7500min ⁻¹

[Limit values related to linear motors]

The following limits apply to the feedrate according to the type of linear motor speed detector (linear scale).

Detector type	Resolution	Allowable speed (30 <i>i</i> A, 0 <i>i</i> D)	Allowable speed (30 <i>i</i> B)
Heidenhain LS486 (incremental) with linear motor position detection circuit	20/512 µm/pulse	614m/min	609m/min
Magnescale BS75A (incremental) with linear motor position detection circuit	0.1379/512µm/pulse	4.2m/min(*1)	33m/min
Heidenhain LC193F (absolute)	0.01µm/pulse	157.2m/min	125.8m/min
Heidenhain LC493F (absolute)	0.05µm/pulse	786m/min	609m/min

(*1) The following servo software enables these permissible speeds to be increased to 7500 min⁻¹ (rotary motor) or 33 m/min (linear motor) by setting bit 6 of parameter No. 2271 to 1.

CNC		Servo software	Remarks	
CNC	Series	Edition		
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	P(16) and subsequent editions		
	90E1	01.0 and subsequent editions		
Series 30 <i>i/</i> 31 <i>i</i> -A	90D0	P(16) and subsequent editions	HRV4	
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions		
	90C8	A(01) and subsequent editions		
	90E5	A(01) and subsequent editions		
	90E8	A(01) and subsequent editions		

(3) Position feedback (axis feedrate) limits

The following feedrate limits may be applied according to each of the functions because of a weight on data that is handled in detection units within the servo software.

		4			
Function used		Allowable feedrate			
Hi-speed and high precision function	Feed-forward	Detection unit of 1 μm	Detection unit of 0.1 μm	Detection unit of 0.01 μm	Detection unit of 0.001 μm
None	Not performed/ performed (advanced preview type)	IS-B:999m/min	IS-B:999m/min	IS-D:10m/min	IS-E:1m/min
Al contour control I Al contour control II	Not performed/ performed (advanced preview type)	IS-C:100m/min	IS-C:100m/min	→100m/min(*1)	→100m/min(*1)
Electric gear box	Performed (advanced preview type))	IS-B:240m/min IS-C:100m/min	24m/min →100m/min(*1)	2.4m/min →100m/min(*1)	0.24m/min →100m/min(*1)

When ordinary position control is exercised

- When the spindle control function by a servo motor is used

Function used		Allowable feedrate				
Extension of permissible speed	Upper speed limit increase by a factor of 10	Detection unit of 1/1000 deg	Detection unit of 1/10000 deg	Detection unit of 1/100000 deg	Detection unit of 1/1000000 deg	
Performed	Performed (No.1408#3=0)	IS-B:2777min ⁻¹ IS-C: 277min ⁻¹	IS-B:2777min ⁻¹ IS-C: 277min ⁻¹	IS-D:27min ⁻¹	IS-E:2min ⁻¹	
(No.1013#7=0)	Performed (No.1408#3=1)	IS-B:27777min ⁻¹ IS-C: 2777min ⁻¹	IS-B:27777min ⁻¹ IS-C: 2777min ⁻¹	IS-D:277min ⁻¹	IS-E:27min ⁻¹	
Performed	Performed (No.1408#3=0)	IS-B:2777min ⁻¹ IS-C: 277min ⁻¹	IS-B:2777min ⁻¹ IS-C: 277min ⁻¹	IS-D:277min ⁻¹	IS-E:27min ⁻¹	
(No.2282#3=1)	Performed (No.1408#3=1)	IS-B:27777min ⁻¹ IS-C: 27777min ⁻¹	IS-B:27777min ⁻¹ IS-C: 2777min ⁻¹	IS-D:2777min ⁻¹	IS-E:349min⁻¹	

- * In the table, the values enclosed in a box are the limits due to the internal processing of the servo software. For the limits due to the internal processing of the servo software, if CMR is increased to decrease the detection unit, the permissible feedrate decreases in proportion to the detection unit. (Reducing the detection unit from 0.1 µm to 0.05 µm causes the permissible feedrate to be halved.)
- * If a semi-closed system (rotary or linear motor) where a detector with a high resolution is used, using also nano interpolation enables these functions to be used for position control at the highest limit to the detector resolution even if the detection unit is not subdivided.
- * If you are using these functions with a larger detection unit because of feedrate limits placed by the detection units stated above, velocity feedback data that can seriously affect velocity loop control is used for control at the highest limit to the detector resolution.
 - (*1) With the servo software and system software indicated below, the allowable feedrate value applicable when an increment system is selected from IS-D and IS-E is extended. A feedrate of up to 100 m/min can be specified with the increment system IS-C, IS-D, or IS-E by using matching servo software and system software and setting the following parameters:

• Series and editions of applicable servo software

CNC		Servo software	Bemerke	
	Series	Edition	Remarks	
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions		
Power Motion <i>i</i> -A				
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	J(10) and subsequent editions		
	90E1	01.0 and subsequent editions		
Series 30 <i>i/</i> 31 <i>i</i> -A	90D0	A(01) and subsequent editions	HRV4	
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions		
	90C8	A(01) and subsequent editions		
	90E5	A(01) and subsequent editions		
	90E8	A(01) and subsequent editions		

• Series and editions of applicable system software

CNC	System software				
CNC	Series	Edition			
Series 30 <i>i</i> -A	G00C,G01C,G02C	27 and subsequent editions			
	G004,G014,G024	01 and subsequent editions			
Series 31 <i>i</i> -A5	G12C,G13C	27 and subsequent editions			
	G124,G134	01 and subsequent editions			
Series 31 <i>i</i> -A	G103,G113	01 and subsequent editions			
	G104,G114	01 and subsequent editions			
Series 32 <i>i</i> -A	G203	01 and subsequent editions			
		(IS-E is not supported.)			
	G204	01 and subsequent editions			
		(IS-E is not supported.)			
Series 0 <i>i</i> -MD	D4F1	01 and subsequent editions			
		(IS-D and IS-E are not			
		supported.)			
Series 0 <i>i</i> -TD	D6F1	01 and subsequent editions			
		(IS-D and IS-E are not			
		supported.)			
Series 0 <i>i</i> Mate-MD	D5F1	01 and subsequent editions			
		(IS-D and IS-E are not			
		supported.)			
Series 0 <i>i</i> Mate-TD	D7F1	01 and subsequent editions			
		(IS-D and IS-E are not			
		supported.)			

For the Series 30*i*/31*i*/32*i*/35*i*-B and Power Motion *i*-A, all series and editions support this function. (However, for the Series 32*i*-B, IS-E is not supported, and for the Series 35*i*-B and Power Motion *i*-A, IS-D and IS-E are not supported.)

• Parameter setting method To extend the feedrate with the increment system IS-C, IS-D, or IS-E, both of parameter No. 1013 and No. 2282 must be set to 1. (The increment systems IS-C, IS-D, or IS-E are optional functions.)

		#7	#6	#5	#4	#3	#2	#1	#0
1013	Ι	IESP							

IESP(#7) When the increment system IS-C, IS-D, or IS-E is used, the function that can set a value range wider than the conventionally allowed one for speed and acceleration parameters is:

- 0: Not used.
- 1: Used.

APPENDIX

With an axis for which this parameter is set, a value range wider than the conventionally allowed one can be set for parameters to be set in speed and acceleration units when the increment system IS-C, IS-D, or IS-E is selected.

Moreover, a movement can be made at a parameter-set speed.

The number of fractional digits displayed on the parameter input screen for an axis with this parameter set is also modified. When IS-C or IS-D is used, the number of fractional digits is reduced by 1 from the conventional number of fractional digits. When IS-E is used, the number of fractional digits is reduced by 2 from the conventional number of fractional digits.

ISE64(#3) The speed limit on feed-forward (bit 1 (FEED) of parameter No. 2005 = 1) is:

0: Applied as conventionally done.

1: Extended.

When feed-forward is enabled, the speed limit on an axis for which this parameter is set is extended.

Ε

DETAILS OF HIGH-SPEED AND HIGH-PRECISION ADJUSTMENT

(1) Overview

Appendix E explains in detail the adjustment procedure described in Section 4.3, "ADJUSTING PARAMETERS FOR HIGH-SPEED AND HIGH-PRECISION MACHINING".

Appendix E, "DETAILS OF HIGH-SPEED AND HIGH-PRECISION ADJUSTMENT", consists of the following sections:

(1)	Overview	523
(2)	Feed-forward coefficient adjustment (using an arc of R10/F4000)	523
(3)	Velocity feed-forward coefficient adjustment (example using a square figure with 1/4 arcs)	525
(4)	Adjustment of the parameters for arc radius based feedrate clamping	528
(5)	Adjustment of an allowable feedrate difference of the feedrate difference based corner decelerate	tion
	function	530
(6)	Adjustment of backlash acceleration	531

(2) Feed-forward coefficient adjustment (using an arc of R10/F4000)

[Purpose of adjustment]

In a conventional position control loop where feed-forward control is not exercised, a velocity command is output based on (positional deviation) \times (position loop gain). This means that the machine moves only when there is a difference between the specification of a command and the machine position. When the position gain is 30 [1/s], for example, a feedrate of 10 m/min generates a positional deviation of 5.56 mm. In linear feed, this positional deviation does not cause a figure error. For an arc or corner, however, this positional deviation causes a large figure error.

A function for eliminating such a positional deviation is feed-forward. Feed-forward converts the position command from the CNC to a velocity command for velocity command compensation. Feed-forward can reduce a positional deviation (to almost 0, theoretically). Accordingly, feed-forward can reduce arc and corner figure errors. However, the servo response is improved, so that a shock can occur. To prevent a shock from occurring, acc./dec. before interpolation must be used at the same time.

[Guideline for adjustment value setting]

Theoretically, a feed-forward coefficient of 100% leads to a positional deviation of 0, and eliminates figure errors. Actually, however, there is a delay in velocity loop response. So, a value slightly less than 100% produces a specified figure. Usually, a value between 95% to 99% (settings of 9500 to 9900) is optimum. As the default, use 9800.

First, adjust the feed-forward coefficient while viewing an arc figure. (Set a velocity feed-forward coefficient of 50% before starting adjustment.)

[Actual adjustment]

Create a program as indicated below for circular movement by R10/F4000, and measure the path with SERVO GUIDE SD. G05Q1 and G05Q0 in the program are G codes for starting and ending the AI contour control mode, respectively. For a mode to be used, select the corresponding G codes from Table E (a).

E. DETAILS OF HIGH-SPEED AND HIGH-PRECISION ADJUSTMENT APPENDIX

B-65270EN/08

G91;	
G05Q1;	
G17G02I-10.F4000.;	
I-10.;	
I-10.;	
G05Q0;	
G04X3.;	
M99;	

Table E (a) Codes for starting and ending each mode

	Start	End
FS0 <i>i</i> -D + Advanced preview control	G08P1	G08P0
FS30 <i>i</i> + Al contour control I		
FS30 <i>i</i> + AI contour control II		
FS0 <i>i</i> -D + AI advanced preview control	G05.1Q1	G05.1Q0
FS0 <i>i</i> -D + AI contour control I		
FS0 <i>i</i> -D + AI contour control II		

In Fig. E (a), the feed-forward coefficient is insufficient, resulting in a radius reduction of about 5 μ m. In addition, the velocity loop gain is low, so that swells and quadrant protrusions are observed. By adjusting the feed-forward coefficient as shown in Fig. E (b), the arc radius reduction can be reduced to nearly 0.

Fig. E (a) Feed-forward adjustment Velocity loop gain: 100% Advanced preview feed-forward coefficient: 95% Fig. E (b) Feed-forward adjustment Velocity loop gain: 100% Advanced preview feed-forward coefficient: 98%

In the figures above, a low velocity loop gain is used for measurement. By using an increased velocity loop gain, swells and quadrant protrusions can be reduced (Fig. E (c)). Increase the velocity loop gain to 70% to 80% of the limit. Adjust the feed-forward coefficient finely, and apply quadrant protrusion compensation (backlash acc./dec.) to reduce the quadrant protrusions and improve the roundness (Fig. E (d)).

10:13:32 1997

15

hu May

Fig. E (c) Effect of velocity loop gain Velocity loop gain: 200% Advanced preview feed-forward coefficient: 98%

(3) Velocity feed-forward coefficient adjustment (example using a square figure with 1/4 arcs)

APPENDIX

f4000 tuped

R: 10.000

X: -10.000

0.0

1.0

Y: 0.000

Α:

в:

G: 100.0

fad 24mse

££99&

[Purpose of adjustment]

Feed-forward coefficient adjustment can reduce positional deviation and figure errors. If the response of the velocity loop for executing a velocity command is low, velocity control cannot be exercised as specified where the specified acceleration varies to a large extent, thus causing a figure error. The response of the velocity loop can be improved by increasing the velocity loop gain and by adjusting the velocity feed-forward coefficient.

Velocity feed-forward multiplies a specified rate of variation (acceleration) by an appropriate coefficient for torque command compensation. In the servo velocity loop (PI control), a compensation torque occurs only when a difference (velocity deviation) between a specified velocity and actual velocity actually occurs. On the other hand, velocity feed-forward performs torque command compensation according to an acceleration value specified beforehand. So, a figure error that occurs due to a velocity loop delay can be reduced.

[Guideline for adjustment value setting]

The formula below is applicable. In actual adjustment, however, make an adjustment starting with a velocity feed-forward coefficient of 100.

(Velocity feed-forward coefficient) =

100 × (Motor rotor inertia + load inertia) / Motor rotor inertia

[Actual adjustment]

Make a velocity feed-forward coefficient adjustment by using a square figure with four 1/4 arcs of a 5-mm radius. In this adjustment, disable the velocity clamp function based on an arc radius. (Disable the function, or in the example below, ensure that a velocity equal to or greater than F4000 can be specified.)

E. DETAILS OF HIGH-SPEED AND HIGH-PRECISION ADJUSTMENT APPENDIX

When the actual path is measured in a mode for displaying a reference path, the actual path and reference path are plotted at the same time as shown below:

Fig. H (f) Specified path and actual path

When advanced preview feed-forward is disabled, a figure error of hundreds μ m occurs as shown in Fig. E (f), and therefore can be viewed even in the XY mode. However, if advanced preview feed-forward is enabled for figure error reduction, it is difficult to evaluate a figure error correctly unless the error is enlarged.

In such a case, use the figure comparison mode (contour mode) for enlarging errors only for display (Ctrl O).

In addition, set an error display magnification with F3 (scale change). For Fig. E (g), a display magnification of 100 is set.

B-65270EN/08

In Fig. E (g), the velocity feed-forward coefficient is not specified, so that the movement along each axis delays where acceleration changes to a large extent. As the result, a protrusion occurs at the joint of a straight line with an arc, and a cut occurs at the joint of an arc with a straight line. In Fig. E (h), a velocity feed-forward coefficient is set for the X-axis only. The response of the X-axis has improved, so that a figure improvement can be seen in the areas where acceleration changes to a large extent along the X-axis.

In Fig. E (i), excessively large velocity feed-forward coefficients are specified, so that the protrusions shown in Fig. E (g) have changed to cuts, and the cuts have changed to protrusions. This means that optimum velocity feed-forward coefficients exist and they are less than the values of Fig. E (i). Fig. E (j) shows the result of adjustment to the optimum values. Fig. E (k) enlarges the errors only for display.

When the enlarged range is viewed, it is seen that the machine is vibrating in the arc areas. This vibration is caused by a low velocity loop gain. To reduce this vibration, two methods are available. One method increases the velocity loop gain. (This method cannot be used when the velocity loop gain has already been increased to the oscillation limit.) The other method decreases the feedrate in the arc areas with the arc radius based feedrate clamp function as described in Item E (4).

Fig. E (k) Velocity feed-forward adjustment

Swells in the arc areas can be reduced by increasing the velocity loop gain (Fig. E (l)). However, figure errors that occur at the joints of straight lines and arcs cannot be fully eliminated. Swells can be additionally reduced by fine adjustment of the velocity feed-forward coefficient or by using the arc radius based feedrate clamp function described in Item E(4).

(4) Adjustment of the parameters for arc radius based feedrate clamping

[Purpose of adjustment]

As mentioned above, velocity feed-forward coefficient adjustment can improve a velocity loop response delay, thus reducing figure errors in areas where specified acceleration changes to a large extent. However, velocity feed-forward coefficient adjustment alone cannot fully eliminate figure errors. Moreover, if the rigidity of a machine itself is low, the machine may vibrate due to a change in acceleration.

To reduce variation in specified acceleration in areas where acceleration changes to a large extent, the specified feedrate in the tangent direction is reduced. In part machining (advanced preview control), the arc radius based feedrate clamp function performs this feedrate reduction. By adjusting the parameter of this function, an acceleration value in the normal direction allowable with a machine can be found. As detailed below, such an acceleration value can be used as a guideline for setting the parameter for feedrate reduction by acceleration in high-precision contour control (small successive blocks).

In the above figure, let R be the radius of the arc, and F be the feedrate. Then, the acceleration in the normal direction is F^2/R . The arc radius based feedrate clamp function specifies R and F as its parameters to ensure that the acceleration in the normal direction at a specified arc does not exceed the specified value.

For example, suppose that when R = 5 mm and F = 4000 mm/min are specified as the parameters of the arc radius based feedrate clamp function, the acceleration in the normal direction at the arc is:

 $F^2/R = (4000/60)^2/5 = 889 \text{ mm/sec}^2$

When using the high-precision contour control function, set about the same value as this acceleration as the parameter for feedrate reduction function based on acceleration in small blocks. In the example above, if a cutting feedrate of F4000 (mm/min) is set, the time required to reach this feedrate is calculated as follows:

 $4000/60/889 \times 1000 = 75$ msec

E.DETAILS OF HIGH-SPEED AND HIGH-PRECISION ADJUSTMENT

When the feedrate at an arc is reduced using the arc radius based feedrate clamp function, figure precision improves. However, a longer machining time is required as a side effect. Fig. E (m) shows a tangent feedrate and processing time when the arc radius based feedrate clamp function is not used with the adjustment program used in (5) and later. Fig. E (m) indicates that the tangent feedrate remains to be F4000. On the other hand, when feedrate reduction to F3000 at R5 mm is specified with the arc radius based feedrate clamp function, the tangent feedrate is reduced to F3000 at corners as shown in Fig. E (n), but the machining time has increased by 200 msec.

Fig. E (m) When the arc radius based feedrate clamp function is not used

Fig. E (n) When the arc radius based feedrate clamp function is used

[Guideline for adjustment value setting]

Empirically, the values below are adequate. For the parameter numbers, refer to the parameter manual of each CNC. Standard: F3060 for R5 (527 mm/sec²)

Speed priority I: F5150 for R5 (1473 mm/sec²) Speed priority II: F7275 for R5 (2940 mm/sec²)

[Actual adjustment]

Fig. E (o) shows the results of setting R5 mm and F3000 with the arc radius based feedrate clamp function for Fig. E (k). Fig. E (o) indicates that the figure errors at the entries and exits of the arc areas have been reduced.

(5) Adjustment of an allowable feedrate difference of the feedrate difference based corner deceleration function

[Purpose of adjustment]

In the program shown in Fig. E (p), the feedrate along each axis changes to a great extent at each block joint. With a high-precision high-speed system, the CNC reads programmed figures beforehand. If the feedrate along each axis changes at a block joint, such a system can decrease the feedrate by a parameter-specified allowable feedrate difference to reduce a shock and figure error at the block joint. Acc./dec. is performed based on the time constant for acc./dec. before interpolation. A more reduced corner feedrate makes a figure error improvement to a greater extent, but requires a longer machining time. Set a reduced corner feedrate to a highest possible value as long as an allowable figure error is obtained.

[Guideline for setting]

For the parameter number, refer to the parameter manual of each CNC. Standard: F400 for R5 Speed priority I: F500 for R5 Speed priority II: F1000 for R5

[Actual adjustment procedure]

Execute the following program, and measure the actual path.

The XY mode (Ctrl-X) is used for drawing. To observe an overshoot along an axis to be stopped, the figure is enlarged in the direction of the axis to be stopped. Corner 1 and corner 3 in Fig. E (p) are enlarged in the X-axis direction, and corner 2 and corner 4 are enlarged in the Y-axis direction. In the examples below, corner 1 is displayed using 0.01 mm/div in the X-axis direction and 0.1 mm/div in the Y-axis direction.

In Fig. E (q) where a reduced corner feedrate of F1000 is set, an overshoot of 10 μ m or more has occurred. In Fig. E (r), however, the overshoot is reduced to about 3 μ m.

If an overshoot cannot be removed by setting a reduced corner feedrate close to 0, the acceleration of acc./dec. before interpolation may be too large. In such a case, set a longer time for acc./dec. before interpolation. (In this case, a longer machining time results.)

Fig. E (s) shows the feedrate along the X-axis and Y-axis (corner 1) when the corner deceleration function is used.

Fig. E (s) Time and feedrate relationship for reduced corner feedrate F1000

(6) Adjustment of backlash acceleration

(a) Backlash acceleration function

A simple figure as shown below is formed by the compensation value of backlash acceleration. The acceleration compensation value is added to the velocity command to help inversion of the velocity integral gain when the motor is reversed. This effect can reduce the path error in the reverse operation.

(Standard backlash acceleration)

Basically, the above two parameters are considered. Parameter No. 2071 is the backlash acceleration time, and its recommended value is 20. Normally, this value need not be adjusted. Parameter No. 2048 is the backlash acceleration amount. In the initial adjustment stage, set 100 in this parameter. Adjust this value while observing the arc figure.

(b) Setting initial parameters for backlash acceleration

Before starting backlash acceleration adjustment, set the following initial parameters:

E. DETAILS OF HIGH-SPEED AND HIGH-PRECISION ADJUSTMENT APPENDIX

[Dasie parameters for backlash acceleration]		
Parameter No. Recommended value		Description
1851	1以上	Backlash compensation
2003 #5	1	Enables backlash acceleration function
2006 #0	0/1	0: Semi-closed loop, 1: Full-closed loop
2009 #7	1	Stop of backlash acceleration
2223 #7	1 Enables backlash acceleration during cutting only.	
2015 #6	0	Disables the two-stage backlash acceleration function.
2048	100	Backlash acceleration amount
2082	5 (1μm detection) 50(0.1μm detection)	Backlash acceleration stop distance (in detection unit)
2071	20	Backlash acceleration time

[Basic parameters for backlash acceleration]

These parameters can be set in the parameter window of SERVO GUIDE.

P Param - CNO-PARA.prm(OFF-LINE:Path1)	_ 🗆 ×
<u>F</u> ile <u>E</u> dit <u>M</u> ove <u>W</u> indow <u>H</u> elp	
● SV C SP Group(G) +Backlash Acceleration ▼ Axis X ▼ I Lock	🔽 Hint
Backlash acceleration 2-stage backlash acceleration 2-stage backlash acceleration 2	2-stage 💶 🕨
Backlash acceleration enable	
2-stage acceleration enable	
Acceleration enable only on cutting	
Backlash comp. 1 😴 0.500um	
Backlash comp. disable for position	
Backlash acceleration 100	
Acceleration(> +) 0	
Count number 20 40ms	
Acceleration stop	
Acceleration stop timing 5 🐳 0.381um	

(c) Adjusting backlash acceleration

The following figure shows an arc figure before servo adjustment. Quadrant protrusions of about 4 μ m appear on the X- and Y-axes.

The figure below shows the result of a backlash acceleration adjustment made according to the parameter settings in item (b). By setting recommended values for backlash acceleration, quadrant protrusions can be suppressed.

(c)-1 Determining the end of adjustment

First, it is necessary to understand when the backlash acceleration adjustment is ended. The figure below shows the result of an adjustment made by setting parameter No. 2048 to 200. An undercut occurs at the reverse points. Undercuts damage the surface of the machined workpiece, so they must be avoided. Therefore, it is necessary to end the adjustment of parameter No. 2048 just when no undercut occurs.

By enlarging the positional deviation at a reverse point, the generation of an undercut can be determined easily. Pressing z widens the figure while pressing Z shrinks the width. Pressing u decreases one grid size while pressing d increases the grid size.

When z and u are pressed, a figure as shown below is obtained:

E. DETAILS OF HIGH-SPEED AND HIGH-PRECISION ADJUSTMENT APPENDIX

(c)-2 Effect of gain adjustment

According to the description in item (c)-3 - (1), the final value of parameter No. 2048 must be determined to be 100. However, small protrusions are still left at the reverse points. This is because the gain adjustment is insufficient in this example. The power to suppress the position gain and velocity loop gain protrusions is strong and stable. Therefore, it is necessary to make gain adjustments thoroughly before the backlash acceleration adjustment.

The figure shown below is the result of the gain adjustment, where backlash acceleration is not used. Even when backlash acceleration is not used, protrusions are almost eliminated. Therefore, the importance of gain adjustment can be understood.

(Adjustment items)

- Application of high-speed HRV current control
- Velocity loop gain: 600% (200% in the above example)
- Position gain: 100/s (30/s in the above example)

After a thorough gain adjustment, backlash acceleration can be adjusted easily. The figure shown below is the result obtained after the initial parameters of backlash acceleration listed in item (c)-3 - (2) are set. Thanks to the effect of the gain adjustment and a little backlash acceleration, protrusions are completely eliminated.

As indicated by this figure, the most important item to eliminate quadrant protrusions is gain adjustment. If gain adjustment is made successfully, backlash acceleration can be adjusted easily. Therefore, backlash acceleration does not play the leading role for suppressing quadrant protrusions.

(c)-3 Override function

The two figures shown below indicate the difference by feedrate. In this example, the same acceleration amount (parameter No. 2048 is set to 100) is used, but the results are completely reversed. This example shows that a low feedrate requires a small backlash acceleration amount and that a high feedrate requires a large acceleration amount. This means that the backlash acceleration amount must be changed according to the feedrate.

An actually optimum acceleration amount is almost proportional to the acceleration. Therefore, an override function is required to change the acceleration amount according to the acceleration.

E. DETAILS OF HIGH-SPEED AND HIGH-PRECISION ADJUSTMENT APPENDIX

* In this chapter, PG is assumed to be 50, and VG is assumed to be 400%.

The override function has two parameters. Parameter No. 2114 specifies an override coefficient, and parameter No. 2338 specifies a limit. These parameters may be adjusted easily if steps (1) through (3) explained below are followed.

[Parameters for the override function]

Parameter No.	Standard value	Description
2048	100	Backlash acceleration amount
2114	Backlash acceleration override coefficient	
2338	0	Backlash acceleration limit

(1) Determining parameter No. 2048

To determine parameter No. 2048, an adjustment must be made at low feedrate. This example assumes a feedrate of F500 mm/min and a radius of 10 mm. Adjust an optimum value at a low feedrate, and set it in parameter No. 2048. The figure below shows the result of setting 30 in parameter No. 2048. Here, this value is set in parameter No. 2048.

(2) Determining parameter No. 2114 Parameter No. 2114 must be set after the adjustment of parameter No. 2048. About a half of the maximum cutting feedrate is used to determine the value to be set in parameter No. 2114. In this example, F2500 mm/min is used. By increasing the value in parameter No. 2114, determine an optimum value that does not cause undercuts. Increasing the value in parameter No. 2114 increases the actual acceleration amount.

The following figure shows the result of the adjustment of parameter No. 2114. Quadrant protrusions can be suppressed satisfactory.

(3) Determining parameter No. 2338

Finally, set parameter No.2338. With an override coefficient determined using a middle feedrate, a large acceleration amount is output when the feedrate is set to a high feedrate. For this reason, the acceleration amount must be limited for high feedrate. In this example, F5000 mm/min is used.

The following shows the result of the adjustment of parameter No. 2338 at high speed. Quadrant protrusions are suppressed well.

(d) Acceleration amount for each direction

There may be difference in size between the right and left quadrant protrusions or between the top and bottom quadrant protrusions. In such a case, an acceleration amount must be set separately.

If parameter No. 2094 is not 0, parameter No. 2094 is used for the left and bottom reverse points. Parameter No. 2340 is used as the override coefficient for parameter No. 2094, and parameter No. 2341 is used as the limit for parameter No. 2094.

Parameter No.	Standard value	Description	
2048	50	Backlash acceleration amount	
2114	0	Backlash acceleration override coefficient	
2338	0	Backlash acceleration limit	
2094	0	Backlash acceleration amount (- to +)	
2340	0	Backlash acceleration override coefficient (- to +)	
2341	0	Backlash acceleration limit (- to +)	

[Parameters of acceleration amount for each direction]

APPENDIX

(e) Disabling backlash acceleration after stop

The optimum acceleration amount after a long stop may slightly be different from that at the time of adjustment using an arc. This phenomenon is due to the difference in friction, backlash, and machine torsion in the stopped state. The figure given below shows the bad effect of backlash acceleration, where a 3- μ m overshoot is generated at the time of 10- μ m step movement. As a solution to this problem, backlash acceleration can be disabled after a stop.

Parameter No.	Standard value	Description	
2005#7	1	Static friction compensation function	
2283#7	1	Function for disabling backlash acceleration after a stop	
2073	5	Judgment parameter for stop state (ITP)	
2071	0	Static friction compensation function enable time	
2072	0	Static friction compensation value	

[Parameters for the function for disabling backlash acceleration after a stop]

(*) This function uses the parameters for the static friction compensation function.

When this function is enabled

F

USING THE SERVO CHECK INTERFACE UNIT

(1) Overview

With CNCs of the FS30*i* Series or later, SERVO GUIDE is basically used for servo adjustment and the servo check board connectable to conventional CNCs is not supported. Instead, a servo check interface unit is available. The servo check interface unit is connected to the FSSB (FANUC serial servo bus) and can be used, for example, to measure a VCMD waveform, which has been measurable with the conventional servo check board, by using an external measuring instrument directly.

(2) Series and editions of applicable servo software

CNC		Servo software	Remarks	
CNC	Series	Edition		
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	08.0 and subsequent editions		
Power Motion <i>i</i> -A				
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	N(14) and subsequent editions		
	90E1	01.0 and subsequent editions		
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	N(14) and subsequent editions	HRV4	
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions		
	90C8	A(01) and subsequent editions		
	90E5	A(01) and subsequent editions		
	90E8	A(01) and subsequent editions		

(3) Hardware

Name	NC	Specification	Remarks
Servo check interface unit: Basic	30 <i>i</i> -B Series	A02B-0323-C206	Up to two channels
unit	30 <i>i</i> -A Series, 0 <i>i</i> -D Series	A02B-0303-C206	
	30 <i>i</i> -B Series	A02B-0323-C181	Up to two channels
Additional unit	30 <i>i</i> -A Series, 0 <i>i</i> -D Series	A02B-0259-C181	

A servo check interface unit has two types of connectors, one for analog signal output and the other for detector data input, for one CNC axis. Each of a basic unit and an additional unit has four connectors and two channels of analog voltage output ports and separate detector interfaces each.

JV1xL : Connector for analog signal output

JF10xL : Connector for detector data input

(4) Parameter setting

A maximum of 4 units can be connected per each line

	#7	#6	#5	#4	#3	#2	#1	#0
2278					PM2SCB	PM1SCB		
PM1SCB(#2)	The first or	third servo	check inter	rface unit is	:			
	0: Not us	ed.						
	1: Used.							
PM2SCB(#3)	The second	or fourth s	ervo check	interface un	nit is:			
	0: Not us	ed.						
	1: Used.							

APPENDIX

NOTE

- 1 When these parameters are set, the power must be turned off before operation is continued.
- 2 When two servo check interface units are used with one axis on the CNC, neither a pair of the first and third units nor a pair of the second and fourth units may be set. One unit must be selected from the first and third units, and the other unit must be selected from the second and fourth units.

With the parameter below, set the type of data to be output to the servo check interface unit.

2315	Servo check interface unit output signal setting

• When using one servo check interface unit with one axis on the CNC \rightarrow Set a 2-digit number (decimal).

	Tens digit	Ones digit
Cotting	Axis	Data
Setting	number(*1)	number(*2)

• When using two servo check interface units with one axis on the CNC \rightarrow Set a 4-digit number (decimal).

	Setting f	Setting for data 2		or data 1
	Thousands digit	Hundreds digits	Tens digit	Ones digit
Setting	Axis number(*1)	Data number(*2)	Axis number(*1)	Data number(*2)
0 1	or			

Data 1: Output from the first or third servo check interface unit

Data 2: Output from the second or fourth servo check interface unit

(*1) Axis number

Avia number	No. 1023 for axis to be measured				
AXIS HUITIDEI	Series 90G0	Series 90E0,E1,90E5,E8	Series 90D0,90C5,C8		
1	8n+1	4n+1	2n+1		
2	8n+2	4n+2	2n+2		
3	8n+3	4n+3			
4	8n+4	4n+4			
5	8n+5				
6	8n+6				

(n=0, 1, 2, ...)

(*2) Data number

Data number	Description of measurement data
0	Velocity command (VCMD)
1	Torque command (TCMD)
2	Actual speed (SPEED)
4	Position (POSF)
5	Data 1 for adjustment
6	Data 2 for adjustment

(5) Examples of setting

[Connection example 1]

Configuration where the X-axis is a semi-closed axis and the Y-axis and Z-axis are full-closed axes Velocity command data is output from the X-axis.

Position data is output from the Y-axis.

No data is output from the Z-axis.

For the 30*i*-B Series

No.	Signal	Value
1023X,Y,Z		X: 1, Y: 2, Z: 3
1815X,Y,Z#1	OPTx	X: 0, Y: 1, Z: 1
1902#0	FMD	1
24096X,Y,Z		X: 1, Y: 2, Z: 3
24097X,Y,Z		X: 0, Y: 0, Z: 0
24000 to 24031	ATR	1001,1002,1003,3001 The others are 1000.
24032 to 24063	ATR	All 1000
24064 to 24095	ATR	All 1000
24104 to 24111	ATRC	1001,1002,1003 The others are 1000.
24112 to 24119	ATRC	All 1000
24120 to 24127	ATRC	All 1000
24128 to 24135	ATRC	All 1000
24136 to 24143	ATRC	All 1000
24144 to 24151	ATRC	All 1000
2278#3	PM2SCB	X: 0, Y: 0, Z: 0
2278#2	PM1SCB	X: 1, Y: 1, Z: 0
2315		X: 10, Y: 24, Z: 0

For the 30*i*-A Series

No.	Signal	Value
1023X,Y,Z		X: 1, Y: 2, Z: 3
1815X,Y,Z#1	OPTx	X: 0, Y: 1, Z: 1
1902#0	FMD	1
1905X,Y,Z#7	PM2	X: 0, Y: 0, Z: 0
1905X,Y,Z#6	PM1	X: 1, Y: 1, Z: 1
1936X,Y,Z		X: 0, Y: 1, Z: 2
1937X,Y,Z		X: 0, Y: 0, Z: 0
14340 to 14357	ATR	0,1,2,64 The others are –96.
14358 to 14375	ATR	All -96
14408 to 14425	ATR	All -96
14376 to 14383	ATRC	0,1,2,32,32,32,32,32
14384 to 14391	ATRC	All 32
14392 to 14399	ATRC	All 32
14400 to 14407	ATRC	All 32
14444 to 14451	ATRC	All 32
14452 to 14459	ATRC	All 32
2278#3	PM2SCB	X: 0, Y: 0, Z: 0

F. USING THE SERVO CHECK INTERFACE UNIT

APPENDIX

B-65270EN/08

No.	Signal	Value
2278#2	PM1SCB	X: 1, Y: 1, Z: 0
2315		X: 10, Y: 24, Z: 0

[Connection example 2]

Configuration where the X-axis is a semi-closed axis and the Y-axis and Z-axis are full-closed axes Velocity data is output from the X-axis.

Torque command data is output from the Y-axis.

No data is output from the Z-axis.

For the 30*i*-B Series

No.	Signal	Value
1023X,Y,Z		X: 1, Y: 2, Z: 3
1815X,Y,Z#1	OPTx	X: 0, Y: 1, Z: 1
1902#0	FMD	1
24096X,Y,Z		X: 1, Y: 2, Z: 0
24097X,Y,Z		X: 0, Y: 1, Z: 2
24000 to 24031	ATR	1001,1002,1003,3001,3002 The others are 1000.
24032 to 24063	ATR	All 1000
24064 to 24095	ATR	All 1000
24104 to 24111	ATRC	1001,1002 The others are 1000.
24112 to 24119	ATRC	1002,1003 The others are 1000.
24120 to 24127	ATRC	All 1000
24128 to 24135	ATRC	All 1000
24136 to 24143	ATRC	All 1000
24144 to 24151	ATRC	All 1000
2278#3	PM2SCB	X: 0, Y: 0, Z: 0
2278#2	PM1SCB	X: 1, Y: 1, Z: 0
2315		X: 12, Y: 21, Z: 0

For the 30*i*-A Series

No.	Signal	Value
1023X,Y,Z		X: 1, Y: 2, Z: 3
1815X,Y,Z#1	OPTx	X: 0, Y: 1, Z: 1
1902	FMD	1
1905X,Y,Z#7	PM2	X: 0, Y: 1, Z: 1
1905X,Y,Z#6	PM1	X: 1, Y: 1, Z: 0
1936X,Y,Z		X: 0, Y: 1, Z: 0
1937X,Y,Z		X: 0, Y: 0, Z: 1
14340 to 14357	ATR	0,1,2,64,-56 The others are -96.
14358 to 14375	ATR	All -96
14408 to 14425	ATR	All -96
14376 to 14383	ATRC	0,1,32,32,32,32,32,32

APPENDIX

No.	Signal	Value
14384 to 14391	ATRC	1,2,32,32,32,32,32,32
14392 to 14399	ATRC	All 32
14400 to 14407	ATRC	All 32
14444 to 14451	ATRC	All 32
14452 to 14459	ATRC	All 32
2278#3	PM2SCB	X: 0, Y: 0, Z: 0
2278#2	PM1SCB	X: 1, Y: 1, Z: 0
2315		X: 12, Y: 21, Z: 0

(6) Changing the output signal units and so forth

B-65270EN/08

To the servo check interface unit, a voltage within ± 10 V is output. The table below indicates the default output unit of each data item.

Data number	Description of data	Data output unit (Default)
0	Velocity command (VCMD)	0.9155min ⁻¹ /5V
1	Torque command (TCMD)	Max. amplifier current A/4.4V
2	Actual speed (SPEED)	3750min ⁻¹ /5V
4	Position (POSF)	3276.7[detection unit]/1V
5	Data 1 for adjustment	-
6	Data 2 for adjustment	-

With the parameters below, the output units and so forth of a velocity command, torque command, and actual speed can be changed as with conventional check board output.

Observe the entire movement in the DC mode with an oscilloscope then extend the range in the AC mode to check for fine fluctuations and positional variations.

F. USING THE SERVO CHECK INTERFACE UNIT

INTERFACE UNIT			APPENDIX				B-65270EN/	
	#7	#6	#5	#4	#3	#2	#1	#0
2225						TSA05	TCMD05	
TCMD05(#1)	The TCME) signal chee	ck board ou	tput voltag	e is:			
	0: Ordin	ary (default)).					
	1: Halve	d.						
	* The a	ictual outpu	it voltage i	s affected	by the fi	unction bit	(TCMD4X)	indicated
	below	ſ.	-					
TSA05(#2)	The SPEEI	O signal che	ck board ou	tput voltag	e is:			
	0 [.] Ordin	ary (3750mi	$in^{-1}/5V$) (de	fault)				

1: Halved $(7500 \text{min}^{-1}/5\text{V})$.

The function bit (TCMD4X) indicated below increases the TCMD output voltage weight by a factor of 10 when compared with the conventional value. This function bit can be used together with the bit above (TCMD05).

		#7	#6	#5	#4	#3	#2	#1	#0
2203				TCMD4X					
TCMD4X(#5) The TCMD signal check board output voltage is:									

TCMD4X(#5) The TCMD signal check board output voltage is:

- 0: Ordinary (default).
- 1: Increased by a factor of 4.

By using these function bits, the output ranges of the TCMD signal and SPEED signal can be changed as indicated below.

• TCMD signal output range

TCMD4X	TCMD05	TCMD value/4.4V	Remarks
0	1	Max. amplifier current \times 2 (A)	
0	0	Max. amplifier current (A)	Conventional mode
1	1	Max. amplifier current/2 (A)	
1	0	Max. amplifier current/4 (A)	×4 compared with conventional mode

Example:

Relationship between the output voltage and TCMD value [A] when an 80-A amplifier is used

TCMD4X	TCMD05	TCMD value/4.4V
0	1	160 [A]
0	0	80 [A]
1	1	40 [A]
1	0	20 [A]

• SPEED signal output range

TSA05	Actual speed/5V Rotary motor	Actual speed/5V Linear motor	Remarks		
0	3750 [min⁻¹]	15.36 × P [m/min]	Conventional mode		
1	7500 [min⁻¹]	30.72 × P [m/min]			

* When a linear motor is used, the meaning of P depends on the type of scale.

- When a high resolution serial output circuit manufactured by FANUC is used (Incremental scale) \rightarrow P=Signal pitch [µm]
- When a scale supporting the FANUC serial interface is used (Absolute scale) \rightarrow P=Resolution [µm] × 512

G

SERVO FUNCTIONS THAT ARE NOT USED WITH THE 30*i* AND 0*i*-D Series

Appendix G, "SERVO FUNCTIONS THAT ARE NOT USED WITH THE 30*i* AND 0*i*-D Series", consists of the following sections:

APPENDIX

G.1	FINE ACCELERATION/DECELERATION (FAD) FUNCTION	547
G.2	RISC FEED-FORWARD FUNCTION	554

G.1 FINE ACCELERATION/DECELERATION (FAD) FUNCTION

(1) Overview

The fine acceleration/deceleration (fine acc./dec.) function enables smooth acc./dec. This is done by using servo software to perform some acc./dec. processing, which previously has been performed by the CNC not supporting nano interpolation. With this function, the mechanical stress and strain resulting from acc./dec. can be reduced.

(2) Features

- Acc./dec. is controlled by servo software at short intervals, allowing smooth acc./dec.
- Smooth acc./dec. can reduce the stress and strain applied to the machine.
- Because of the reduced stress and strain on the machine, a shorter time constant can be set (within the motor acceleration capability range).
- Two acc./dec. command types are supported: bell-shaped and linear acc./dec. types.
- An application of the fine acc./dec. function is found in the cutting and rapid traverse operations; for each operation, the FAD time constant, feed-forward coefficient, and velocity feed-forward coefficient can be used separately.

(3) Series and editions of applicable servo software

(Series 15*i*-B,16*i*-B,18*i*-B,21*i*-B,0*i*-B,0*i* Mate-B,Power Mate *i*)

Series 9096/A(01) and subsequent editions Series 90B0/A(01) and subsequent editions

Series 90B1/A(01) and subsequent editions

Series 90B6/A(01) and subsequent editions

(Series 0i-C,0i Mate-C,20i-B)

Series 90B5/A(01) and subsequent editions Series 90B8/A(01) and subsequent editions

NOTE

In the 30i Series or 0i-D Series, smooth acc./dec. is always performed by nano interpolation, so the fine acc./dec. function is unnecessary. (The settings for the function are also ignored.)

(4) Setting basic parameters

	#7	#6	#5	#4	#3	#2	#1	#0
1951(FS15 <i>i</i>)		FAD						
2007(FS16 <i>i</i>)								

FAD (#6) 1: Enables the fine acc./dec. function.

G. SERVO FUNCTIONS THAT ARE

type.

Then, set the following:

G.SERVO FUNCTIONS THAT ARE NOT USED WITH THE 30*i* AND

In cutting mode, the following parameters are used:

1766(FS15 <i>i</i>)	Fine acc./dec. time constant 2 (ms)
2143(FS16 <i>i</i>)	

[Valid data range] 8 to 64

A value that falls outside this range, if specified, is clamped to the upper or lower limit.

In rapid traverse mode, the following parameters are used:

G. SERVO FUNCTIONS THAT ARE NOT USED WITH THE 30*i* AND 0*i*-D Series

APPENDIX

Table G.1 (a) Feed-forward coefficient and fine acc./dec. time constant parameters classified by use Series 16*i*, 18*i*, 21*i*, 0*i*

	F	Parameter setting				Parameters for cutting			Parameters for rapid traverse		
	No.2005 #1	No.2007 #6	No.1800 #3	No.2202 #0	Position FF coefficient	Velocity FF coefficient	FAD time constant	Position FF coefficient	Velocity FF coefficient	FAD time constant	
Cutting FF	1	0	0	0	No. 2068 No. 2092	No. 2069	-	-	-	-	
Usual FF (cutting FF + rapid traverse FF)	1	0	1	0	No. 2068 No. 2092	No. 2069	-	No. 2068 No. 2092	No. 2069	-	
Cutting FAD	0	1	0	0	-	-	No. 2109	-	-	-	
Cutting/rapid traverse-specific FAD	0	1	1	1	-	-	No. 2143	-	-	No. 2109	
Cutting FAD + cutting FF	1	1	0	0	No. 2092	No. 2069	No. 2109	-	-	-	
Cutting FAD + usual FF	1	1	1	0	No. 2092	No. 2069	No. 2109	No. 2092	No. 2069	-	
Cutting/rapid traverse-specific FAD + cutting/rapid traverse-specific FF	1	1	1	1	No. 2144	No. 2145	No. 2143	No. 2092	No. 2069	No. 2109	

Series 15*i*

	F	Parameter setting				Parameters for cutting			Parameters for rapid			
		aramot	or ootan	9	i arametere for outling				traverse			
	No.1883 #1	No.1951 #6	No.1800 #3	No.1742 #0	Position FF coefficient	Velocity FF coefficient	FAD time constant	Position FF coefficient	Velocity FF coefficient	FAD time constant		
Cutting FF	1	0	0	0	No. 1961 No. 1985	No. 1962	-	-	-	-		
Usual FF	1	0	1	0	No. 1961 No. 1985	No. 1962	-	No. 1961 No. 1985	No. 1962	-		
Cutting FAD	0	1	0	0	-	-	No. 1702	-	-	-		
Cutting/rapid traverse-specific FAD	0	1	1	1	-	-	No. 1766	-	-	No. 1702		
Cutting FAD + cutting FF	1	1	0	0	No. 1985	No. 1962	No. 1702	-	-	-		
Cutting FAD + usual FF	1	1	1	0	No. 1985	No. 1962	No. 1702	No. 1985	No. 1962	-		
Cutting/rapid traverse-specific FAD + cutting/rapid traverse-specific FF	1	1	1	1	No. 1767	No. 1768	No. 1766	No. 1985	No. 1962	No. 1702		

NOTE

- 1 In the above tables, the abbreviations "FF" and "FAD" refer to the feed-forward function and fine acc./dec. function, respectively.
- 2 Of two parameter numbers stacked one on the other in each field of the above tables, the upper one is used in non-advance mode, and the lower one, in advance mode.

(6) Cautions for combined use of the synchronization function with the spindle axis and fine acc./dec.

The restrictions listed below are imposed on the combined use of the synchronization function between the servo axis and spindle axis and the fine acc./dec. function.

(Disable the fine acc./dec. function if the combine use is impossible.)

APPENDIX

	Use of FAD	for servo axis			
Function	When FAD is	When FAD is	Cautions for combined use		
	spindle axis	spindle axis			
Rigid tapping	Allowed	Allowed	 When FAD is disabled for spindle axis : During rigid tapping, FAD and feed-forward control are disabled. For synchronization, the position gain for the servo axis must be changed. See (7). When FAD is enabled for spindle axis : The same FAD time constant, acc./dec. type, feed-forward coefficient, and position gain must be used for the servo axis (during cutting) and the spindle axis. 		
Advanced preview control rigid tapping	Not allowed	Allowed	The same FAD time constant, acc./dec. type, feed-forward coefficient, and position gain must be used for the servo axis (during cutting) and the spindle axis.		
Cs axis contour control	kis contour control Not allowed Allowed		The same FAD time constant, acc./dec. type, feed-forward coefficient, and position gain must be used for the servo axis (during cutting) and the spindle axis.		
Hob function	Not allowed	Not allowed	Disable the fine acc./dec. function.		
EGB function	Not allowed	Not allowed	Disable the fine acc./dec. function.		
Flexible synchronization	Not allowed	Allowed	The same FAD time constant, acc./dec. type, feed-forward coefficient, and position gain must be used for the servo axis (during cutting) and the spindle axis.		

NOTE

The spindle FAD function can be used when an αi spindle amplifier and FANUC Series 16i/18i/21i MODEL B CNC are used.

Spindle software : Series 9D50/E(05) and subsequent editions CNC software : M series : Series B0H1/M(13) and subsequent editions, Series BDH1M(13) and subsequent editions, Series BDH5/C(03) and subsequent editions T series : Series B1H1/M(13) and subsequent editions Series BEH1/M(13) and subsequent editions Series BEH1/M(13) and subsequent editions Series DEH1/M(13) and subsequent editions Series DEH1/M(13) and subsequent editions Series DEH1/M(13) and subsequent editions Series DEH1/M(13) and subsequent editions Series DEH1/M(13) and subsequent editions

SPINDLE MOTOR Bi series Parameter Manual (B-65280EN)".

Function	Combined use with FAD function	Cautions for combined use
Flexible synchronization (between servo axes)	Allowed	For the axes to be synchronized with each other, the same FAD time constant, feed-forward coefficient, and position gain must be set.

APPENDIX

(7) Rigid tapping synchronization when spindle axis FAD is disabled (a) Overview

Because using fine acc./dec. causes the servo axis delay (error) to increase by 1 ms, rigid tapping with fine acc./dec. set up results in an increase of synchronization error against the spindle. To avoid this increase, use the following procedure to change the servo axis position gain for rigid tapping.

NOTE

In advanced preview control mode, rigid tapping cannot be used together with fine acc./dec. In this case, disable fine acc./dec.

(b) Setup procedure

By setting the parameter below, the position gain can be automatically changed only for the servo axis to establish synchronization.

(Parameter)

FADPGC (#3) Specifies whether to perform synchronization in rigid tapping mode when FAD is set up, as follows:

- 0: Not to perform
- 1: To perform \leftarrow To be set

NOTE

- 1 When this parameter is set, the power must be turned off before operation is continued.
- 2 If this parameter is set, the servo position gain is changed when rigid tapping is not used.
- 3 It is necessary to set this parameter for all axes that are subjected to contouring.

(Reference)

With Series 16*i* and so on, two types of parameters are available for position gain setting. By setting the parameters as described below, a position gain match can be ensured between the servo axis and spindle.

NOTE Do not make following setting when FADPGC = 1 is set.

Spindle servo mode position gain Nos. 4065 to 4068: a.

Nos. 5280 to 5284: Rigid tapping position loop gain b.

Parameter type "a" corresponds to the spindle position loop gain for rigid tapping, and parameter type b, to the servo axis position loop gain. Usually, both parameter types take the same values. For a servo axis with fine acc./dec. specified, however, set parameter type b with the values obtained using the following calculation:

B-65270EN/08

Example of parameter setting)

Position gain (1/s)	Usually set value	Newly set value
15	1500	1523
16.66	1666	1694
20	2000	2041
25	2500	2564
30	3000	3093
33.33	3333	3448
35	2500	3627
40	4000	4167
45	4500	4712
50	5000	5263

(8) Other specifications to note regarding the fine acc./dec. function

• Advanced preview control and fine acc./dec. can be used together. (The time constants before and after advanced preview interpolation, and the fine acc./dec. time constant are effective.)

APPENDIX

- If FAD is set, then the G05 P10000 command is issued with HPCC, FAD is disabled.
- Using the FAD function increases the position error as follows:
- For FAD bell-shaped

	Deviation incerase (nulses) =	Feedrate (mm/min) $(FAD \text{ time constant (ms)}_{+1})$
Deviat	Deviation meetase (puises)	$\overline{60 \times 1000 \times \text{Detection unit (mm)}} \times \left(2 \right)$
	For FAD linear type	
	Deviation incerase (pulses) =	$\frac{\text{Feedrate (mm/min)}}{60 \times 1000 \times \text{Detection unit (mm)}} \times \left(\frac{\text{FAD time constant (ms)} + 1}{2} + 1\right)$

Example)

When feed operation is performed using F1800 with a position gain of 30 (1/s) and a detection unit of 0.001 mm, the position error is normally expressed as follows:

Normal deviation (pulses) =
$$\frac{\text{Feedrate (mm/min)}}{60 \times \text{Position gain (1/s)} \times \text{Detection unit (mm)}}$$
$$= \frac{1800}{60 \times 30 \times 0.001} = 1000(pulses)$$

When the FAD function (FAD bell-shaped) is used with the time constant set to 64 ms, the deviation increases as follows:

Deviation in correspondence	1800	64 ₁) 000(mulass)
Deviation incerase (pulses) =	$\frac{1}{60 \times 1000 \times 0.01} \times$	$\frac{-+1}{2}$	= 990(pulses)

When FAD is used, the entire deviation is then obtained as follows:

Deviation when FAD is used (pulses) = 1000 + 990 = 1990 (pulses)

The combined use of the FAD function and the feed-forward function does not increase the position error so much as expected, because the feed-forward function decreases a delay against the command. When the FAD function is used alone, however, a higher error overestimation level must be set, considering the increase in the deviation.

APPENDIX

(9) Examples of applying the fine acc./dec. function

G.2 RISC FEED-FORWARD FUNCTION

(1) Overview

The feed-forward system is used during high precision contour control based on RISC (HPCC mode) or AI contour control (AICC mode) in order to shorten the interpolation cycle, improving the performance of high-speed, high precision machining.

(This function is insignificant for AI nano-contour control complying with nano-interpolation as a distribution system, AI high-precision contour control, AI nano high-precision contour control, and fine HPCC.)

By using this function, the response of the servo side can be improved when the distribution period is 4 ms, 2 ms, or 1 ms.

(2) Series and editions of applicable servo software

(Series 15*i*-B,16*i*-B,18*i*-B,21*i*-B,0*i*-B,0*i* Mate-B,Power Mate *i*)

Series 9096/A(01) and subsequent editions^(*) Series 90B0/A(01) and subsequent editions

Series 90B1/A(01) and subsequent editions

Series 90B6/A(01) and subsequent editions

(Series 0i-C,0i Mate-C,20i-B)

Series 90B5/A(01) and subsequent editions Series 90B8/A(01) and subsequent editions

(*) Series 9096 supports distribution periods of 1 ms and 2 ms only, and it does not support 4 ms.

APPENDIX

0*i*-D Series

(3) Setting parameters

<1> Set the following parameters in the same way as for the advanced preview feed-forward function. <2> Set the parameters (RISCFF and RISCMC) below.

	#7	#6	#5	#4	#3	#2	#1	#0
1959(FS15 <i>i</i>)			RISCFF					
2017(FS30 <i>i</i> ,16 <i>i</i>)								
RISCFF (#5) 0	Feed-	forward res	sponse remai	ns unchang	ged when R	ISC is used		
1	Feed-	forward res	sponse impro	ves when	RISC is use	ed.		
			1 1					
	#7	#6	#5	#4	#3	#2	#1	#0
1740(FS15 <i>i</i>)			RISCMC					
200(FS30 <i>i</i> ,16i)		•	· ·		•			
RISCMC (#5) W	/hen RIS	C is used:						

Feed-forward response improves. 1:

<3> By specifying a G code in the program, each mode is enabled, and the advanced preview feed-forward function set above is applied.

Gc	ode	Mada
Mode ON	Mode OFF	Mode
G05.1Q1	G05.1Q0	AI contour control mode
G05P10000	G05P0	HPCC mode
	1 1 0 1 0	

Appendix C lists the supported CNCs.

If the modes above are off, the normal feed-forward coefficient is enabled.

NOTE

- 1 Use this function only when very high command response is required.
- 2 When using this function, set a detection unit of 0.1 μ m wherever possible. (To set a detection unit of 0.1 μ m, the IS-C system must be used, or the CMR and flexible feed gear must be multiplied by 10 with the IS-B system.)

H METHODS OF STARTING UP THE MACHINE WITHOUT CONNECTING AMPLIFIERS AND FEEDBACK CABLES

Appendix H, " METHODS OF STARTING UP THE MACHINE WITHOUT CONNECTING AMPLIFIERS AND FEEDBACK CABLES ", consists of the following sections:

H.1	FEEDBACK DUMMY FUNCTION	556
H.2	USING THE DUMMY FEEDBACK FUNCTION FOR A MULTIAXIS SERVO AMPLIFIER	

H.1 FEEDBACK DUMMY FUNCTION

(1) Overview

The feedback dummy function ignores servo alarms of axes to which neither servo amplifier nor servo motor is connected.

(2) Series and editions of applicable servo software

CNC		Servo software	Domorko
CNC	Series	Edition	Remarks
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 and subsequent editions	
Power Motion <i>i</i> -A			
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	A(01) and subsequent editions	
	90E1	01.0	
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	A(01) and subsequent editions	HRV4
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions	
	90C8	A(01) and subsequent editions	
	90E5	A(01) and subsequent editions	
	90E8	A(01) and subsequent editions	

(3) Setting the feedback dummy function

Setting the following function bit enables alarms related to the built-in Pulsecoder and servo amplifier for an axis which is not connected to a servo amplifier or servo motor.

B-65270EN/08

(4) Caution for setting the FSSB

In an *i* series CNC, the number of amplifiers must match that of axes for reasons of the FSSB setting. If an axis to be set as a dummy axis has not amplifier, make FSSB settings as if a series of existing amplifiers were followed by another amplifier.

Example When there are only two amplifiers for a three-axis NC

Let us consider how to make the Y-axis (second axis) a dummy axis in the above configuration. Set up the parameters as follows:

(30*i*-A Series, 0*i*-D Series) No.1023 X:1 Y:2 Z:3 No.1902 bit1=0, bit0=1 No.1905 bit0 X:0 Y:0 Z:0 No.14340=0 No.14341=2 No.14342 = 1No.14343 to 14375= -96 No.2009 bit0 Y:1 No.2165 Y:0 (30i-B Series) No.1023 X:1 <u>Y:2</u> Z:3 No.1902 bit1=0, bit0=1 No.24000=1001 No.24001=1003 No.24002=1002 No.24002 to 24031= 1000 No.2009 bit0 Y:1 No.2165 Y:0

* For details of FSSB-related setting, refer to the respective CNC parameter manuals.

(5) Separate detector-based dummy feedback

The separate detector-based dummy feedback function is provided to ignore alarms for an axis when the separate detector is temporarily disconnected from the axis. Set the following bit.

	#7	#6	#5	#4	#3	#2	#1	#0						
2205						FULDMY								
FULDMY(#2)	The separa	he separate detector-based dummy feedback function is:												
	0: Disab	led.												
	1: Enabl	ed.												

2 When using the feedback dummy function, match the control cycle (HRV) with other axes (non-dummy axes).

Related parameter numbers: No.2004, No.2013 #0, No.2014 #0

H.2 USING THE DUMMY FEEDBACK FUNCTION FOR A MULTIAXIS SERVO AMPLIFIER WHEN AN AXIS IS NOT IN USE

If an amplifier axis (L, M, or N) is not used for a multiaxis amplifier other than that for the 30*i*-B, it is necessary to connect a dummy connector to the unused amplifier axis.

If you want to place a certain CNC axis using an multiaxis amplifier other than a servo amplifier for the 30i-B in the unused state using the feedback dummy function setting (DMY = 1) described in Section H.1, it is necessary to connect a dummy connector to the relevant amplifier axis.

When the servo software indicated below is used, the setting of the parameter below enables a multiaxis amplifier to be operated without inserting a dummy connector.

H.METHODS OF STARTING UP THE MACHINE WITHOUT CONNECTING AMPLIFIERS AND FEEDBACK CABLES APPENDIX

B-65270EN/08

CNC		Servo software	Bomorko
CNC	Series	Edition	Remarks
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	L(12) and subsequent editions	
	90E1	01.0	
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	L(12) and subsequent editions	HRV4
Series 0 <i>i</i> -D	90C5	A(01) and subsequent editions	
	90C8	A(01) and subsequent editions	
	90E5	A(01) and subsequent editions	
	90E8	A(01) and subsequent editions	

	#7	#6	#5	#4	#3	#2	#1	#0
2279								DMCON
			11	· / / C 1		C ···	11 1/D	1

DMCON(#0) In emergency stop cancellation with the feedback dummy function enabled (DMY = 1): The ready signal is not output to the amplifier. 0:

1: The ready signal is output to the amplifier.

To use this parameter, it is necessary to enable the feedback dummy function (set bit 0 of parameter No. 2009 to 1).

NOTE

- According to the status of the ready signal sent from system software to servo • control software, DMCON is turned off and on. For this reason, the ready signal to the amplifier is immediately turned off at emergency stop. If you want to use this parameter with a multiaxis amplifier other than that of the 30*i*-B, make sure that the brake control function and quick stop function are not used for another axis using the same multiaxis amplifier. If any of these functions is used, do not use this parameter, and be sure to use a dummy connector.
- When the control axis detach function is used, the ready signal to the amplifier is turned off during detach operation. If you want to keep the ready signal on, set bit 6 (MCCx) of parameter No. 1005 to 1.

(For details of the control axis detach function, refer to "Series 30i-B CONNECTION MANUAL (FUNCTION) (B-64483EN-1)" and other manuals.)

HRV1 CONTROL PARAMETERS

Series 9096 (for Series 21*i*/ 0*i*-B, Power Mate *i*) Series 90B0 (for Series 15*i*/16*i*/ 0*i*-B, Power Mate *i*) Series 90B1 and 90B8 (for Series 15*i*/16*i*/20*i*-B/0*i*-C/0*i* Mate-C, Power Mate *i*) Series 90B5 and 90B6 (for Series 15*i*/16*i*/20*i*-B/0*i*-C/0*i* Mate-C, Power Mate *i*)

B-65270EN/08

APPENDIX

I.HRV1 CONTROL PARAMETERS

		Motor model	L1500 B1/4is	L3000 B2/2is	L6000 B2/2is	L9000 B2/2is	L15000 C2/2is	αis 300 2000	L3000 B2/4is	L6000 B2/4is	L9000 B2/4is	L15000 C2/3is	L300 A1/4is
FS15i	FS16i, etc.	Motor specification Motor ID No.	444-B210 90	445-B110 91	447-B110 92	449-B110 93	456-B110 94	456-B110 115	445-B210 120	447-B210 121	449-B210 122	456-B210 123	441-B200 124
PRM. NU. 1808	2003	SYMBUL	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000
1809 1883	2004		00000110	00000110	00000110	00000110	00000110	01000110	00000110	00000110	00000110	00000110	00000110
1884	2006		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
1951 1952	2007		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
1953	2009		00000000	0000000	00000000	00000000	0000000	00000000	00000000	00000000	00000000	00000000	00000000
1954	2010		00000100	00000100	00000100	00000100	00000100	00100000	00000100	00000100	00000100	00000100	00000100
1956 1707	2012		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
1708	2014		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
1750	2210 2211		00000000	00000000	00000000	00000000	00000100	00000000	00000000	00000000	00000000	00000000	00000000
2713	2300		10000000	10000000	10000000	10000000	10000000	00000000	10000000	10000000	10000000	10000000	10000000
1852	2040	CUR GAIN I	1890	4804	4804	5036	1420	1357	1620	2626	4944	2392	526
1853 1854	2041	CUR GAIN P	-7180	-14453 -2660	-13138 -2660	-16000	-5600	-4212	-11180	-10051	-11831	-8448	-2141
1855	2043	VEL GAIN I	19	16	16	14	10	114	16	10	16	10	16
1856	2044 2045	VEL GAIN P	-260	-214	-214	-195	-131	-1023	-214	-135	-211	-128	-217
1858	2046	VEL GAIN 4	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235
1860	2048	BLACC CMP	4371	0	0	0	0001	0	0	0405	0000	0001	0733
1861 1862	2049 2050	DPFMX OBSERVER POK1	0 956	0 956	0 956	0 956	0 956	0	956	0 956	0 956	956	0 956
1863	2051	OBSERVER POK2	510	510	510	510	510	510	510	510	510	510	510
1865	2052	DB-CMP PPMAX	21	21	21	21	21	21	21	21	21	21	21
1866 1867	2054	DB-CMP PDDP	1894	1894	1894	1894	1894	3787	1894	1894	1894	1894	1894
1868	2056	EMFCMP	0	0	0	0	010	0	010	0	010	010	010
1869 1870	2057	D-PHASE CUR D-PHASE CUR	0	0	0	0	0	-3850 -800	0	0	0	0	0
1871	2059	PPBAS	0	0	0	0	0	0	0	0	0	0	0
1873	2060	EMFLMT	1202	1202	1202	1202	1202	1202	1202	120	1202	1202	120
1877 1878	2062	OVC K1	32670	32670	32670	32685	32712	32352	32698	32740	32698	32732	32720
1892	2064	TGALMLV	4	4	4	4	4	4	4	4	4	4	4
1893 1894	2065	ACC FB GAIN	3626	3626	3626	3087	2086	15494	2590	1024	2590	1340	589
1895	2067	TCMD FILTER	0	0	0	0	0	0	0	0	0	0	0
1967	2074	AALPH	0	0	0	0	0	12288	0	0	0	0	0
1970-1976 1979	2077-2083 2086	RATED CURRENT	0 1402	0 1402	0 1402	0 1293	0 1063	2385	0 1184	0 744	0 1184	852	0 564
1980-1982	2087-2089	DODCTI	0	0	0	0	0	0	0	0	0	0	0
1984-1991	2091-2098	RODSTE	0	0	0	0	0	0	0	0	0	0	0
1992 1993	2099 2100	ONEPSL INPA1	400	400	400	400	400	400	400	400	400	400	400
1994	2101	INPA2	0	0	0	0	0	0	0	0	0	0	0
1995	2102	ABVOF	0	0	0	0	0	0	0	0	0	0	0
1997 1998	2104	ABTSH TORQUE CONST	0 227	0 455	0 911	0	0 3104	0	455	0 1450	1367	3168	0
1999	2106	LP24PA	0	0	0	0	0	0	0	0	0	0	0
1700-1702	2107-2109	MGSTCM	0	0	0	0	0	0	0	0	0	0	0
1704	2111	TQLIM IN DEC.	0	0	0	0	0	1606	0	0	0	0	0
1706	2113	HRV FILT	0	0	0	0	0	0	0	0	0	0	0
1735 1736	2127	NINTCT	0	0	0	0	0	0 5500	0	0	0	0	0
1752	2129	MFWKBL	0	0	0	0	0	791	0	0	0	0	0
1756	2130-2132	PHDLY1	0	0	0	0	0	1556	0	0	0	0	0
1757	2134 2159	PHDLY2 DGCSMM	0	0	0	0	0	20494	0	0	0	0	0
1783	2160	TRQCUP	0	0	0	0	0	0	0	0	0	0	0
1785	2161 2162	OVC STP OVC2 K1	0	0	0	0	0	0	0	0	0	0	0
1786	2163	OVC2 K2	0	0	0	0	0	0	0	0	0	0	0
1788	2165	MAX CURRENT	45	45	85	135	245	365	85	245	245	365	25
2716	2302	TQLIM AT STOP	0	0	0	0	0	0	0	0	0	0	0
2718	2305	ACDCEBD	0	0	0	0	0	0	0	0	0	0	0
2723	2310	LIMLIM	0	0	0	0	0	0	0	0	0	0	0
	Domosti -												
	Remarks								I		l		

I.HRV1 CONTROL PARAMETERS APPENDIX

		Motor model	L600 A1/4is	L900 A1/4is	L6000 B2/4is	L9000 B2/2is	L9000 B2/4is	L15000 C2/2is		 	
FS15i	FS16i.etc.	Motor specification Motor ID No.	442-B200 125	443-B200 126	(160A) 127	(160A) 128	(360A) 129	(360A) 130		 	
PRM. NO.	PRM. NO.	SYMBOL	120	120	127	120	120	100			
1808	2003		00001000	00001000	00001000	00001000	00001000	00001000			
1883	2004		00000000	00000000	00000000	00000000	00000000	00000000		 	
1884	2006		00000000	00000000	00000000	00000000	00000000	00000000			
1951	2007		00000000	00000000	00000000	00000000	00000000	00000000		 	
1953	2009		00000000	00000000	00000000	00000000	00000000	00000000			
1954	2010		00000100	00000100	00000100	00000100	00000100	00000100			
1955	2011		00000000	00000000	00000000	00000000	00000000	00000000			
1707	2013		00000000	00000000	00000000	00000110	00001010	00001010			
1708	2014		00000000	00000000	00000000	00000110	00001010	00001010			
1750	2210 2211		00000000	00000000	00000000	00000000	00000000	00000100		 	
2713	2300		10000000	10000000	10000000	10000000	10000000	10000000			
2714	2301		00000000	00000000	00000000	00000000	00000000	00000000		 	
1853	2040	CUR GAIN P	-3333	-2009	-6701	-19692	-17747	-8400		 	
1854	2042	CUR GAIN 3	-2618	-2618	-2660	-2660	-2660	-2663			
1855	2043	VEL GAIN I VEL GAIN P	9	-179	-202	-158	-141	-87		 	
1857	2045	VEL GAIN 3	0	0	0	0	0	0			
1858	2046	VEL GAIN 4	-8235	-8235	-8235	-8235	-8235	-8235			
1860	2047	BLACC CMP	-9339	-6367	-5642 0	-/199	-8099	-13022			
1861	2049	DPFMX	0	0	0	0	0	Ő			
1862	2050	UBSERVER POK1	956	956	956	956	956	956			
1864	2052	OVER SPEED	0	0	0	0	0	0			
1865	2053	DB-CMP PPMAX	21	21	21	21	21	21			
1866	2054	DB-CMP PDDP	1894	1894	1894	1894	1894	1894	·	 	
1868	2056	EMFCMP	010	010	010	010	010	010			
1869	2057	D-PHASE CUR	0	0	0	0	0	0			
1870	2058	PPBAS	0	0	0	0	0	0		 	
1872	2060	TCMD LIMIT	6554	7282	7282	5917	4855	4855			
1873	2061	EMFLMT	120	120	120	120	120	120		 	
1878	2063	OVC K2	596	583	777	687	388	313			
1892	2064	TGALMLV	4	4	4	4	4	4			
1893	2065	ACC FB GAIN	589	1326	2304	2038	0	927		 	
1895	2067	TCMD FILTER	0	0	0	0	0	0			
1961-1966	2068-2073		0	0	0	0	0	0		 	
1970-1976	2077-2083		0	0	0	0	0	0			
1979	2086	RATED CURRENT	564	847	1117	1050	789	708			
1980-1982	2087-2089	ROBSTL	0	0	0	0	0	0			
1984-1991	2091-2098		0	0	0	0	0	0			
1992	2099	ONEPSL INPA1	400	400	400	400	400	400			
1994	2101	INPA2	0	0	0	0	0	0	1	 	
1995	2102	DBLIM	0	0	0	0	0	0			
1990	2103 2104	ABTSH	0	0	0	0	0	0			
1998	2105	TORQUE CONST.	104	104	966	1823	2051	4656			
1999	2106	LP24PA	0	0	0	0	0	0		 	
1703	2110	MGSTCM	0	0	0	0	0	0			
1704	2111	TQLIM IN DEC.	0	0	0	0	0	0			
1706	2112	HRV FILT	0	0	0	0	0	0		 	
1735	2127	NINTCT	0	0	0	0	0	0			
1752	2128 2129	MFWKGE	0	0	0	0	0	0			
1753-1755	2130-2132	SMOOTH CMP	0	0	0	0	0	0			
1756	2133	PHDLY1	0	0	0	0	0	0		 	
1782	2159	DGCSMM	0	0	0	0	0	0		 	
1783	2160	TRQCUP	0	0	0	0	0	0			
1785	2161 2162	OVC STP	0	0	0	0	0	0			
1786	2163	OVC2 K2	0	0	0	0	0	0			
1787	2164	OVC2 LIMIT	0	0	0	0	0	0		 	
2716	2302	TQLIM AT STOP	45	45	0	0	0	305		 	
2717	2304	ACCBSLM	0	0	0	0	0	0			
2/18 2723	2305	ACDCEBD	0	0	0	0	0	0			
2729	2316	LIMLIM	0	0	0	0	0	0			
	Remarks										

I.HRV1 CONTROL PARAMETERS

APPENDIX

		Motor model	βiS2 4000HV	αiF1 5000	βiS2 4000	βiS2/4000 40A	αiF2 5000	βiS4 4000	βiS4/4000 40A	βiS8 3000	βiS8/3000 40A	αiS2 5000	αiS2 5000HV
FS15i	FS16i, etc.	Motor specification Motor ID No.	0062 151	0202 152	0061-Bxx3 153	0061-Bxx3 154	0205 155	0063-Bxx3 156	0063-Bxx3 157	0075-Bxx3 158	0075-Bxx3 159	0212	0213 163
PRM. NO.	PRM. NO.	SYMBOL	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000
1809	2004		00000110	00000110	00000110	00000110	00000110	00000110	00000110	00000110	00000110	00000110	00000110
1883	2005		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
1951	2007		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
1953	2009		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
1954	2010		00000000	00000000	00000000	00000000	00000000	00000000	0000000	00000000	00000000	00000000	00000000
1956	2012		00000000	00000000	00000000	00000000	00000000	00000000	0000000	00000000	00000000	00000000	00000000
1707	2013		00000100	00000000	00000100	00010000	00000000	00000000	00001110	00000000	00001110	00000000	00000000
1750	2210		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
2713	2300		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
2714 1852	2301 2040	CUR GAIN I	225	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
1853	2041	CUR GAIN P	-1100	-2294	-1080	-2160	-2247	-960	-1920	-1840	-3680	-1900	-1369
1854	2042 2043	VEL GAIN I	-2467 78	-2514	-1112	-1112	-2568	112	2 56	-1234 6 164	-1234	-2504	-2504
1856	2044	VEL GAIN P	-700	-594	-698	-349	-680	-1008	-504	-1476	-738	-350	-351
1858	2046	VEL GAIN 4	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235
1859 1860	2047 2048	OBSERVER POA1 BLACC CMP	-1085	6384	-1089	-21/8	55/8	-/53	-1506 0 C	5143 0 0	-1029	10853 0 0	-1081 C
1861	2049	DPFMX	056	056	054	050	056	056) (056	056		054
1863	2051	OBSERVER POKT	510	510	510	510	510	510	510	510	510	510	510
1864 1865	2052 2053	OVER SPEED DB-CMP PPMAX	5600	7000	5600	5600	7000	5600	21	4200	4200	21	21
1866	2054	DB-CMP PDDP	1894	1894	1894	1894	1894	1894	1894	1894	1894	1894	1894
1867	2055	EMFCMP	319	-30	319	319	-30	-20		-30 J	319	-30	319
1869	2057	D-PHASE CUR	-10250	0	-10250	-10245	-10256	-7700	-7690	-5144	-5133	-10250	-10254
1871	2059	PPBAS	0	0	000	0	0	0) (0 0	0		2300
1872 1873	2060	ICMD LIMII EMFLMT	6554	/282	6554 C	32//	/282	/282	2 <u>3641</u> 0 C	/282	3641	/282	/282
1877	2062	OVC K1	32538	32613	32531	32531	32497	32289	32289	32289	32289	32528	32532
1892	2064	TGALMLV	4	4	2903	2903	4	1980	4 4	4	1994	4	2903
1893 1894	2065 2066	OVC LIMIT ACC FB GAIN	8560	5739	8811	2203	10085	17873	8 4468) -5	17889 -10	4472	8936	8782
1895	2067	TCMD FILTER	0	0	0	0	0	0	0 0	0	0	0	C
1967	2008-2073	AALPH	20480	0	20480	0	4096	20480		16384	0	8192	16384
1970-1976 1979	2077-2083	RATED CURRENT	1507	1234	1529	0	1636	2178	0 C	0 0	1390	0 0	1526
1980-1982	2087-2089	DODGTI	0	0	0	0	0	0	0 0	0	0	0	0
1984-1991	2090-2098	RUDSTL	0	0	C	0	0	0			0		C
1992 1993	2099 2100	ONEPSL INPA1	400	400	400	400	400	400	0 400 0 0	0 400 0 0	400	0 400 0 0	400
1994	2101	INPA2	0	0	15000	0	0	0	0 0	0	0	0	0
1995	2102	ABVOF	0000	0	15000	/500	12000	0			0		7500
1997 1998	2104	ABTSH TORQUE CONST	0	0	110	238	109	146) C	0 0	0 452	0 0	117
1999	2106	LP24PA	0	0	0	0	0	0		0	0	0	C
1700-1702 1703	2107-2109 2110	MGSTCM	1050	32	1050	564	32	782	284	1805	794	40	40
1704	2111	TQLIM IN DEC.	11600	7710	11600	11600	6460	7790	7790	7930	7930	7745	7700
1706	2113	HRV FILT	0	0	C	0	0	C	0 0	0	0	C C	C
1735	2127 2128	MFWKCE	2345	1188	3000	6000	12/6	1000	6 /96 0 2000	1442 3500	1442	113/	113/
1752	2129	MFWKBL	2574	3211	2574	2574	3211	3130	3130	1552	1552	3851	3847
1756	2130-2132	PHDLY1	7188	2571	7188	7188	2565	7691	7691	3852	3852	2565	7688
1757 1782	2134 2159	PHDLY2 DGCSMM	8990	12850	8990 C	8990 0	12850	8976 8976	6 8976 0 C	6 8990 0 0	8990	12825 0 0	12850
1783	2160	TRQCUP	0	0	0	0	0	0		0	0	0	0
1785	2162	OVC2 K1	32766	32767	32766	32766	32766	32765	<u>327</u> 65	32762	32762	32766	32766
1786	2163 2164	0VC2 K2 0VC2 LIMIT	19	13	20	20 931	23	42	42	12305	74	20	20
1788	2165	MAX CURRENT	10	25	25	45	25	25	5 45	25	45	25	10
2716	2302	ACCBSLM	0	0		0	0) C	0	0		
2718	2305	ACDCEBD	0	0	0	0	0	0		0	0	0	0
2729	2316	LIMLIM	0	0		0	0	0	, () (0 0	0		
	Remarks								1				

I.HRV1 CONTROL PARAMETERS APPENDIX

		Motor model	βiS4 4000HV	αiS4 5000	αiS4 5000HV	βiS8 3000HV	βiS12/2000 40A	βiS12 2000	βiS12 3000HV	αC4 3000 i	βiS12 3000	αiF4 4000	βiS22 2000
FS15i	FS16i, etc.	Motor specification Motor ID No.	0064 164	0215 165	0216 166	0076 167	0077-Bxx3 168	0077-Bxx3 169	0079 170	0221	0078 172	0223	0085 174
PRM. N 1808	0. PRM. NO. 2003	SYMBOL	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000
1809	2004		00000110	00000110	00000110	00000110	00000110	00000110	00000110	00000110	00000110	00000110	00000110
1884	2005		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
1951 1952	2007		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
1953	2009		00000000	00000000	00000000	00000000	0000000	00000000	00000000	00000000	00000000	00000000	0000000
1955	2010		00000000	00100000	00100000	00000000	00000000	00000000	00000000	00000000	00000000	00100000	00000000
1956 1707	2012 2013		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
1708 1750	2014		00000000	00000000	00000000	00000000	00001110	00000000	0000000	00000000	00000000	00000000	00000000
1751	2211		00001110	00000010	00000010	00001110	00001110	00001110	00001110	00001000	00001110	00000010	00001110
2713	2300		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
1852 1853	2040	CUR GAIN I CUR GAIN P	309 -1092	400 -1154	280 988	580 -2070	951	320	361	926	400	659	-3280
1854	2042	CUR GAIN 3	-2496	-2553	-2533	-2600	-1246	-1246	-2604	-2619	-1243	-2623	-1296
1855	2043	VEL GAIN P	-1010	-574	-574	-1482	-1027	-2054	-1524	-1034	-1530	-953	-2172
1857 1858	2045	VEL GAIN 3 VEL GAIN 4	0 -8235	-8235	0 -8235	-8235	-8235	-8235	-8235	-8235	-8235	0 0 0 -8235	-8235
1859	2047	OBSERVER POA1	-751	6614	-661	5118	7390	3695	4978	3670	4960	3980	3496
1861	2049	DPFMX	0	0	0	0	0	0	0	0	0	0	0
1862	2050	OBSERVER POKI	956 510	956 510	956 510	956	956	956	956	956 510	956	956	510
1864 1865	2052 2053	OVER SPEED DB-CMP PPMAX	5600 21	7000	7000	4200	2800	2800	4200	4200	4200	5600	2700
1866	2054	DB-CMP PDDP	1894	1894	1894	1894	1894	1894	1894	1894	1894	1894	1894
1868	2055	EMFCMP	0	-5140	0	0	0	0	0	0	-30	-20	0
1869 1870	2057	D-PHASE CUR D-PHASE CUR	-//00 -3000	-10262 -3500	-8978 -4000	-5144 -3500	-3862	-3884 -4400	-5140	-5915	-5140	-11/89	-3616
1871 1872	2059	PPBAS TCMD_LIMIT	0	0	0	0	0	0 7282	7282	0	0 7282	8010	7282
1873	2061	EMFLMT	0	0	0	0	0	0	00405	0	0		(
1877	2062	OVC K1	5865	32289	32289 5994	5842	32646	6045	4164	4529	32205	4029	8275
1892 1893	2064 2065	TGALMLV OVC LIMIT	4 17504	4 17889	4 17889	17435	4511	4 18045	4 12399	4 13493	21044	4 11998	24770
1894	2066	ACC FB GAIN	-10	0	0	-10	-10	-10	-10	0	-10	0	-10
1961-196	6 2068-2073		0	0	0	0	0	0	0	0	0	0	(
1967	6 2077–2083	AALPH	0	0	12288	12288	0	0	20480	12288	16384	0 0	12288
1979 1980-198	2086 2 2087-2089	RATED CURRENT	2155	2824	2824	2793	1563	3126	2356	1892	2363	1784 0 0	2618
1983 1984-199	2090	ROBSTL	0	0	0	0	0	0	0	0	0	0	0
1992	2099	ONEPSL	400	400	400	400	400	400	400	400	400	400	400
1993	2100	INPA1 INPA2	0	0	0	0	0	0	0	0	0		0
1995 1996	2102	DBL I M ABVOF	0	0	8500 0	0	0	0	0	0	0	15000	(
1997	2104	ABTSH TOROUE CONST	0	0	0	0	0	0	0	0	0	0 0	0
1999	2106	LP24PA	0	0	0	0	0	010	0	0	0	0	002
1700-170	2 2107-2109 2110	MGSTCM	777	24	32	1805	1282	1	1814	1289	1814	32	
1704 1705	2111 2112	TQLIM IN DEC.	7790	10310	10290	7930	3940	3940	7930	3900	7930	5130 0 0	2866
1706	2113	HRV FILT	0	0	0	0	0	0	0,000	0	0	1442	2450
1736	2127	MFWKCE	1000	2500	3000	1500	8000	4000	3000	5000	3000	2000	4500
1752 1753-175	2129 5 2130-2132	MFWKBL SMOOTH CMP	3339	3847	5122	1552	280	280	2056	1812	2056	3338	562 C
1756 1757	2133	PHDLY1 PHDLY2	7686	2563 12820	7692	3848	1812	1832	5133 8978	3855	5133 8978	6670	3089
1782	2159	DGCSMM	0	0	0	0	0	0	0	0	0	0	0002
1784	2160	OVC STP	0	0	0	0	0	0	0	0	0		
1785 1786	2162	OVC2 K1 OVC2 K2	32765	32762	32762	32762	32766	32760	32764	32766	32764	32766	32763
1787	2164	OVC2 LIMIT	7395	12702	12702	12424	3890	15559	8836	5701	8891	5069	10913
2716	2302	TQLIM AT STOP	0	0	0	0		0	0	0			40
2717	2304	ACDCEBD	0	0	0	0	0	0	0	0	0		
2723 2729	2310 2316	DCIDBS LIMLIM	0	0	0	0	0	0	0	0	0		0
	Domost												
	remarks.												

B-65270EN/08

APPENDIX

I.HRV1 CONTROL PARAMETERS

		Motor model	αiF4 4000HV	αC8 2000 i	αiF8 3000	βiS22 2000HV	αiF8 3000HV	βiS0.5 6000	βiS1 6000	β i Sc8 3000	αi S8 4000	αiS8 4000HV	αiS12 4000
FS15i	FS16i, etc.	Motor specification Motor ID No.	0225 175	0226 176	0227 177	0086 178	0229 179	0115 181	0116 182	0075-Bxx7 183	0235 185	0236 186	0238 188
PRM. NO. 1808	PRM. NO. 2003	SYMBOL	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000
1809	2004		00000110	00000110	00000110	00000110	00000110	00000110	00000110	00000110	00000110	00000110	00000110
1883	2005		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
1951	2007		00000000	00000000	00000000	00000000	00000000	00000000	0000000	00000000	00000000	00000000	00000000
1952	2008		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
1954	2010		00000000	00000000	00000000	00000000	00000000	00000000	0000000	00000000	00000000	00000000	00000000
1955	2011		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
1707	2013		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
1750	2210		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
1751 2713	2211		00000010	00001010	00001010	00001110	00000000	00000010	00000010	00001110	00001010	00001010	00001010
2714	2301		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
1852	2040 2041	CUR GAIN I	525 -2056	1096 -4638	-3187	-4010	-3174	-511	-1137	8 450 / -1840	-2352	694	657
1854	2042	CUR GAIN 3	-2619	-2651	-2651	-2665	-2645	-2415	-2388	-1234	-2616	-2636	-2639
1855	2043	VEL GAIN I VEL GAIN P	-1009	-1342	-1009	-2182	-1008	-59	/ t 9 -53	164	-294	-306	-466
1857	2045	VEL GAIN 3	0	0	0	0	0	0000	0 0005	0 0	0	0	0
1858	2046 2047	OBSERVER POA1	-8235 3762	-8235 2827	-8235	-8235	-8235	-8235		-8235 5143	-8235	-8235	-8235
1860	2048	BLACC CMP	0	0	0	0	0	0		0	0	0	0
1862	2049	OBSERVER POK1	956	956	956	956	956	956	5 956	i 956	956	956	956
1863	2051	OBSERVER POK2	510	510	510	510	510	510	510	510	510	510	510
1865	2052	DB-CMP PPMAX	21	2000	21	2100	21	21	21	21	21	21	21
1866	2054	DB-CMP PDDP	1894	1894	1894	1894	1894	1894	1894	1894	1894	1894	1894
1868	2056	EMFCMP	010	0	010	013	013	-12850	-12850	-30	013	013	013
1869	2057 2058	D-PHASE CUR	0	-3854	-6418	-3616	-6159	0	0 -11530	-5144	-7691	-7690	-5904
1871	2059	PPBAS	0	0	0	0	0	0		0	0	0	0
1872	2060 2061	ICMD LIMII EMFLMT	/282	/282	8010	/282	8010	6918 0	3 /282) (2 /282	/282	/282	/282
1877	2062	OVC K1	32433	32289	32383	32433	32433	32674	32695	32381	32609	32596	32534
1878	2063	TGALMLV	4184	5994	4807	4185	4184	4	s 915 1 4	4835	1993	2153	2923
1893	2065	OVC LIMIT	12461	17889	14327	12462	12461	3497	7 2714	14410	5920	6396	8692
1895	2000	TCMD FILTER	0	0	0	0	0	0			0	0	0
1961-1966 1967	2068-2073 2074		0	0 8192	12288	12288	16384	20480	20480	0 0	8192	8192	4096
1970-1976	2077-2083		0	0	0	0	0	0		0	0102	0102	0000
1979 1980–1982	2086 2087-2089	RATED CURRENT	1888	2593	1950	2611	1948	1376	6 1212 0 0	2780	1253	1302	1518
1983	2090	ROBSTL	0	0	0	0	0	0	0 0	0	0	0	0
1984-1991	2091-2098	ONEPSL	400	400	400	400	400	400	400	400	400	400	400
1993	2100	INPA1	0	0	0	0	0	0		0	0	0	0
1995	2102	DBLIM	15000	0	0	0	15000	0		0 0	0	0	0
1996	2103	ABVOF	0	0	0	0	0	0		0	0	0	0
1998	2105	TORQUE CONST.	190	277	369	689	369	42	2 89	226	562	541	696
1999	2106	LP24PA	0	0	0	0	0				0	0	0
1703	2110	MGSTCM	1032	1552	786	0	782	30) 30	1805	519	519	521
1704	2112	AMRDML	12388	3880	5180	2866	0	10290) 1029C	/930 00	08/1	/268	51/0
1706	2113	HRV FILT	0	0	0	0	0	1000) (0	0	<u> </u>	1500
1736	2128	MFWKCE	4000	4500	1500	2500	6000	009) (3500	4000	4500	3000
1752	2129	MFWKBL SMOOTH CMP	3348	1550	1815	562	1810	0		1552	2580	2580	2570
1756	2133	PHDLY1	6670	3860	5140	3089	0	7690	11560	3852	5652	5150	5135
1782	2134 2159	DGCSMM	8980	8990	8985	8982	0	12820) 12880) C	9990 v 8990	8990	8990	9000
1783	2160	TRQCUP	0	0	0	0	0	0		0	0	0	0
1785	2162	OVC2 K1	32766	32763	32765	32763	32765	32767	32767	32764	32767	32767	32766
1786	2163		31	63	33	64 10054	33	2015	6 12 5 2240	51	13	14	19
1788	2165	MAX CURRENT	25	25	45	25	25	25	2340	25	85	45	85
2716	2302	TQLIM AT STOP	0	0	0	0	0	0		0	0	0	0
2718	2305	ACDCEBD	0	0	0	0	0	0		0	0	0	0
2723	2310	DCIDBS LIMLIM	0	0	0	0	0	0			0	0	0
	Remarks												

I.HRV1 CONTROL PARAMETERS APPENDIX

		Motor model	αiS12 4000HV	αC12 2000 i	αiF12 3000	βiSc8/3000 40A	αiF12 3000HV	αC22 2000 i	αiF22 3000	βiSc12 2000	αiF22 3000HV	βiSc12/200	αC30 1500 i
	ES16i etc	Motor specification	0239	0241	0243	0075-Bxx7	0245	0246	0247	0077-Bxx7	0249	40A 0077-Bxx7	0251
PRM. NO.	PRM. NO.	SYMBOL	109	191	195	194	195	190	197	190	199	200	201
1808	2003		00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000
1883	2004		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
1884	2006		00000000	00000000	00000000	00000000	00000000	00000000	0000000	00000000	00000000	0000000	00000000
1952	2008		00000000	00000000	0000000	00000000	00000000	00000000	0000000	00000000	0000000	0000000	00000000
1953	2009		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
1955	2011		00000000	00100000	00100000	00000000	00100000	00000000	00100000	00000000	00100000	0000000	00000000
1956	2012		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
1708	2014		00000000	00000000	00000000	00001110	00000000	00000000	00000000	00000000	00000000	00001110	00000000
1751	2210		00000000	00000000	00000000	00000000	00000000	00001010	00000000	00000000	00000000	00000000	00000000
2713	2300		00000000	00000000	00000000	00000000	00000000	00000000	0000000	00000000	00000000	0000000	00000000
1852	2040	CUR GAIN I	783	3809	1072	900	1044	1755	1458	320	1532	2 951	2644
1853	2041	CUR GAIN P	-3006	-8197	-3835	-3680	-3677	-6536	-5416	-1958	-5641	-3525	-10345
1855	2043	VEL GAIN I	52	280	192	82	193	271	198	230	197	115	166
1856	2044 2045	VEL GAIN P VEL GAIN 3	-4/0	-2504	-1/21	-/38	-1/2/	-2426		-2054	-1/65	-1027 0 C	-1486
1858	2046	VEL GAIN 4	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235
1860	2047	BLACC CMP	-606	0	2204	-1029	2197	0	2137	0	2150) /390	2553
1861	2049	DPFMX OBSERVER_POK1	0	0	956	0	0	0	056	956	956) () 05F	956
1863	2051	OBSERVER POK2	510	510	510	510	510	510	510	510	510	510	510
1864	2052	OVER SPEED DB-CMP PPMAX	5600	2800	4800	4200	4800	2400	3600	2800	3600	2800	2100
1866	2054	DB-CMP PDDP	1894	1894	1894	1894	1894	1894	1894	1894	1894	1894	1894
1867	2055	EMFCMP	-20	0	-5140	0	-20		-2590	0	319		
1869	2057	D-PHASE CUR	-5904	-1804	-8199	-5133	-8214	-2597	-5136	-3884	-4392	-3862	-1545
1871	2058	PPBAS	-3000	-2500	-/4/	-1350	-2350	0 -1942	-2800	-4400	-2824) (-1300
1872	2060	TCMD LIMIT	7282	7282	7282	3641	7282	8010	7282	7282	7282	2 3641	7282
1877	2062	OVC K1	32530	32289	32520	32671	32548	32114	32520	32323	32548	32646	32520
1878	2063	TGALMLV	2976	5994	3101	4	2755	4	3101		2/50	6 1520 I 4	4
1893	2065	OVC LIMIT	8848	17889	9224	3603	8192	24454	9224	16603	8192	2 4511	9224
1895	2067	TCMD FILTER	0	0	C	0	0	0	C C	0	C		C
1961-1966 1967	2068-2073	AALPH	8192	8192	8192	0	12288	8192	8192	8192	8192		8192
1970-1976	2077-2083		0	0	2085	0	2002	0 0	2121	0	2119) (1655
1980-1982	2087-2089		0	0	2000	0	0	0	0	0	0) (000
1983 1984–1991	2090	ROBSTL	0	0	0	0	0			0			
1992	2099	ONEPSL	400	400	400	400	400	400	400	400	400	400	400
1993	2100	INPA1	0	0	0	0	0		0	0	0		0
1995	2102	DBLIM	0	15000	15000	0	15000		15000	0	15000		0
1997	2104	ABTSH	0	0	C	0	0	0	C C	0	C	0 0	C
1998	2105	LP24PA	690 0	350	517	452	516	680 0	929	315	934	H 630	1630
1700-1702	2107-2109	MGSTCM	0	0	0	0	0	1540	1201	0	0) (2050
1704	2111	TQLIM IN DEC.	6159	2168	0	794	0	2600	1291	3940	0	3940	2059
1705	2112	AMRDML HRV FILT	0	0	0	0	0	0	0	0	0) () (С С
1735	2127	NINTCT	4904	4150	2388	1442	4787	3695	3272	1350	6547	1350	6680
1752	2128	MFWKCE MFWKBL	2000	12000	2000	/000	4000	4000	4500	4000	6000	8000 8 280	14000
1753-1755	2130-2132	SMOOTH CMP	6174	0	0	0	0	0	0	0	0) (1054
1757	2133	PHDLY2	8990	8990	0	3852	0	9000	<u> </u>	8980	C) 1812	9000
1782	2159 2160	DGCSMM TRQCUP	0	0	0	0	0			0	0) (
1784	2161	OVC STP	0	0	0	0	0	0	0	0	0) (0
1786	2162	UVC2 K1 OVC2 K2	32766	32761	32765	32767	32765	32761	32765	32763	32765	0 32767 0 15	32766
1787	2164	OVC2 LIMIT	3738	14518	6924	2224	6969	13493	7229	10250	7142	2785	4361
2716	2302	TQLIM AT STOP	45	25	85 0	45	45	45	85	25	45 0) 45	85 C
2717	2304	ACCBSLM	0	0	0	0	0	0	0	0	0) (C
2723	2310	DCIDBS	0	0	0	0	0	0		0	0) (C
2/29	2316		0	0	0	0	0	0	<u>и</u> С	0	0	ν <u></u> (1 <u> </u>
	Remarks												
B-65270EN/08

APPENDIX

I.HRV1 CONTROL PARAMETERS

		Motor model	βiS22/1500 FS0i	αiF30 3000	βiS22/1500 FS0i 40A	βiSc2 4000	αiF40 3000	αiF40 3000Ean	βiSc2/4000 40A	βiSc4 4000	β i Sc4/4000 40A	βiS22 3000	β i S22 3000HV
F\$15i	ES16i etc	Motor specification	0084-Bxx6	0253	0084-Bxx6	0061-Bxx7	0257	0257	0061-Bxx7	0063-Bxx7	0063-Bxx7	0082	0083
PRM. NO.	PRM. NO.	SYMBOL	202	203	203	200	207	200	210	211	212	215	214
1808 1809	2003 2004		00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000
1883	2005		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
1951	2006		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
1952 1953	2008		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
1954	2010		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
1955 1956	2011 2012		00000000	00000000	00000000	00100000	00100000	00100000	00100000	00000000	00000000	00000000	00000000
1707	2013		0000000	00000000	00001110	00000100	00000000	00000000	00010000	00000000	00001110	00001000	00001000
1750	2014		00000000	00000000	00000000	00000100	00000000	00000000	00000000	00000000	00000000	00001000	00000000
1751 2713	2211 2300		00001110	00001010	00001110	00000010	00001010	00001010	00000010	00001110	00001110	00001110	00001110
2714	2301		00000000	00000000	00000000	0000000	0000000	00000000	0000000	00000000	00000000	00000000	00000000
1852	2040 2041	CUR GAIN P	-4337	-2334	-11170	-1080	-5048	-5048	<u> </u>	-960	-1920	-2486	-3580
1854	2042	CUR GAIN 3	-2659	-2694	-1329	-1112	-2696	-2696	6 -1112	-1144	-1144	-1298	-2663
1856	2043	VEL GAIN P	-2507	-2057	-1254	-698	-1712	-1712	-349	-1008	-504	-1766	-1722
1857 1858	2045 2046	VEL GAIN 3 VEL GAIN 4	-8235	-8235	-8235	-8235	-8235	-8235	0 0	-8235	-8235	-8235	-8235
1859	2047	OBSERVER POA1	3027	1845	6054	-1089	2216	2216	6 -2178	-753	-1506	4297	4406
1860	2048 2049	DPFMX	0	0	0	0	0	0		0	0	0	0
1862	2050	OBSERVER POK1 OBSERVER POK2	956 510	956 510	956 510	956 510	956	956	956 510	956 510	956	956	956
1864	2052	OVER SPEED	1800	4800	1800	5600	4200	4200	5600	5600	5600	4200	4200
1865	2053 2054	DB-CMP PPMAX DB-CMP PDDP	21	1894	1894	1894	1894	1894	1894	1894	21	1894	1894
1867	2055	DB-CMP PHYST	319	319	319	319	319	319	319	319	319	319	319
1869	2050	D-PHASE CUR	-2110	-5170	-2079	-10250	-2570	-2570	-10245	-7700	-7690	-6174	-6174
1870 1871	2058 2059	D-PHASE CUR PPBAS	-4691	-1000	-2342	-1000	-2000	-2000	0 -500	-2240	-1120	-2843	-2843
1872	2060		7282	7282	3641	6554	7282	7282	3277	7282	3641	5462	5462
1873	2061	OVC K1	32319	32515	32655	32652	32515	32431	32739	32532	32709	32520	32548
1878 1892	2063 2064	OVC K2 TGALMLV	5617	3166	1411	1455	3166	4212	2 364	2945	738	3097	2755
1893	2065		16756	9418	4189	4317	9418	12545	1079	8758	2189	9212	8192
1894 1895	2066 2067	TCMD FILTER	-10	0	-10	-10	0	0) -5	-10	-5	-10	-10
1961-1966 1967	2068-2073		0	0	0	20480	0 8192	8192	0	20480	0	8192	8192
1970-1976	2077-2083		0132	0132	0	0	0132	0132	0	0	0	0132	0132
1979 1980-1982	2086 2087–2089	RAIED CURRENI	3012	2306	1506	1529	1957	2593	8 /64 0 0	21/8	1089	2121	2069
1983	2090	ROBSTL	0	0	0	0	0	0	0 0	0	0	0	0
1992	2099	ONEPSL	400	400	400	400	400	400	400	400	400	400	400
1993 1994	2100 2101	INPA1 INPA2	0	0	0	0	0	0		0	0	0	0
1995	2102	DBLIM	0	0	0	15000	15000	15000	7500	0	0	0	0
1997	2103	ABTSH	0	0	0	0	0	0	0 0	0	0	0	0
1998 1999	2105 2106	TORQUE CONST.	597	1170	1194	119	1839	1839 0	0 238 0 0	146	292	848	869
1700-1702	2107-2109	NOSTON	1025	0	0	0	0	1201	0	0	0	0	1200
1703	2110	TQLIM IN DEC.	2248	7735	2248	11600	5140	5140	11600	782	7790	7268	7268
1705 1706	2112 2113	AMRDML HRV FILT	0	0	0	0	0	0		0	0	0	0
1735	2127	NINTCT	3290	1688	3290	1172	3041	3041	1172	796	796	1967	3894
1736	2128 2129	MFWKGE	1032	2500	1000	2574	1553	1553	6000 8 2574	3130	3130	2315	2315
1753-1755 1756	2130-2132	SMOOTH CMP	2580	0 5140	2580	0 7188	0	3087	0	0 7691	7691	5647	5647
1757	2134	PHDLY2	8990	8995	4382	8990	8990	8990	8990	8976	8976	12820	12820
1 /82 1783	2159 2160	TRQCUP	0	0	0	0	0	0	0 0	0	0	0	0
1784	2161	OVC STP	20762	128	0	120	128	128	8 120	120	120	0	20765
1786	2163	0VC2 K2	<u> </u>	48	14	140	46	637	32765	294	70	40	32765
1787 1788	2164 2165	OVC2 LIMIT MAX CURRENT	10345	8124	2586	2665	8124	10815	666	5407	1352	7166	6815 4F
2716	2302	TQLIM AT STOP	0	0	0	0	0	0		0	0	0	0
2718	2304	ACDCEBD	0	0	0	0	0	0	0	0	0	0	
2723	2310 2316	DCIDBS	0	0	0	0	0	0	0 0	0	0	0	0
LV		= · · #= 1 #		. 0	. 0		. 0		. 0				
	Kemarks								1		1		

I.HRV1 CONTROL PARAMETERS APPENDIX

B-65270EN/08

		Motor model	αiS22 4000	αi S22 4000HV	αiS30 4000	α i S30 4000HV	αiS40 4000	αiS40 4000HV	αiS50 3000	αiS50 3000Fan	αi S50 3000HVFan	α i S50 3000HV	αiS100 2500Fan
FS15i	FS16i, etc.	Motor specification Motor ID No.	0265 215	0266 216	0268 218	0269 219	0272 222	0273 223	0275 224	0275 225	0276 226	0276 227	0285 230
PRM. NO. 1808	PRM. NO.	SYMBOL	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000
1809	2004		00000110	00000110	00000110	00000110	00000110	00000110	00000110	00000110	01000110	01000110	00000110
1883	2005		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
1951	2007		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	0000000
1952	2008		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
1954	2010		00000000	0000000	00000000	00000000	0000000	00000000	00000000	0000000	00000000	00000000	0000000
1955	2011		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	0000000
1707	2013		00000000	0000000	00000000	00000000	0000000	00000000	00000000	0000000	00000000	00000000	0000000
1708	2014		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
1751	2211		00001010	00001010	00001010	00001010	00001010	00001010	00001010	00001010	00001010	00001010	00001010
2713	2300		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	0000000
1852	2040	CUR GAIN I	714	709	689	816	748	860	528	528	680	680	874
1853	2041	CUR GAIN 3	-2904	-2806	-2675	-3277	-3055	-3457	-2088	-2088	-2961	-2961	-4483
1855	2043	VEL GAIN I	69	76	82	82	92	93	69	69	70	70	91
1856	2044 2045	VEL GAIN P	C	0 -085	-/33	-/38	-827	0	-622	-622	-628	-628	-819
1858	2046	VEL GAIN 4	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235
1860	2047	BLACC CMP	0103	0 0000	0	0143	4569	4509	0099	0099	0039	0039	4032
1861	2049	DPFMX	000	0	0	0	0	0000	0	0000	050	0	0
1863	2051	OBSERVER POK2	510	510	510	510	510	510	510	510	510	510	510
1864	2052	OVER SPEED	5600	5600	5400	5400	4800	4800	4200	4200	4200	4200	0
1866	2053	DB-CMP PDDP	1894	1894	1894	1894	1894	1894	31979	31979	31979	31979	1894
1867	2055	DB-CMP PHYST	319	319	319	319	319	319	319	319	319	319	319
1869	2050	D-PHASE CUR	-7689	-7684	-6415	-6415	-5648	-5652	-5646	-5646	-5646	-5646	-4368
1870	2058	D-PHASE CUR	-2000	-1000	-3000	-3000	-3000	-3600	-2000	-2000	-2000	-2000	-1359
1871	2059	TCMD LIMIT	7282	7282	7282	7282	7282	7282	7282	7282	7282	7282	7282
1873	2061	EMFLMT	00515	0	0	0	0	0 0	0	0	0	0	0
1877	2062	OVC K1	32515	32501	32515	32501	32515	32501	2627	5248	4967	2680	5734
1892	2064		4	4	4	4	4	4	7010	15620	4	4	4
1894	2065	ACC FB GAIN	9410	0 0	9410	0	9410	0 0	0	0	0	1908	27340
1895	2067	TCMD FILTER	0	0	0	0	0	0	0	0	0	0	0
1967	2008-2073	AALPH	4096	8192	4096	4096	4096	4096	4096	4096	0	0	20480
1970-1976	2077-2083	RATED CURRENT	1627	0 0	1836	1847	2073	0	1/130	2037	2057	0	2848
1980-1982	2087-2089		027	0	0	0	0	0	0	0	0	0	0
1983 1984–1991	2090	ROBSTL	0		0	0	0		0	0	0	0	0
1992	2099	ONEPSL	400	400	400	400	400	400	400	400	400	400	400
1993	2100	INPA1 INPA2			0	0	0			0	0	0	0
1995	2102	DBLIM	C	0	0	15000	15000	15000	7500	0	0	0	0
1996	2103 2104	ABVOF			0	0	0			0	0	0	0
1998	2105	TORQUE CONST.	1216	1093	1470	1460	1701	1693	3312	3312	3279	3279	4589
1999	2106 2107-2109	LP24PA	0		0	0	0		0	0	0	0	0
1703	2110	MGSTCM	519	513	775	775	776	769	519	519	519	519	776
1704	2111	AMRDML	6224	0194	0450	6430	5682	5682	01/4	01/4	01/4	01/4	3/8/
1706	2113	HRV FILT	0041	0 0	0	0	0	0	0	0	0	0	0
1736	2127	MFWKCE	2041	2000	4000	3000	4000	4000	6500	6500	2500	2500	6500
1752	2129	MFWKBL	2580	3092	2574	2574	2063	2063	2063	2063	2068	2068	1297
1756	2130-2132	PHDLY1	5150	5150	5150	5150	5150	5150	5150	5150	5140	5140	2570
1757	2134	PHDLY2	8990	8990	8990	8990	8988	8988	8990	8990	9000	9000	8970
1783	2160	TRQCUP		0	0	0	0			0	0	0	0
1784	2161	OVC STP	128	0	128	0	128	0	2075	0	0	0	140
1786	2163	0VC2 K2	28	28	32/05	32700	32/00	32/05	174	365	373	178	292
1787	2164	OVC2 LIMIT	5177	5218	6687	5432	6846	6908	3300	6608	6736	3366	13952
2716	2302	TQLIM AT STOP	0	0	0	0	0	0	0	0	0	0	0
2717	2304		0	0	0	0	0	0	0	0	0	0	0
2723	2310	DCIDBS	C	0	0	0	0	0	0	0	0	0	0
2729	2316		C	0 0	0	0	0	0 0	0	0	0	0	0
	Remarks												

B-65270EN/08

APPENDIX

I.HRV1 CONTROL PARAMETERS

			Motor model	αiS100 2500HVFan	αi S200 2500Fan	αiS100 2500	αiS100 2500HV	αiS200 2500HVFan	αi \$200 2500	α i S200 2500HV	αi \$300 2000	αi \$300 2000HV	αi \$500 2000	α i S500 2000HV
_	FS15i	FS16i, etc.	Motor specification Motor ID No.	0286 231	0288 234	0285 235	0286 236	0289 237	0288 238	0289 239	0292 242	0293 243	0295 245	0296 246
18	PRM. NO.	PRM. NO. 2003	SYMBOL	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000
18	09	2004		00000110	00000110	00000110	00000110	00000110	00000110	00000110	00000110	01000110	00000110	01000110
18 18	183 184	2005		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
19	51	2007		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	0000000	00000000
19	152	2008		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
19	54	2010		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
19	155	2011		00100000	00000000	00000000	00100000	00000000	00000000	00000000	00100000	00000000	00000000	00000000
17	07	2013		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
17 17	08 '50	2014 2210		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
17	51	2211		00000000	00001010	00001010	00000000	00001010	00001010	00001010	00000000	00001010	00001010	00001010
27 27	13	2300		00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
18	52	2040	CUR GAIN I	980	1309	874	980	1194	1309	1194	1357	1077	1943	1713
18	53 54	2041	CUR GAIN P	-4082	-5199	-4483 -2717	-4082	-5535 -2719	-5199	-5535	-4212	-5101	-6970	-6505 -2713
18	55	2043	VEL GAIN I	91	115	91	91	115	115	115	114	114	134	134
18	156 157	2044 2045	VEL GAIN P	-819	-1026	-819	-819	-1026	-1026	-1026	-1023	-1025	-1199	-1199 0
18	58	2046	VEL GAIN 4	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235
18	60	2047	BLACC CMP	4030	2099	4032	4030	2033	3699	3699	3709	3703	3164	3164
18	61	2049	DPFMX	0	0	0	0	0	0	050	0	0	0	0
18 18	63	2050	OBSERVER POKI	956 510	956 510	956 510	956 510	956 510	956	956	956	956 510	956 510	956 510
18	64	2052	OVER SPEED	0	0	0	0	0	0	0	0	0	0	0
18	66	2053	DB-CMP PDDP	1894	1894	1894	1894	1894	1894	1894	3787	3787	1894	3787
18	67	2055	DB-CMP PHYST	319	319	319	319	319	319	319	319	319	319	319
18	69	2056	D-PHASE CUR	-3846	-3090	-4368	-3846	-3088	-3090	-3088	-3850	-3846	-2068	-2070
18	70	2058	D-PHASE CUR	-900	-2700	-1359	-900	-3000	-2700	-3000	-800	-900	-2600	-2700
18	571	2059	TCMD LIMIT	7282	7282	7282	7282	7282	7282	7282	7282	7282	7282	7282
18	73	2061	EMFLMT	0	0	0	0	0	0	0	0	0	0	0
18	78	2062	OVC K1	5734	5734	5728	32474 3672	5734	5734	5734	4714	4714	5734	5734
18	92	2064		4	4	15662	15000	27246	4	4	4	4	4	4
18	93	2065	ACC FB GAIN	27340	27340	0	15962	27340	27340	27340	23203	23203	27340	27340
18	95	2067	TCMD FILTER	0	0	0	0	0	0	0	0	0	0	0
19	167	2008-2073	AALPH	12288	12288	20480	12288	12288	12288	12288	12288	12288	12288	12288
19 19	70-1976	2077-2083	RATED CURRENT	2848	2013	1960	2033	2013	2712	2712	2483	2483	2980	2980
19	80-1982	2087-2089		0	0	0	0	0	0	0	0	0	2300	0
19 19	83 84-1991	2090	ROBSTL	0	0	0	0	0	0	0	0	0	0	0
19	92	2099	ONEPSL	400	400	400	400	400	400	400	400	400	400	400
19 19	193 194	2100 2101	INPA1 INPA2	0	0	0	0	0	0	0	0	0	0	0
19	95	2102	DBLIM	10000	0	0	10000	0	0	0	15000	0	0	0
19 19	196 197	2103	ABVOF	0	0	0	0	0	0	0	0	0	0	0
19	98	2105	TORQUE CONST.	4423	5973	4589	4423	5973	5973	5973	10871	10871	15096	15096
19 17	99 00-1702	2106 2107-2109	LP24PA	0	0	0	0	0	0	0	0	0	0	0
17	03	2110	MGSTCM	1291	1290	776	1291	1291	1290	1291	16	1296	1296	1293
17	04	2111	AMRDML	0	0	3/8/	0	3428	0	3428	1606	0	0	3/14
17	06	2113	HRV FILT	0	0	0	0	0	0	0	0	0	0	0
17	35	2127	MFWKCE	2000	4000	6500	2000	4000	4000	4000	5500	5000	4175	4500
17	52	2129	MFWKBL	1549	1298	1297	1549	1551	1298	1551	791	1301	1041	788
17	53-1755 56	2130-2132	PHDLY1	0	2068	2570	0	2575	2068	2575	1556	2574	2069	2324
17	57	2134	PHDLY2	0	12820	8970	0	8984	12820	8984	20494	12814	8981	8984
17	83	2160	TRQCUP	0	0	0	0	0	0	0	0	0	0	0
17	84	2161	OVC STP	140	140	106	140	140	140	140	140	140	140	140
17	86	2162	0VC2 K2	32745	292	223	32759	32/45	292	292	32738	32738	292	32745
17	87	2164	OVC2 LIMIT	13952	13952	6581	6752	13952	13952	13952	13952	13952	13952	13952
1/ 27	16	2302	TQLIM AT STOP	185	0	0	0	0	365	185	0	0	0	0
27	17	2304	ACCBSLM	0	0	0	0	0	0	0	0	0	0	0
27 27	23	2310	DCIDBS	0	0	0	0	0	0	0	0	0	0	0
27	29	2316		0	0	0	0	0	0	0	0	0	0	0
		Remarks												
_														

I.HRV1 CONTROL PARAMETERS APPENDIX

B-65270EN/08

		Motor model	αiS1000 2000HV										
	5010	Motor specification	0298										
PRM. NO.	PRM. NO.	SYMBOL	248										
1808	2003		00001000										
1809	2004		01000110										
1883	2005		00000000										
1951	2000		00000000										
1952	2008		00000000										
1953	2009		00000000										
1955	2010		00100000										
1956	2012		00000000										
1707	2013		00000000										
1750	2014		00000000										
1751	2211		00000010										
2713	2300		00000000										
1852	2040	CUR GAIN I	1053										
1853	2041	CUR GAIN P	-3316										
1854	2042	CUR GAIN 3	-2722										
1855	2043	VEL GAIN I	234										
1857	2045	VEL GAIN 3	0										
1858	2046	VEL GAIN 4	-8235										
1859	2047	UBSERVER POAT	1811										
1861	2040	DPFMX	0										
1862	2050	OBSERVER POK1	956										
1863	2051	OBSERVER POK2	510										
1865	2052	DR-CMP PPMAX	21										
1866	2054	DB-CMP PDDP	3787										
1867	2055	DB-CMP PHYST	319										
1868	2056	EMFCMP	-3007										
1870	2058	D-PHASE CUR	-2000										
1871	2059	PPBAS	0										
1872	2060	TCMD LIMIT	7282										
1877	2001	OVC K1	32309										
1878	2063	OVC K2	5734										
1892	2064		27246										
1894	2005	ACC FB GAIN	0										
1895	2067	TCMD FILTER	0										
1961-1966	2068-2073		12288										
1970-1976	2077-2083		0										
1979	2086	RATED CURRENT	2834										
1980-1982	2087-2089	PORSTI	0										
1984-1991	2091-2098		0										
1992	2099	ONEPSL	400										
1993	2100	INPAI INPA2	0										
1995	2102	DBLIM	15000										
1996	2103	ABVOF	0										
1997	2104	ABISH	20570										
1999	2106	LP24PA	0										
1700-1702	2107-2109	HOOTOK	0										
1704	2110		1296										
1704	2112	AMRDML	0										
1706	2113	HRV FILT	0										
1735	2127		8637										
1750	2120	MFWKBL	1047										
1753-1755	2130-2132	SMOOTH CMP	0										
1756	2133	PHDLY1	2580										
1757	2134	DGCSMM	8985										
1783	2160	TRQCUP	0										
1784	2161	OVC STP	140										
1786	2162	UVC2 K1	32745										
1787	2164	OVC2 LIMIT	13952										
1788	2165	MAX CURRENT	365										
2716	2302	IQLIM AT STOP	0										
2718	2304	ACDCEBD	0										
2723	2310	DCIDBS	0										
2729	2316		0										
	Romarko												
	Nonial Ko			1	1	1	1	1	1	1	1	1	1

J

SETTINGS FOR THE POWER CONSUMPTION MONITOR FUNCTION

APPENDIX

Appendix J, " SETTINGS FOR THE POWER CONSUMPTION MONITOR FUNCTION ", consists of the following sections:

J.1 INTERNAL UNIT SETTINGS AND COIL RESISTANCE SETTINGS

Table J.1(a) Internal unit settings and coil resistance setting for each motor model

Sorios	Motor model	Specification	Unit s	setting	Coil	Pomarks
Series	Wotor moder	Specification	#1	#0	No.2468	Remains
α <i>i</i> S(200V)	α <i>i</i> S2/5000	A06B-0212-B□0□	1	0	5734	
	α <i>i</i> S2/6000	A06B-0218-BD0D	1	0	5734	
	αiS4/5000	A06B-0215-BD0D	1	0	2499	
	α <i>i</i> S4/6000	A06B-0210-BD0D	1	0	2499	
	α <i>i</i> S8/4000	A06B-0235-BD0D	1	0	1270	
	α <i>i</i> S8/6000	A06B-0232-BD0D	1	0	532	
	α <i>i</i> S12/4000	A06B-0238-BD0D	1	0	737	
	α <i>i</i> S12/6000	A06B-0230-BD0D	0	1	266	
	α <i>i</i> S22/4000	A06B-0265-BD0D	0	1	307	
	α <i>i</i> S22/6000	A06B-0262-B□0□	0	1	160	
	α <i>i</i> S30/4000	A06B-0268-B□0□	0	1	254	
	α <i>i</i> S40/4000	A06B-0272-B□0□,-B□2□	0	1	238	
	α <i>i</i> S50/2000	A06B-0042-B□0□,-B□2□	0	1	315	
	α <i>i</i> S60/2000	A06B-0044-B□0□,-B□2□	0	1	303	
	α <i>i</i> S50/3000FAN	А06В-0275-В□1□,-В□3□	0	1	98	
	α <i>i</i> S60/3000FAN	А06В-0278-В□1□,-В□3□	0	1	135	
	α <i>i</i> S100/2500	A06B-0285-B□00	0	1	53	
	α <i>i</i> S100/2500FAN	A06B-0285-B□10	0	1	53	
	α <i>i</i> S200/2500	A06B-0288-B□00	0	1	45	
	α <i>i</i> S200/2500FAN	A06B-0288-B□10	0	1	45	
	α <i>i</i> S300/2000	A06B-0292-B□10	0	1	49	*1
	α <i>i</i> S500/2000	A06B-0295-B□10	0	1	49	*1
α <i>i</i> S(400V)	α <i>i</i> S2/5000HV	A06B-0213-B□0□	1	0	22118	
	α <i>i</i> S2/6000HV	A06B-0219-B□0□	1	0	22938	
	α <i>i</i> S4/5000HV	A06B-0216-B□0□	1	0	11469	
	α <i>i</i> S4/6000HV	A06B-0214-B□0□	1	0	11469	
	α <i>i</i> S8/4000HV	A06B-0236-B□0□	1	0	5325	
	α <i>i</i> S8/6000HV	A06B-0233-B□0□	1	0	2048	
	α <i>i</i> S12/4000HV	A06B-0239-B□0□	1	0	3441	
	α <i>i</i> S12/6000HV	A06B-0237-BD0D	0	1	1065	
	α <i>i</i> S22/4000HV	A06B-0266-B□0□	1	0	1024	
	α <i>i</i> S22/6000HV	A06B-0263-BD0D	0	1	655	
	α <i>i</i> S30/4000HV	A06B-0269-B□0□	0	1	1024	
	α <i>i</i> S40/4000HV	A06B-0273-BD0D,-BD2D	0	1	942	

J. SETTINGS FOR THE POWER CONSUMPTION MONITOR FUNCTION

APPENDIX

B-65270EN/08

Sorios		Unit setting Coil				
Series	Motor model	Specification	(No.	2281)	resistance	Remarks
			#1	#0	No.2468	
α <i>i</i> S(400V)	α <i>i</i> S50/2000HV		0	1	1270	
	α1S60/2000HV		0	1	1229	
	α1S50/3000HVFAN	A06B-0276-BD1D,-BD3D	0	1	410	
	α1S60/3000HVFAN		0	1	532	
	α1S100/2500HV	A06B-0286-BLI00	0	1	213	
	α1S100/2500HVFAN	A06B-0286-BL10	0	1	213	
	α15200/2500HV	A06B-0289-BL100	0	1	188	
	α1S200/2500HVFAN	A06B-0289-BL10	0	1	188	<i>ه</i> ب
	α1S300/2000HV	A06B-0293-BL10	0	1	197	^]
	α1S300/3000HV	A06B-0290-BL10	0	1	119	± 4
	α1S500/2000HV	A06B-0296-BL10	0	1	205	*1
	α1S500/3000HV	A06B-0297-BL10	0	0	106	
	α1S1000/2000HV	A06B-0098-BL10	0	0	41	*1
	α1S1000/3000HV	A06B-0099-B050	0	0	20	*1
	αiS2000/2000ΗV	A06B-0091-B□40	0	0	16	*1, *2
	α <i>i</i> S3000/2000HV	A06B-0092-B□40	0	0	14	*1, *2
α <i>i</i> F(200V)	α <i>i</i> F1/5000	A06B-0202-B□0□	1	1	5734	
	α <i>i</i> F2/5000	A06B-0205-BD0D	1	0	4506	
	α <i>i</i> F4/4000	A06B-0223-B□0□	1	0	1638	
	α <i>i</i> F8/3000	A06B-0227-B□0□	1	0	2089	
	α <i>i</i> F12/3000	A06B-0243-B□0□	1	0	655	
	α <i>i</i> F22/3000	A06B-0247-B□0□	1	0	655	
	α <i>i</i> F30/3000	A06B-0253-B□0□	1	0	164	
	α <i>i</i> F40/3000	А06В-0257-ВП0П,-ВП2П	0	1	279	
	α <i>i</i> F40/3000FAN	А06В-0257-В□1□,-В□3□	0	1	279	
α <i>i</i> F(400V)	α <i>i</i> F4/4000HV	A06B-0225-B□0□	1	0	6144	
	α <i>i</i> F8/3000HV	A06B-0229-B□0□	1	0	7782	
	α <i>i</i> F12/3000HV	A06B-0245-B□0□	1	0	2662	
	α <i>i</i> F22/3000HV	A06B-0249-B□0□	1	0	2703	
β <i>i</i> S(200V)	β <i>i</i> S0.2/5000	A06B-0111-B□03	1	1	24576	
	β <i>i</i> S0.3/5000	A06B-0112-B□03	1	1	32767	
	βi S0.4/5000	A06B-0114-B□03	1	1	2253	
	β <i>i</i> S0.5/6000	A06B-0115-B□03	1	1	3482	
	β <i>i</i> S1/6000	A06B-0116-B□03	1	0	6144	
	β iS2/4000	A06B-0061-B□03, -B□06	1	1	6554	
	β <i>i</i> S4/4000	А06В-0063-В□03, -В□06	1	0	3850	
	β <i>i</i> S8/3000	А06В-0075-В□03, -В□06	1	0	4096	
	β <i>i</i> S12/2000	A06B-0077-BD03, -BD06	1	0	3564	
	β <i>i</i> S12/3000	A06B-0078-BD03	1	0	1597	
	βiS22/2000	A06B-0085-BD03	1	0	1802	
	βiS22/3000	A06B-0082-BD03	1	0	696	
	βiS30/2000	A06B-0087-BD03	1	0	614	
	β <i>i</i> S40/2000	A06B-0089-BD03	1	0	696	
β <i>i</i> S(400V)	β <i>i</i> S2/4000HV	A06B-0062-BD03	1	1	27034	
, , , ,	β <i>i</i> S4/4000HV	A06B-0064-BD03	1	0	16384	
	β <i>i</i> S8/3000HV	A06B-0076-BD03	1	0	15974	
	β <i>i</i> S12/3000HV	A06B-0079-BD03	1	0	6554	
	β <i>i</i> S22/2000HV	A06B-0086-BD03	1	0	7373	
	βiS22/3000HV	A06B-0083-BD03	1	0	2785	
	β <i>i</i> S30/2000HV	A06B-0088-BD03	1	0	2499	
	β <i>i</i> S40/2000HV	A06B-0090-BD03	1	0	2703	

J.SETTINGS FOR THE POWER CONSUMPTION MONITOR FUNCTION

-

APPENDIX

B-65270EN/08	

			Units	setting	Coil	
Series	Motor model	Specification	(No.	2281)	resistance	Remarks
			#1	#0	No.2468	
βiSc	β <i>i</i> Sc2/4000	A06B-0061-B□07	1	1	6554	
	β <i>i</i> Sc4/4000	A06B-0063-BD07	1	0	3850	
	βiSc8/3000	A06B-0075-BD07	1	0	4096	
	β <i>i</i> Sc12/3000	A06B-0077-BD07	1	0	3564	
D <i>i</i> S(200V)	D <i>i</i> S15/1000(200V)	A06B-0492-B100	1	1	17367	
	D <i>i</i> S22/600(200V)	A06B-0482-B100	1	1	20091	
	DiS22/1500(200V)	A06B-0482-B12□	1	1	13312	
	D <i>i</i> S60/400(200V)	A06B-0493-B200	1	1	13844	
	D <i>i</i> S70/300(200V)	A06B-0494-B100	1	1	12042	
	D <i>i</i> S85/400(200V)	A06B-0483-B200	1	1	7373	
	D <i>i</i> S85/1000(200V)	A06B-0483-B22□	1	0	4649	
	D <i>i</i> S110/400(200V)	A06B-0484-B100	1	1	1905	
	DiS110/1000(200V)	A06B-0484-B12□	1	0	1802	
	D <i>i</i> S150/300(200V)	A06B-0494-B300	1	0	5304	
	DiS200/300(200V)	A06B-0494-B400	1	0	6881	
	DiS250/250(200V)	A06B-0495-B200	1	0	4178	
	DiS260/300(200V)	A06B-0484-B300	1	1	3277	
	DiS260/1000(200V)	A06B-0484-B32□	1	0	922	
	DiS370/300(200V)	A06B-0484-B400	1	0	4301	
	DiS400/250(200V)	A06B-0485-B204	1	0	6144	
	DiS500/250(200V)	A06B-0495-B400	1	0	1761	
	DiS800/250(200V)	A06B-0485-B400	1	0	2540	
	DiS1000/200(200V)	A06B-0496-B300	1	0	1618	
	DiS1200/250(200V)	A06B-0485-B500	1	0	3707	
	DiS1500/100(200V)	A06B-0497-B300	1	0	2150	
	DiS1500/250(200V)	A06B-0486-B300	1	0	1556	
	DiS2000/100(200V)	A06B-0497-B400	1	0	2847	
	DiS2000/150(200V)	A06B-0497-B490	1	0	717	
D <i>i</i> S(400V)	D <i>i</i> S15/1000(400V)	A06B-0492-B100	1	0	17367	
	DiS22/600(400V)	A06B-0482-B102	1	1	20091	
	DiS60/400(400V)	A06B-0493-B200	1	0	13844	
	DiS70/300(400V)	A06B-0494-B100	1	0	12042	
	DiS85/400(400V)	A06B-0483-B202	1	1	7373	
	DiS110/400(400V)	A06B-0484-B102	1	1	1905	
	DiS150/300(400V)	A06B-0494-B300	1	0	5304	
	DiS200/300(400V)	A06B-0494-B400	1	0	6881	
	DiS250/250(400V)	A06B-0495-B200	1	0	4178	
	DiS260/300(400V)	A06B-0484-B302	1	0	3277	
	DiS370/300(400V)	A06B-0484-B402	1	0	4301	
	DiS400/250(400V)	A06B-0485-B205	1	0	6144	
	DiS500/250(400V)	A06B-0495-B400	1	0	1761	
	DiS800/250(400V)	A06B-0485-B402	1	0	2540	
1	DiS1000/200(400V)	A06B-0496-B300	1	0	1618	
	DiS1200/250(400V)	A06B-0485-B502	1	0	3707	
	DiS1500/100(400V)	A06B-0497-B300	1	0	2150	
1	DiS1500/250(400V)	A06B-0486-B302	0	1	1556	
	DiS2000/100(400V)	A06B-0497-B400	1	0	2847	
	DiS2000/150(400V)	A06B-0497-B490	0	1	717	
	DiS5000/50(400V)	A06B-0488-B400	1	0	5468	

J. SETTINGS FOR THE POWER CONSUMPTION MONITOR FUNCTION

APPENDIX

B-65270EN/08

			Unit s	setting	Coil	
Series	Motor model	Specification	(No.	2281)	resistance	Remarks
			#1	#0	No.2468	
LiS(200V)	L <i>i</i> S300A1/4(200V)	A06B-0441-B200	1	1	12288	
	LiS600A1/4(200V)	A06B-0442-B200	1	1	6144	
	LiS900A1/4(200V)	A06B-0443-B200	1	1	4096	
	LiS1500B1/4(200V)	A06B-0444-B2□0	1	0	6267	
	LiS3000B2/2(200V)	A06B-0445-B1□0	1	0	10691	
	LiS3000B2/4(200V)	A06B-0445-B2□0	1	0	2662	
	LiS3300C1/2(200V)	A06B-0451-B1□0	1	0	5079	
	LiS4500B2/2(200V)	A06B-0446-B1ロ0	1	0	6963	
	LiS6000B2/2(200V)	A06B-0447-B1ロ0	1	0	5243	
	LiS6000B2/4(200V)	A06B-0447-B2□0	1	0	1311	
	LiS7500B2/2(200V)	A06B-0448-B1□0	1	0	4301	
	LiS9000B2/2(200V)	A06B-0449-B1□0	1	0	3564	
	LiS9000B2/4(200V)	A06B-0449-B210	1	0	901	
	LiS9000C2/2(200V)	A06B-0454-B1□0	1	0	3236	
	LiS10000C3/2(200V)	A06B-0457-B1□0	1	0	2949	
	LiS11000C2/2(200V)	A06B-0455-B1□0	1	0	2540	
	LiS15000C2/2(200V)	A06B-0456-B1□0	1	0	1843	
	LiS15000C2/3(200V)	A06B-0456-B2□0	1	0	819	
	LiS17000C3/2(200V)	A06B-0459-B1□0	1	0	1720	
L <i>i</i> S(400V)	LiS3000B2/2(400V)	A06B-0445-B1□0	1	0	10691	
	LiS3300C1/2(400V)	A06B-0451-B1□0	1	0	5079	
	LiS4500B2/2HV	A06B-0446-B0□0	1	0	19825	
	LiS4500B2/2(400V)	A06B-0446-B1ロ0	1	0	6963	
	LiS6000B2/2HV	A06B-0447-B0□0	1	0	15114	
	LiS6000B2/2(400V)	A06B-0447-B1□0	1	0	5243	
	LiS7500B2/2HV	A06B-0448-B0□0	1	0	11551	
	LiS7500B2/2(400V)	A06B-0448-B1□0	1	0	4301	
	LiS9000B2/2(400V)	A06B-0449-B1□0	1	0	3564	
	LiS9000C2/2HV	A06B-0454-B0□0	1	0	14008	
	LiS9000C2/2(400V)	A06B-0454-B1□0	1	0	3236	
	LiS10000C3/2HV	A06B-0457-B0□0	1	0	11756	
	LiS10000C3/2(400V)	A06B-0457-B1□0	1	0	2949	
	LiS11000C2/2HV	A06B-0455-B0□0	1	0	11018	
	LiS11000C2/2(400V)	A06B-0455-B1D0	1	0	2540	
	LiS15000C2/3HV	A06B-0456-B0D0	1	0	3686	
	LiS15000C2/2(400V)	A06B-0456-B1D0	1	0	1843	
	LiS17000C3/2HV	A06B-0459-B0D0	1	0	6922	
	LiS17000C3/2(400V)	A06B-0459-B100	0	1	1720	

*1 If you want to use the power consumption monitor function for an axis for which a motor with plural windings is used, set the parameters only for the main axis. (For details, see the descriptions of the relevant parameters.)

*2 If the torque control function is used for an axis for which one of the above motors is used, the power consumption monitor function cannot be used.

APPENDIX

<u>B-65270EN/08</u>

J.2 SETTINGS FOR SERVO AMPLIFIER LOSS COEFFICIENTS A AND B

	Table J.2(a) Settings for servo amplifier loss coefficients A and B											
Series	Motor model	Specification	Axis	Loss coefficient ∆	Loss coe	Loss coefficient B No.2490						
				No.2469	HRV2	HRV3	HRV4					
α <i>i</i> SV(200V)	αiSV4	A06B-6240-H101	L	832	307	397	576					
	α <i>i</i> SV20	A06B-6240-H103	L	832	307	397	576					
	α <i>i</i> SV40	A06B-6240-H104	L	832	269	339	486					
	α <i>i</i> SV80	A06B-6240-H105	L	832	262	352	518					
	α <i>i</i> SV160	A06B-6240-H106	L	1152	288	371	538					
	α <i>i</i> SV360	A06B-6240-H109	L	1600	301	352	480					
	:0)////		L	608	307	397	576					
	a1SV4/4	A06B-6240-H201	М	608	307	397	576					
	:0) (4/00		L	608	307	397	576					
	α1SV4/20	A06B-6240-H203	М	608	307	397	576					
	:0) (00)(00	A 0.0 D 0.0 40 L 10.0 D	L	608	307	397	576					
	a15V20/20	A06B-6240-H205 M		608	307	397	576					
	:0)/00/40		L	608	307	397	576					
	α1SV20/40	A06B-6240-H206	М	608	269	339	486					
	. :0)/40/40	A00D 0040 11007	L	672	269	339	486					
	α1SV40/40	A06B-6240-H207	М	672	269	339	486					
		A00D 0040 L1000	L	672	269	339	486					
	a15v40/60	A06B-6240-H208	М	672	262	352	518					
	:C)/00/00	A00D 0240 11200	L	672	262	352	518					
	α13νου/ου	AU6B-6240-H209	М	672	262	352	518					
	α <i>i</i> SV80/160		L	736	262	352	518					
	a13 v 80/ 100	AU6B-6240-H210	М	736	288	371	538					
	ais\/160/160	A06D 6240 H211	L	736	288	371	538					
	ai3v100/100	A00D-0240-0211	М	736	288	371	538					
			L 555	555	307	397	576					
	α <i>i</i> SV4/4/4	A06B-6240-H301	М	555	307	397	576					
			N	555	307	397	576					
			L	555	307	397	576					
	α <i>i</i> SV20/20/20	A06B-6240-H305	М	555	307	397	576					
			N	555	307	397	576					
			L	555	307	397	576					
	α <i>i</i> SV20/20/40	A06B-6240-H306	М	555	307	397	576					
			N	555	269	339	486					
			L	661	269	339	486					
	α <i>i</i> SV40/40/40	A06B-6240-H308	М	661	269	339	486					
			N	661	269	339	486					
	α <i>i</i> SV4	A06B-6117-H101	L	832	320	416	-					
	αiSV20	A06B-6117-H103	L	832	320	416	-					
	αiSV40	A06B-6117-H104	L	832	294	378	-					
	αiSV80	A06B-6117-H105	L	832	275	371	-					
	α <i>i</i> SV160	A06B-6117-H106	L	1088	301	390	-					
	α <i>i</i> SV360	A06B-6117-H109	L	1600	314	371	506					
	α <i>i</i> SV20L	A06B-6117-H153	L	896	320	416	602					
	α <i>i</i> SV40L	A06B-6117-H154	L	896	294	378	538					
	α <i>i</i> SV80L	A06B-6117-H155	L	1152	275	371	544					
	α <i>i</i> SV160I	A06B-6117-H156		1024	301	390	563					

J. SETTINGS FOR THE POWER CONSUMPTION MONITOR FUNCTION

APPENDIX

B-65270EN/08

Series	Motor model	Specification	Axis	Loss coefficient A		efficient B	No.2490
·O) ((220) ()				NO.2469	HRV2	HRV3	HRV4
$\alpha_1 SV(200V)$	αiSV4/4	A06B-6117-H201		544	320	416	-
			M	544	320	416	-
	α <i>i</i> SV4/20	A06B-6117-H203		544	320	416	-
			M	544	320	416	-
	α <i>i</i> SV20/20	A06B-6117-H205		544	320	416	-
			IVI	544	320	416	-
	α <i>i</i> SV20/40	A06B-6117-H206		544	320	416	-
			IVI	544	294	378	-
	α <i>i</i> SV40/40	A06B-6117-H207		608	294	370	-
				608	294	370	-
	α <i>i</i> SV40/80	A06B-6117-H208		608	294	370	-
				608	275	371	-
	α <i>i</i> SV80/80	A06B-6117-H209		608	275	371	-
				608	275	371	-
	α <i>i</i> SV80/160	A06B-6117-H210		608	275	300	-
				608	301	300	-
	α <i>i</i> SV160/160	A06B-6117-H211		608	301	300	-
				672	320	<u> </u>	- 602
	α <i>i</i> SV20/20L	A06B-6117-H255		672	320	410	602
				672	320	410	602
	α <i>i</i> SV20/40L	A06B-6117-H256		672	204	378	538
				736	204	378	538
	α <i>i</i> SV40/40L	A06B-6117-H257		736	204	378	538
			1	672	204	378	538
	α <i>i</i> SV40/80L	A06B-6117-H258	M	672	275	371	544
			1	672	275	371	544
	α <i>i</i> SV80/80L	A06B-6117-H259	M	672	275	371	544
			11	512	320	416	-
	αiSV4/4/4	A06B-6117-H301	M	512	320	416	_
			N	512	320	416	_
			L	512	320	416	_
	α <i>i</i> SV20/20/20	A06B-6117-H303	М	512	320	416	-
			N	512	320	416	-
			L	512	320	416	-
	α <i>i</i> SV20/20/40	A06B-6117-H304	М	512	320	416	-
			N	512	294	378	-
			L	448	288	365	-
	α <i>i</i> SV40S/40S/40	A06B-6117-H306	М	448	288	365	-
			Ν	448	294	378	
α <i>i</i> SV(400V)	aiSV10HV	A06B-6290-H102	L	832	499	902	1606
	α <i>i</i> SV20HV	A06B-6290-H103	L	832	538	883	1530
	αiSV40HV	A06B-6290-H104	L	832	538	928	1651
	αiSV80HV	A06B-6290-H105	L	1152	550	749	1440
	αiSV180HV	A06B-6290-H106	L	1600	538	749	1421
	aiSV360HV	A06B-6290-H109	L	2176	474	672	1107
	αiSV540HV	A06B-6290-H110	L	2752	512	-	-
	aiS\/10/10H\/	VUEB 6200 H202	L	608	499	902	1606
		AUUD-0290-F1202	М	608	499	902	1606
	a;S\/10/20H\/		L	608	499 902		1606
		AUUD-0290-0204	М	608	538	883	1530

J.SETTINGS FOR THE POWER CONSUMPTION MONITOR FUNCTION

B-65270EN/08

Series	Motor model	Specification	Axis	Loss coefficient A	Loss coe	No.2490	
				No.2469	HRV2	HRV3	HRV4
α <i>i</i> SV(400V)	arie//20/20U//		L	672	538	883	1530
	a/3v20/20Hv	AU0B-0290-H205	М	672	538	883	1530
	:CV/20/40HV/		L	672	538	883	1530
	α15V20/40HV	A06B-6290-H206	М	672	538	928	1651
		A 0.0 D 0.000 L 1007	L	672	538	928	1651
	α <i>1</i> 5V40/40HV	A06B-6290-H207	М	672	538	928	1651
	:0) (40 (00) 1) (A 0.0 D 0.000 L 1000	L	736	538	928	1651
	α15V40/80HV	A06B-6290-H208	М	736	550	749	1440
	(O) (OO) (OO) I) (L	736	550	749	1440
	α15V80/80HV	A06B-6290-H209	М	736	550	749	1440
			L	555	499	902	1606
	α <i>i</i> SV10/10/10HV	A06B-6290-H302	М	555	499	902	1606
			N	555	499	902	1606
			L	555	499	902	1606
	α <i>i</i> SV10/10/20HV	A06B-6290-H303	М	555	499	902	1606
			N	555	538	883	1530
				661	538	883	1530
	aiSV20/20/20HV	A06B-6290-H305	M	661	538	883	1530
			N	661	538	883	1530
	aiSV10HV	A06B-6127-H102		832	525	047	1000
	aiSV20HV	A06B_6127_H103		832	563	028	
	aiSV20HV	A00B-0127-11103		832	563	920	-
		A00D-0127-0104		1090	505	979	-
	aiSV001V	A00D-0127-0105		1000	570	707	-
		AU6B-6127-H106		1600	203	787	1498
		AU6B-6127-H109		2170	499	704	100
		AU6B-6127-H152		896	525	947	1090
		A06B-6127-H153		896	563	928	1613
		A06B-6127-H154		1152	563	979	1/41
	a1SV80HVL	A06B-6127-H155		1024	5/6	/8/	1517
	α <i>i</i> SV10/10HV	A06B-6127-H202		544	525	947	-
			M	544	525	947	-
	α <i>i</i> SV20/20HV	A06B-6127-H205		544	563	928	-
			M	544	563	928	-
	α <i>i</i> SV20/40HV	A06B-6127-H206		608	563	928	-
			<u> </u>	608	563	979	-
	α <i>i</i> SV40/40HV	A06B-6127-H207		608	563	979	-
			M	608	563	979	-
	α <i>i</i> SV40/80HV	A06B-6127-H208	L	608	563	979	
	-		M	608	576	787	-
	α <i>i</i> SV80/80HV	A06B-6127-H209	L	608	576	787	
			M	608	576	787	-
	αi SV10/10HVI	A06B-6127-H252	L	608	525	947	1690
			M	608	525	947	1690
	$\alpha i SV20/20HVI$	A06B-6127-H255	L	672	563	928	1613
			М	672	563	928	1613
	aiSV20/40HVI	A068-6127-H256	L	672	563	928	1613
			М	672	563	979	1741
	aiSV/40/40HV/I	A06B-6127-H257 L 672 563 975				979	1741
1		A06B-6127-H257		-			

APPENDIX

J. SETTINGS FOR THE POWER CONSUMPTION MONITOR FUNCTION

APPENDIX

B-65270EN/08

Series	Motor model	Specification	Axis	Loss coefficient A	nt Loss coefficient I		No.2490
				No.2469	HRV2	HRV3	HRV4
βiSV	βiSV4	A-06B-6160-H001	L	960	320	416	-
	βiSV20	A-06B-6160-H002	L	960	320	416	-
	βiSV40	A-06B-6160-H003	L	960	294	378	-
	β i SV80	A-06B-6160-H004	L	960	275	371	-
	0:01/00/00		L	512	320	416	-
	β 15V20/20	A-06B-6166-H201	М	512	320	416	-
	0:0)/40/40		L	512	288	365	-
	β ιSV40/4 0	A-06B-6166-H203	L	512	288	365	-
	βiSV4	A-06B-6130-H001	L	960	320	416	-
	βiSV20	A-06B-6130-H002	L	960	320	416	-
	, βiSV40	A-06B-6130-H003	L	960	294	378	_
	ßiSV80	A-06B-6130-H004	ī	960	275	371	_
	p		ī	512	320	416	-
	βiSV20/20	A-06B-6136-H201	M	512	320	416	_
			1	512	288	365	_
	β <i>i</i> SV40/40	A-06B-6136-H203		512	288	365	
0;5)/(400)/)		A 06D 6161 H001		060	525	047	_
p/3V(400V)		A-06B-6161-H001		960	525	947	-
		A-06B-6161-H002	L	960	563	928	-
		A-06B-6161-H003	L	960	563	979	-
		A-06B-6131-H001		960	525	947	-
	βiSV20HV	A-06B-6131-H002	L	960	563	928	-
	β ι SV40HV	A-06B-6131-H003	L	960	563	979	-
βiSVSP	β <i>i</i> SVSP 40/40-18	A06B-6164-H224#H580	L 0	294	378	-	
			М	0	294	378	-
		A06B-6164-H344#H580	L	0	294	378	-
	β <i>i</i> SVSP 40/40/80-18		M	0	294	378	-
			N	0	275	371	-
			L	0	275	371	-
	β <i>i</i> SVSP 80/80/80-18	A06B-6164-H364#H580	М	0	275	371	-
			N	0	275	371	-
	BiSVSP 20/20-7 5		L	0	320	416	-
	provor 20/20-7.5	A00B-010 -11201#115 0	М	0	320	416	-
			L	0	320	416	-
	piovor 20/20-11	AU6B-616"-H2U2#H5"U	М	0	320	416	-
			L	0	294	378	-
	β ιSVSP 40/40-15	A06B-616*-H223#H5*0	М	0	294	378	-
			1	0	320	416	_
	BiSVSP 20/20/40-7.5	A06B-616*-H311#H5*0	M	0	320	416	_
			N	0	204	378	_
				0	234	416	-
	0:01/00 20/20/40 11			0	220	410	-
	p/3V3F 20/20/40-11	AU6B-016 -H312#H5 U	IVI	0	320	410	-
			N .	U	294	3/8	-
				0	294	378	-
	βiSVSP 40/40/40-15	A06B-616*-H333#H5*0	M	0	294	378	-
			N	0	294	378	-
			L	0	294	378	-
	β <i>i</i> SVSP 40/40/80-15	A06B-616*-H343#H5*0	Μ	0	294	378	
			Ν	0	275	371	-
			L	0	294	378	-
	plovor 20/20-5.5	AU0B-0134-H2U1#A,C	М	0	294	378	-

J.SETTINGS FOR THE POWER CONSUMPTION MONITOR FUNCTION

B-65270EN/08

Ċ,

APPENDIX

Series	Motor model	Specification	Axis	Loss coefficient A	Loss coefficient B		No.2490
				No.2469	HRV2	HRV3	HRV4
βiSVSP			L	0	320	416	-
	βiSVSP 20/20-7.5	A06B-6134-H201#D	М	0	320	416	-
			L	0	294	378	-
	0.0100 00/00 44	A06B-6134-H202#A,C	М	0	294	378	-
	β 15VSP 20/20-11		L	0	320	416	-
		A06B-6134-H202#D	М	0	320	416	-
	0:0100 40/40 45		L	0	294	378	-
	β ι SVSP 40/40-15	A06B-6134-H203#A,C,D	М	0	294	378	-
			L	0	294	378	-
	β <i>i</i> SVSP 20/20/40-5.5	A06B-6134-H301#A,C	М	0	294	378	-
			N	0	294	378	-
			L	0	320	416	-
	β <i>i</i> SVSP 20/20/40-7.5	A06B-6134-H301#D	М	0	320	416	-
			N	0	294	378	-
βiSV			L	0	294	378	-
		A06B-6134-H302#A,C	М	0	294	378	-
			N	0	294	378	-
	β ιSVSP 20/20/40-11		L	0	320	416	-
		A06B-6134-H302#D	М	0	320	416	-
			N	0	294	378	-
		A06B-6134-H303#A,C,D	L	0	294	378	-
	β <i>i</i> SVSP 40/40/40-15		М	0	294	378	-
			N	0	294	378	-
			L	0	294	378	-
	β <i>i</i> SVSP 40/40/80-15	A06B-6134-H313#D	М	0	294	378	-
			N	0	275	371	-
βiSVSPc	0:0V0D- 00/00 7 5		L	0	320	416	-
-	β15VSPC 20/20-7.5	A06B-6167-H201#H560	М	0	320	416	-
			L	0	320	416	-
	p/3V3FC20/20-7.5L	AU0B-0107-H2U9#H50U	М	0	320	416	-
	BiSV/SPc 20/20-11		L	0	320	416	-
			М	0	320	416	-
			L	0	320	416	-
	β <i>i</i> SVSPc 20/20/20-7.5	A06B-6167-H301#H560	М	0	320	416	-
			N	0	320	416	-
				0	320	416	-
	β <i>i</i> SVSPc 20/20/20-7.5L	A06B-6167-H309#H560	M	0	320	416	-
			N ,	0	320	416	-
				0	320	416	-
	piovorc 20/20/20-11	AU6B-6167-H302#H560		0	320	416	-
1		1	I IN	I U	JZU	410	

APPENDIX

J.3 SETTINGS FOR POWER SUPPLY MODULE LOSS COEFFICIENTS C AND D

Series	Motor model	Motor model Specification		Loss co DNo	Resistance regeneration	
			No.2463	Three-ph ase input	Single-ph ase input	No.2281#2
α <i>i</i> PS(200V)	α <i>i</i> PS7.5	A06B-6200-H008	1037	659	-	0
	α <i>i</i> PS11	A06B-6200-H011	1037	659	-	0
	α <i>i</i> PS15	A06B-6200-H015	1037	653	-	0
	αiPS26	A06B-6200-H026	1344	717	-	0
	αiPS30	A06B-6200-H030	1344	704	-	0
	αiPS37	A06B-6200-H037	1344	723	-	0
	αiPS55	A06B-6200-H055	2266	672	-	0
	α <i>i</i> PS5.5	A06B-6140-H006	2234	659	-	0
	α <i>i</i> PS11	A06B-6140-H011	2477	659	-	0
	α <i>i</i> PS15	A06B-6140-H015	2477	653	-	0
	αiPS26	A06B-6140-H026	2925	717	-	0
	αiPS30	A06B-6140-H030	2925	704	-	0
	αiPS37	A06B-6140-H037	2925	723	-	0
	αiPS55	A06B-6140-H055	3712	672	-	0
α <i>i</i> PS(400V)	α <i>i</i> PS11HV	A06B-6250-H011	1120	397	-	0
	α <i>i</i> PS18HV	A06B-6250-H018	1120	378	-	0
	α <i>i</i> PS30HV	A06B-6250-H030	1427	499	-	0
	α <i>i</i> PS45HV	A06B-6250-H045	1427	486	-	0
	α <i>i</i> PS60HV	A06B-6250-H060	1427	486	-	0
	αiPS75HV	A06B-6250-H075	2349	480	-	0
	α <i>i</i> PS100HV	A06B-6250-H100	2349	480	-	0
	α <i>i</i> PS11HV	A06B-6150-H011	2906	397	-	0
	α <i>i</i> PS18HV	A06B-6150-H018	2906	378	-	0
	α <i>i</i> PS30HV	A06B-6150-H030	3584	499	-	0
	α <i>i</i> PS45HV	A06B-6150-H045	4237	486	-	0
	αiPS60HV	A06B-6150-H060	4237	486	-	0
	αiPS75HV	A06B-6150-H75	4134	480	-	0
	α <i>i</i> PS100HV	A06B-6150-H100	4134	480	-	0
αiPSR	αiPSR3	A06B-6115-H003	973	659	-	1
	αiPSR5.5	A06B-6115-H006	973	659	-	1
β <i>i</i> SV(200V)	βiSV4	A06B-6160-H001	0	621	1024	1
1	βiSV20	A06B-6160-H002	0	621	1024	1
	βiSV40	A06B-6160-H003	0	646	-	1
	β <i>i</i> SV80	A06B-6160-H004	0	646	_	1
	β <i>i</i> SV20/20	A06B-6166-H201	0	710	-	1
	β <i>i</i> SV40/40	A06B-6166-H203	0	710	-	1
	βiSV4	A06B-6130-H001	0	621	1024	1
	β <i>i</i> SV20	A06B-6130-H002	0	621	1024	1
	βiSV40	A06B-6130-H003	0	646	-	1
	β <i>i</i> SV80	A06B-6130-H004	0	646	_	1
	β <i>i</i> SV20/20	A06B-6136-H201	0	710	-	1
	βiSV40/40	A06B-6136-H203	0	710	-	1

Table J.3(a) Settings for power supply module loss coefficients C and D for the αiPS (200 V)

J.SETTINGS FOR THE POWER CONSUMPTION MONITOR FUNCTION

B-65270EN/08

APPENDIX

Series	Motor model	Specification	Loss coefficient C	Loss co DNo	Resistance regeneration	
			No.2463	Three-ph ase input	Single-ph ase input	No.2281#2
β <i>i</i> SV(400V)	βiSV10HV	A06B-6161-H001	0	320	-	1
	βiSV20HV	A06B-6161-H002	0	320	-	1
	βiSV40HV	A06B-6161-H003	0	320	-	1
	βiSV10HV	A06B-6131-H001	0	320	-	1
	βiSV20HV	A06B-6131-H002	0	320	-	1
	βiSV40HV	A06B-6131-H003	0	320	-	1
βiSVSP	β <i>i</i> SVSP 40/40-18	A06B-6164-H224#H580	1984	659	-	0
	β <i>i</i> SVSP 40/40/80-18	A06B-6164-H344#H580	2048	653	-	0
	β <i>i</i> SVSP 80/80/80-18	A06B-6164-H364#H580	2048	653	-	0
	β <i>i</i> SVSP 20/20-7.5	A06B-616*-H201#H5*0	1984	659	-	0
	β <i>i</i> SVSP 20/20-11	A06B-616*-H202#H5*0	1984	659	-	0
	β <i>i</i> SVSP 40/40-15	A06B-616*-H223#H5*0	1984	653	-	0
	β <i>i</i> SVSP 20/20/40-7.5	A06B-616*-H311#H5*0	2048	659	-	0
	β <i>i</i> SVSP 20/20/40-11	A06B-616*-H312#H5*0	2048	659	-	0
	β <i>i</i> SVSP 40/40/40-15	A06B-616*-H333#H5*0	2048	653	-	0
	β <i>i</i> SVSP 40/40/80-15	A06B-616*-H343#H5*0	2048	653	-	0
	β <i>i</i> SVSP 20/20-5.5	A06B-6134-H201#A,C	1664	659	-	0
	β <i>i</i> SVSP 20/20-7.5	A06B-6134-H201#D	1664	659	-	0
	β <i>i</i> SVSP 20/20-11	A06B-6134-H202#A,C	1664	659	-	0
		A06B-6134-H202#D	1664	659	-	0
	β <i>i</i> SVSP 40/40-15	A06B-6134-H203#A,C,D	1664	653	-	0
	β <i>i</i> SVSP 20/20/40-5.5	A06B-6134-H301#A,C	1728	659	-	0
	β <i>i</i> SVSP 20/20/40-7.5	A06B-6134-H301#D	1728	659	-	0
	β <i>i</i> SVSP 20/20/40-11	A06B-6134-H302#A,C	1728	659	-	0
		A06B-6134-H302#D	1728	659	-	0
	β <i>i</i> SVSP 40/40/40-15	A06B-6134-H303#A,C,D	1728	653	-	0
	β <i>i</i> SVSP 40/40/80-15	A06B-6134-H313#D	1728	653	-	0
βiSVSPc	β <i>i</i> SVSPc 20/20-7.5	A06B-6167-H201#H560	1984	659	-	0
	βiSVSPc 20/20-7.5L	A06B-6167-H209#H560	1984	659	-	0
	β <i>i</i> SVSPc 20/20-11	A06B-6167-H202#H560	1984	659	-	0
	β <i>i</i> SVSPc 20/20/20-7.5	A06B-6167-H301#H560	1984	653	-	0
	β <i>i</i> SVSPc 20/20/20-7.5L	A06B-6167-H309#H560	1984	653	-	0
	β <i>i</i> SVSPc 20/20/20-11	A06B-6167-H302#H560	1984	653	-	0

K

CORRESPONDENCE OF SERVO PARAMETER NUMBERS BETWEEN Series 15*i*, AND Series 30*i*, 0*i*, AND OTHERS

The following table lists the correspondence of servo parameter numbers between Series 15i, and Series 30i, 0i, and others.

Series 30 <i>i</i> , 0 <i>i</i> ,	Series15 <i>i</i>	Series 30 <i>i</i> ,0 <i>i</i> , and	Series15 <i>i</i>	Series 30 <i>i</i> ,0 <i>i</i> , and	Series15 <i>i</i>
1015	1015	2040	1050	2005	1079
1010	1010	2040	1953	2000	1976
1921	1806	2041	1854	2000	1979
1925	1925	2042	1004	2007	1960
1020	1020	2043	1000	2000	1901
1001	1851	2044	1800	2089	1982
2000	1804	2045	1857	2090	1983
2001	1806	2046	1858	2091	1984
2002	1807	2047	1859	2092	1985
2003	1808	2048	1860	2093	1986
2004	1809	2049	1861	2094	1987
2005	1883	2050	1862	2095	1988
2006	1884	2051	1863	2096	1989
2007	1951	2052	1864	2097	1990
2008	1952	2053	1865	2098	1991
2009	1953	2054	1866	2099	1992
2010	1954	2055	1867	2100	1993
2011	1955	2056	1868	2101	1994
2012	1956	2057	1869	2102	1995
2013	1707	2058	1870	2103	1996
2014	1708	2059	1871	2104	1997
2015	1957	2060	1872	2105	1998
2016	1958	2061	1873	2106	1999
2017	1959	2062	1877	2107	1700
2018	1960	2063	1878	2108	1701
2019	1709	2064	1892	2109	1702
2020	1874	2065	1893	2110	1703
2021	1875	2066	1894	2111	1704
2022	1879	2067	1895	2112	1705
2023	1876	2068	1961	2113	1706
2024	1891	2069	1962	2114	1725
2025	1710	2070	1963	2115	1726
2026	1717	2071	1964	2116	1727
2027	1712	2072	1965	2117	1728
2028	1713	2073	1966	2118	1729
2029	1714	2074	1967	2119	1730
2030	1715	2075	1968	2120	1731
2031	1716	2076	1969	2121	1732
2032	1717	2077	1970	2122	1733
2033	1718	2078	1971	2123	1734
2034	1719	2079	1972	2124	
2035	1720	2080	1973	2125	1739
2036	1721	2081	1974	2126	1737

B-65270EN/08

K.CORRESPONDENCE OF SERVO PARAMETER NUMBERS BETWEEN Series APPENDIX 15*i*, AND Series 30*i*, 0*i*, AND OTHERS

Series 30 <i>i</i> , 0 <i>i</i> , and others	Series15 <i>i</i>	Series 30 <i>i</i> ,0 <i>i</i> , and others	Series15 <i>i</i>	Series 30 <i>i</i> ,0 <i>i</i> , and others	Series15 <i>i</i>
2037	1722	2082	1075	2127	1735
2037	1722	2002	1975	2127	1736
2030	1723	2003	1970	2120	1750
2039	1724	2004	1977	2129	17.02
2130	1753	2100	2023	2230	2043
2131	1754	2181	2024	2231	2044
2132	1755	2182	2625	2232	2645
2133	1756	2183	2626	2233	2646
2134	1757	2184	2627	2234	2647
2135	1758	2185	2628	2235	2648
2136	1759	2186	2629	2236	2649
2137	1760	2187	2630	2237	2650
2138	1761	2188	2631	2238	2651
2139	1762	2189	2632	2239	2652
2140	1763	2190	2633	2240	2653
2141	1764	2191	2634	2241	2654
2142	1765	2192	2635	2242	2655
2143	1766	2193	2636	2243	2656
2144	1767	2194	2637	2244	2657
2145	1768	2195	2638	2245	2658
2146	1769	2196	2639	2246	2659
2147	1770	2197	2640	2247	2660
2148	1771	2198	2641	2248	2661
2149	1772	2199	2642	2249	2662
2150	1773	2200	1740	2250	2663
2151	1774	2201	1741	2251	2664
2152	1775	2202	1742	2252	2665
2153	1776	2203	1743	2253	2666
2154	1777	2204	1744	2254	2667
2155	1778	2205	1745	2255	2668
2156	1779	2206	1746	2256	2669
2157	1780	2207	1747	2257	2670
2158	1781	2208	1748	2258	2671
2159	1782	2209	1749	2259	2672
2160	1783	2210	1750	2260	2673
2161	1784	2210	1751	2261	2674
2162	1785	2217	2600	2262	2675
2163	1786	2212	2601	2262	2676
2163	1787	2210	2602	2263	2677
2165	1788	2217	2602	2265	2678
2105	1780	2215	2003	2200	2070
2100	1709	2210	2605	2200	2680
2107	1701	2217	2000	2201	2000
2100	1702	2210	2000	2200	2001
2109	1702	2218	2007	2209	2002
21/0	1704	2220	2000	2270	2003
21/1	1794	2221	2009	2271	2004
21/2	1706	2222	2010	2212	2000
21/3	1/90	2223	2011	22/3	2000
21/4	1/9/	2224	2012	22/4	2087
21/5	1798	2225	2613	22/5	2688
21/6	1799	2226	2614	22/6	2689
2177	2620	2227	2615	2277	2690
2178	2621	2228	2616	2278	2691
2179	2622	2229	2617	2279	2692
2280	2693	2330	2743	2380	2793

K. CORRESPONDENCE OF SERVO PARAMETER NUMBERS BETWEEN Series 15*i*, AND Series 30*i*, 0*i*, AND OTHERS APPENDIX

B-65270EN/08

Series 30 <i>i</i> , 0 <i>i</i> ,	Corioo45	Series 30 <i>i</i> ,0 <i>i</i> , and	Contract	Series 30 <i>i</i> ,0 <i>i</i> , and	Corrigo 45
and others	Series 151	others	Series 151	others	Series151
2281	2694	2331	2744	2381	2794
2282	2695	2332	2745	2382	2795
2283	2696	2333	2746	2383	2796
2284	2697	2334	2747	2384	2797
2285	2698	2335	2748	2385	2798
2286	2699	2336	2749	2386	2799
2287	2700	2337	2750	2387	2800
2288	2701	2338	2751	2388	2801
2289	2702	2339	2752	2389	2802
2290	2703	2340	2753	2390	2803
2291	2704	2341	2754	2391	2804
2292	2705	2342	2755	2392	2805
2293	2706	2343	2756	2393	2806
2294	2707	2344	2757	2394	2807
2295	2708	2345	2758	2395	2808
2296	2709	2346	2759	2396	2809
2297	2710	2347	2760	2397	2810
2298	2710	2348	2761	2398	2811
2200	2712	2349	2762	2399	2812
2300	2712	2350	2763	2400	2812
2300	2713	2351	2764	2400	2013
2307	2715	2352	2765	2401	2815
2302	2715	2352	2705	2402	2015
2303	2710	2353	2700	2403	2010
2304	2717	2354	2707	2404	2017
2305	2710	2300	2700	2403	2010
2300	2719	2330	2709	2400	2019
2307	2720	2007	2770	2407	2020
2300	2721	2000	2771	2400	2021
2309	2722	2009	2772	2409	2022
2310	2723	2300	2113	2410	2023
2311	2724	2301	2774	2411	2024
2312	2725	2302	2775	2412	2825
2313	2726	2363	2776	2413	2826
2314	2727	2364	2///	2414	2827
2315	2728	2365	2778	2415	2828
2316	2729	2366	2779	2416	2829
2317	2730	2367	2780	2417	2830
2318	2731	2308	2781	2418	2831
2319	2/32	2309	2/82	2419	2032
2320	2733	2370	2783	2420	2833
2321	2734	23/1	2/04	2421	2034
2322	2/35	2372	2/85	2422	2835
2323	2730	2373	2780	2423	2830
2324	2131	23/4	2/0/	2424	2031
2320	2130	23/5	2/00	2420	2030
2320	2139	23/0	2109	2420	2039
2021	2740	2011	2790	2427	204U 2044
2328	2741	23/8	2/91	2428	2041
2329	2742	23/9	2/92	2429	2042
2430	2843	2480	2893	2530	2945
2431	2844	2481	2894	2531	2946
2432	2845	2482	2895	2032	2947
2433	2840	2483	2890	2000	2948
2434	2047	∠4ŏ4	2091	2034	2949

B-65270EN/08

K.CORRESPONDENCE OF SERVO PARAMETER NUMBERS BETWEEN Series APPENDIX 15*i*, AND Series 30*i*, 0*i*, AND OTHERS

Series 30 <i>i</i> , 0 <i>i</i> ,	Sorioo15	Series 30 <i>i</i> ,0 <i>i</i> , and	Sorioo15	Series 30 <i>i</i> ,0 <i>i</i> , and	Sorioo15
and others	Series 151	others	Series 151	others	Series 151
2435	2848	2485	2898	2535	2950
2436	2849	2486	2899	2536	2951
2437	2850	2487	2902	2537	2952
2438	2851	2488	2903	2538	2953
2439	2852	2489	2904	2539	2954
2440	2853	2490	2905	2540	2955
2441	2854	2491	2906	2541	2956
2442	2855	2492	2907	2542	2957
2443	2856	2493	2908	2543	2958
2444	2857	2494	2909	2544	2959
2445	2858	2495	2910	2545	2960
2446	2859	2496	2911	2546	2961
2447	2860	2497	2912	2547	2962
2448	2861	2498	2913	2548	2963
2449	2862	2499	2914	2549	2964
2450	2863	2500	2915	2550	2965
2451	2864	2501	2916	2551	2966
2452	2865	2502	2917	2552	2967
2453	2866	2503	2918	2553	2968
2454	2867	2504	2919	2554	2969
2455	2868	2505	2920	2555	2970
2456	2869	2506	2921	2556	2971
2457	2870	2507	2922	2557	2972
2458	2871	2508	2923		
2459	2872	2509	2924		
2460	2873	2510	2925		
2461	2874	2511	2926		
2462	2875	2512	2927		
2463	2876	2513	2928		
2464	2877	2514	2929		
2465	2878	2515	2930		
2466	2879	2516	2931		
2467	2880	2517	2932		
2468	2881	2518	2933		
2469	2882	2519	2934		
2470	2883	2520	2935		
2471	2884	2521	2936		
2472	2885	2522	2937		
2473	2886	2523	2938		
2474	2887	2524	2939		
2475	2888	2525	2940		
2476	2889	2526	2941		
2477	2890	2527	2942		
2478	2891	2528	2943		
2479	2892	2529	2944		

APPENDIX

L CONNECTING A LARGE SERVO MOTOR USING A PWM DISTRIBUTION MODULE

L.1 SETTING PARAMETERS FOR A PWM DISTRIBUTION MODULE (PDM)

(1) Overview

The PWM distribution module (PDM) has a function for copying a PWM command for one axis received from the CNC and distributing the command copy to multiple servo amplifiers and a function for finding an average current per servo amplifier from current feedback signals received from multiple servo amplifiers and transferring the average current to the CNC. Multiple servo amplifiers connected to a PDM can be viewed from the CNC as being connected to one axis. So, by using a PDM, high power can be achieved through parallel driving without increasing the number of CNC controlled axes.

NOTE

When a PWM distribution module is used, HRV3 needs to be set. So, one FSSB path cannot connect more than four slaves consisting of amplifiers and a PDM.

Servo motor (such as αi S2000/2000HV)

(2) Series and editions of applicable servo software

CNC	Servo software		CNC Serve		Domorko
	Series	Edition	Remarks		
Series 0 <i>i</i> -D	90C5	D(04) and subsequent editions			
	90C8	A(01) and subsequent editions			
	90E5	D(04) and subsequent editions			
	90E8	A(01) and subsequent editions			
Series 16 <i>i</i> /18 <i>i</i> /21 <i>i</i> -B	90B1	A(01) and subsequent editions			
Power Mate <i>i</i> -D/H					

To use a PDM, the following system software is needed:

CNC	System software				
CNC	Series	Edition			
Series 0 <i>i</i> -MD	D4F1	01 and subsequent editions			
Series 0 <i>i</i> -TD	D6F1	01 and subsequent editions			
Series 0 <i>i</i> Mate-MD	D5F1	01 and subsequent editions			
Series 0 <i>i</i> Mate-TD	D7F1	01 and subsequent editions			
Series 16 <i>i</i> -MB	B0M1,B0N1	01 and subsequent editions			
Series 16 <i>i</i> -TB	-	-			
Series 18 <i>i</i> -MB5	BDM5,BDN5	01 and subsequent editions			
Series 18 <i>i</i> -MB	BDM1,BDN1	01 and subsequent editions			
Series 18 <i>i</i> -TB	-	-			
Series 18 <i>i</i> -LNB	-	-			
Series 21 <i>i</i> -MB	DDHA	17 and subsequent editions			
	DDHK,DDK1	01 and subsequent editions			
Series 21 <i>i</i> -TB	-	-			
Power Mate <i>i</i> -D	88E1	01 and subsequent editions			
	88E3	01 and subsequent editions			
Power Mate <i>i</i> -H	88F2	08 and subsequent editions			
	88F3	01 and subsequent editions			
DSA(HSSB)	881G	06 and subsequent editions			
Pulse input type DSA	881H	02 and subsequent editions			

(*) The PDM cannot be used with the 30*i* Series.

(3) Setting parameters

(a) Setting for a PDM

For axes that use a PDM, servo HRV3 control needs to be set. Set the parameters below.

Set the parameter for servo HRV2 control beforehand. Next, set the parameter below for servo HRV3 control (HR3=1).(For each axis)

	#7	#6	#5	#4	#3	#2	#1	#0
2013								HR3
$HR3(\#0) \ \overline{0}:$	Does r	not use serv	o HRV3 cc	ontrol.				
1:	Uses s	ervo HRV3	3 control.					
*	When	using a PI	DM set HI	3=1 In s	actual operat	tion this c	control is ea	uivalent to

When using a PDM, set HR3=1. In actual operation, this control is equivalent to HRV2 control. (The G5.4-based high-speed current control mode cannot be switched either.)

For those axes that uses a PDM, set the following parameter in addition to the setting of HR3 above:

L. CONNECTING A LARGE SERVO MOTOR USING A PWM DISTRIBUTION MODULE

APPENDIX

B-65270EN/08

2165 Set 0.

If this parameter is not set, "Invalid motor/amplifier combination" may be issued. Note that because this parameter needs to be set to 0 when a PDM is used, the servo tuning screen does not provide an actual current indication (ampere indication). (A % indication is provided.)

L.2

DATA MEASUREMENT AND DIAGNOSIS WITH A PWM DISTRIBUTION MODULE (PDM)

(1) Overview

In a configuration that uses a PWM distribution module, many motor power lines are used. If an error occurs, error location isolation may be difficult in some cases. To facilitate troubleshooting, the following functions are available:

- (a) PDM current monitor
 - The actual current flowing through each amplifier is monitored using SERVO GUIDE.
- (b) PDM's slave ready output
 - The ready state of each amplifier present when the VRDY-OFF alarm is issued is displayed on the diagnosis screen of the CNC.

For the method of PDM-based troubleshooting, refer to "Troubleshooting of Large Servo Motors by Using a PDM (PWM Distribution Module) (A-72562-034)" as well.

(2) Series and editions of applicable servo software

The PDM diagnosis functions are available with the following series and editions:

Function	Applicable servo software series and edition	Applicable PDM version(*)	Applicable SERVO GUIDE version
PDM current monitor function	Series 90C5,E5/D(04) or later	Overall version C or	Ver3.20
	Series 90C8,E8/A(01) or later	later	
	Series 90B1/F(06) or later		
PDM's slave ready output	Series 90C5,E5/D(04) or later	Overall version C or	-
	Series 90C8,E8/A(01 or later	later	
	Series 90B1/G(07) or later		

* The overall version of a PDM can be checked with the indication provided on the label of the PDM.

The following table lists the series and editions of system software supporting SV648 and diagnosis 656 with PDM's slave ready output.

L.CONNECTING A LARGE SERVO MOTOR USING A PWM DISTRIBUTION MODULE

B-65270EN/08

CNC	System software					
CNC	Series	Edition				
Series 0 <i>i</i> -MD	D4F1	06 and subsequent editions				
Series 0 <i>i</i> -TD	D6F1	06 and subsequent editions				
Series 0 <i>i</i> Mate-MD	D5F1	06 and subsequent editions				
Series 0 <i>i</i> Mate-TD	D7F1	06 and subsequent editions				
Series 16 <i>i</i> -MB	B0M1,B0N1	01 and subsequent editions				
Series 16 <i>i</i> -TB	-	-				
Series 18 <i>i</i> -MB5	BDM5,BDN5	01 and subsequent editions				
Series 18 <i>i</i> -MB	BDM1,BDN1	01 and subsequent editions				
Series 18 <i>i</i> -TB	-	-				
Series 18 <i>i</i> -LNB	-	-				
Series 21 <i>i</i> -MB	DDHK,DDK1	01 and subsequent editions				
Series 21 <i>i</i> -TB	-	-				
Power Mate <i>i</i> -D	88E1	06 and subsequent editions				
	88E3	04 and subsequent editions				
Power Mate <i>i</i> -H	88F2	13 and subsequent editions				
	88F3	04 and subsequent editions				
Pulse input type DSA	-	-				

APPENDIX

(3) PDM-related functions

(a) PDM current monitor function

By using SERVO GUIDE, the actual current of each amplifier connected to a PDM can be measured.

• Method of setting SERVO GUIDE

From "Type", select a type of current to be measured. (Counting from the closest to the PDM of the amplifiers connected to the local FSSB, the R phase current of the n-th amplifier is represented as IRn and the S phase current of the n-th amplifier is represented as ISn.)

Channel			? >
CH1 CH2	СНЗ СН4 СН5	сн6 Сн7 Сн8	
Axis	X (1)	Extended	d address(E) 0 📰
Kind	IR1		Shift(<u>S</u>) 0 -
Conv. Coef.	IS1 IR2 IS2 IS2	Explanation — al Val.) R-phase curre	ent(Ir) of PDM slave1
Conv. Base	IR3 (Raw d	lata Val.)	
Origin Value	IR4 IS4		
	52514	ОК	Cancel Help

Example)

When the R phase current (IR) of slave 1

Channel	<u>? ×</u>
СН1 СН2 СН3 СН4 СН5 СН6 СН	н7 Снв
Axis X (1)	Extended address(E) 0
	Shift(<u>S</u>) 0 📩
Conv. Coef. 100 (Physical Val.)	Explanation R-phase current(Ir) of PDM slave1
Conv. Base 6554 (Raw data Val.)	
Origin Value 0	
	OK Cancel Help

APPENDIX

B-65270EN/08

NOTE

The update interval of this data is 1 msec.

[Example of waveform measurement]

(b) PDM's slave ready output

With an axis that uses a PDM, the VRDY-OFF alarm is issued if there is one or more servo amplifiers that are connected to the PDM and are not placed in the ready state. To facilitate troubleshooting in such a case, the ready state of each amplifier present when the VRDY-OFF alarm is issued is displayed on the diagnosis screen of the CNC.

The diagnosis number for referencing the ready state differs depending on the alarm number. Check the diagnosis number corresponding to the displayed alarm number.

Alarm number	Alarm message	Diagnosis number
648	PDM VRDY OFF (DGN656)	Diagnosis 656
401	VRDY OFF	Diagnosis 353

- Diagnosis screen display when alarm 648 is issued

			#7	#6	#5	#4	#3	#2	#1	#0
	Diagnosis 656						VRDY4	VRDY3	VRDY2	VRDY1
							(slave 4)	(slave 3)	(slave 2)	(slave 1)
VREDV4 1(#3.0) Displays the ready state when VRDV OFF is issued for each amplifier of slave 1 to 4										

(REDY4-1(#3-0) Displays the ready state when VRDY OFF is issued for each amplifier of slave 1 to 4.

0: Not-ready state

1: Ready state (amplifier ready state)

You can check the bits of diagnosis 656 to determine the amplifier which causes the VRDY OFF alarm.

Setting parameters when alarm 401 is issued

If alarm 401 is displayed, by setting the parameters below, the ready state of each amplifier present when the VRDY OFF alarm is issued can be displayed on diagnosis No. 353. Note that the values to be set in the parameters vary, depending on whether an odd number or even number is set in parameter No. 1023 for the axis.

Parameter No. to be set	When an odd number is set in No. 1023 for the axis	When an even number is set in No. 1023 for the axis	
No.2115	0	0	
No.2151	3094	3222	

- Diagnosis screen display when alarm 401 is issued

Diagnosis 353

Amplifier ready state when the VRDY-OFF alarm is issued (in decimal)

By checking the decimal value displayed in diagnosis No. 353, the amplifier that caused the VRDY-OFF alarm to be issued can be identified. (See the table below.)

Value displayed by	Ready state of each slave amplifier (O: Ready state, ×: Not-ready state)							
diagnosis No. 353	Slave 1	Slave 2	Slave 3	Slave 4				
0	0	0	0	0				
1	×	0	0	0				
2	0	х	0	0				
3	×	×	0	0				
4	0	0	×	0				
5	×	0	×	0				
6	0	х	×	0				
7	×	×	×	0				
8	0	0	0	×				
9	×	0	0	×				
10	0	×	0	×				
11	×	×	0	×				
12	0	0	×	×				
13	×	0	×	×				
14	0	×	×	×				
15	×	×	×	×				

Μ

QUADRANT PROTRUSION TUNING USING SERVO GUIDE

(1) Overview

Quadrant protrusion compensation using Tuning Navigator of SERVO GUIDE enables you to determine optimum parameters for the quadrant protrusion compensation function for Tuning Navigator by operating SERVO GUIDE and CNC according to instructions shown in wizard form.

Compensation parameters are determined by performing the following operations in wizard form:

- Set the items required for tuning.
- Make a circular motion several times at three different feedrates to measure the optimum quadrant protrusion compensation (learning).
- Based on the measured compensation, parameters for setting the quadrant protrusion compensation function for Tuning Navigator are displayed.
- Check the operation by applying the displayed parameters.

This appendix describes the items to be set according to the wizard and items to be tuned.

Quadrant protrusion compensation using Tuning Navigator automatically tunes the parameters for the quadrant protrusion compensation function for Tuning Navigator. It does not automatically tune the parameters for the conventional backlash acceleration function or two-stage backlash acceleration function. During tuning, some parameters are changed so that these functions are not enabled. To use the conventional backlash acceleration function or two-stage backlash acceleration function together, additionally set the required parameters after tuning.

For the specification of SERVO GUIDE and restrictions on Tuning Navigator, refer to the "FANUC SERVO GUIDE OPERATOR'S MANUAL (B-65404EN), online help of SERVO GUIDE, and relevant technical reports.

(2) Series and editions of applicable software

To use quadrant protrusion compensation navigation, the following series and editions of applicable software are required.

Servo software	Applicable series and editions
SERVO GUIDE	4.00 and subsequent editions
	4.10 and subsequent editions (supports synchronous axes.)
	6.00 and subsequent editions (supports trapezoidal acceleration.)
	6.30 and subsequent editions (supports rotary axes.)

B-65270EN/08

APPENDIX

M.QUADRANT PROTRUSION TUNING USING SERVO GUIDE

Servo software	Applicable series and editions
CNC software *	
Series 30 <i>i</i> -A	G004/01 and subsequent editions, G014/01 and subsequent editions, G024/01 and
	subsequent editions
	G00C/01 and subsequent editions, G01C/01 and subsequent editions, G02C/01 and subsequent editions
Series 31 <i>i</i> -A5	G124/01 and subsequent editions. G134/01 and subsequent editions
	G12C/01 and subsequent editions. G13C/01 and subsequent editions
	o 120/01 and subsequent californs, o 100/01 and subsequent californs
Series 31 <i>i</i> -A	G104/01 and subsequent editions. G114/01 and subsequent editions
	G103/01 and subsequent editions, G113/01 and subsequent editions
Series 0 <i>i</i> -MD	D4F1/01 and subsequent editions
Series 0 <i>i</i> -TD	D6F1/01 and subsequent editions
Series 0 <i>i</i> Mate-MD	D5F1/01 and subsequent editions
Series 0 <i>i</i> Mate-TD	D7F1/01 and subsequent editions
Servo software	
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0/06.0 and subsequent editions
Power Motion <i>i</i> -A	90G0/06.0 and subsequent editions
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90D0/L(12) and subsequent editions, 90E0/L(12) and subsequent editions
	90D0/O(15) and subsequent editions, 90E0/O(15) and subsequent editions(supports synchronous axes.)
	90D0/P(16) and subsequent editions, 90E0/P(16) and subsequent editions(supports
	synchronous axes and trapezoidal acceleration.)
	90E1/01 and subsequent editions (supports synchronous axes and trapezoidal
	acceleration.)
Series 0 <i>i</i> -D	90C5/A(01) and subsequent editions, 90E5/A(01) and subsequent editions (supports
	synchronous axes and trapezoidal acceleration.)
	90C8/A(01) and subsequent editions, 90E8/A(01) and subsequent editions (supports
	synchronous axes and trapezoidal acceleration.)
* For the Series 30i/31	iA2i BA5i B and Power Motion iA all series and editions of system software

For the Series 30*i*/31*i*/32*i*-B/35*i*-B and Power Motion *i*-A, all series and editions of system software support this function.

(3) Related parameters

The following parameters are set by quadrant protrusion tuning using Tuning Navigator.

A) Function bit

	#7	#6	#5	#4	#3	#2	#1	#0		
2415	LDMPQ	LACCO2	LBLACC	LBLFIL	SQRACC	LBLIN2				
LDMPQ (#7)	LDMPQ (#7) Damping override setting for quadrant protrusion compensation for Tuning Navigator (1									
	or 0)									
LACCO2(#6)	Acceleratio	n amount	override se	tting for qu	adrant pro	trusion cor	npensation	for Tuning		
	Navigator (Normally 1)									
LBLACC(#5)	Quadrant p	rotrusion co	ompensation	n for Tunin	g Navigatoi	is:				
	0: Not used	l.								
	1: Used.									
LBLFIL(#4)	(Normally	0)								
SQRACC(#3)	Acceleratio	n amount	override se	tting for qu	adrant pro	trusion cor	npensation	for Tuning		
	Navigator (Normally 1)							
LBLIN2(#2)	(Normally	0)								

To use quadrant protrusion compensation for Tuning Navigator, it is necessary to enable backlash acceleration.

M.QUADRANT	PROTRU	SION						
TUNING US	ING SERV	O GUID	E APPI	ENDIX			E	3-65270EN/08
	#7	#6	#5	#4	#3	#2	#1	#0
2003			BLEN					
BLEN (#5)	The backlas	sh accelera	ation function	is:				
	0: Not us	sed.						
	1 : Used.							
ii	#7	#6	#5	#4	#3	#2	#1	#0
2018					OVR11	OVR8		
OVR11 OVR8(#3	#2)							

Setting of the acceleration override of two-stage backlash acceleration or quadrant protrusion compensation for Tuning Navigator

When bit 6 of parameter No. 2415 is set to 0, quadrant protrusion compensation for Tuning Navigator is also referenced.

When bit 6 of parameter No. 2415 is set to 1, quadrant protrusion compensation for Tuning Navigator is not referenced.

B) Tuning parameters

Conventional acceleration and trapezoidal acceleration are available for quadrant protrusion compensation for Tuning Navigator. When servo software applicable to trapezoidal acceleration is used, the "Use improvement" check box is automatically checked at the start of the wizard to select trapezoidal acceleration.

The override can be applied to the acceleration, acceleration time 1 (T1), damping, acceleration time 0 (T0), and calculation start time (TZ).

* The upper parameter is for the position direction and the lower parameter is for the negative direction.

APPENDIX

	Basic	setting	Override	gradient	Override limit	
Item	Positive	Negative	Positive	Negative	Positive	Negative
	direction	direction	direction	direction	direction	direction
Acceleration amount	No.2446	No.2450	No.2494	No.2500	No.2495	No.2501
Damping	No.2447	No.2451	No.2496	No.2502	No.2497	No.2503
TZ	No.2506	No.2508	No.2507	No.2509	No.2506	No.2508
Т0	No.2470	No.2473	No.2471	No.2474	No.2472	No.2475
T1	No.2448	No.2452	No.2498	No.2504	No.2499	No.2505
T2	No.2449	No.2453	_	_	_	_

* When bit 5 of parameter No. 2415 is set to 0, the compensation according to the setting of the above parameters is disabled.

(4) Flow of quadrant protrusion tuning using Tuning Navigator

<1> On the Main Bar of SERVO GUIDE, click the [Navigator...] button to start Tuning Navigator. From tuning items of Tuning Navigator, select Backlash Acceleration Tuning and click [OK].

Parameter Graph Program Navigator	Comm Uninitialized	SERVO GUIDE
Tuning navigator Initial Gain-Tuning(Servo) Filter-Tuning(Servo) Gain-Tuning(Serve) Backlash Acceleration Tuning(Servo) Tuning of time constant for rapid traverse(Ser High speed & High precision Tuning(Servo) Filter-Tuning(Spindle)		
Select tuning item. Tuning wizard for automatic backlash acceleration function This is available only in Series 30i,31i,32i and Series 0i-D.		

<2> The start screen of the backlash acceleration tuning wizard appears. Click [Next]. When servo software applicable to trapezoidal acceleration is used, the "Use improvement" check box is automatically checked. APPENDIX

B-65270EN/08

- 1 Since the procedure involves a program operation, move the axis to a safe position in advance.
- 2 Be prepared to readily press the emergency stop button in case of an abnormal operation.
- <3> Select two target axes for circular motions.

Select a target axis for quadrant protrusion tuning in [Axis1] and a target axis for circular motions together with that axis in [Axis2].

If you want to tune two axes, after the completion of the tuning of one axis, restart the wizard and select the axis selected for [Axis1] in [Axis2] and the axis selected for [Axis2] in [Axis1] for tuning. In the case of synchronous axes or tandem axes, select the master axis.

If you select the slave axis, the servo guide will automatically switch to the master axis.

This tuning is not available for synchronous axes having multiple slave axes.

Use a series and edition of servo software that is applicable to synchronous/tandem axis tuning.

NOTE

- 1 When you have selected rotary axes, perform tuning by specifying a sine wave shaped position command for one axis and a sine wave whose phase is 90 degrees different for the other axis. (As the tuning program, a minute line segment program is automatically generated.)
- 2 The backlash acceleration tuning wizard automatically changes some servo parameters during tuning. It restores the values of parameters other than those for backlash acceleration tuning to those before tuning when tuning ends or the cancel button is clicked. If the tuning ends abnormally before it is completed, see the backup file and restore the parameters to their previous settings. Backup file: My Documents¥SERVO GUIDE¥SVGBLA.DAT

<4> Confirm the test programs and click [Next].

Quadrant protrusion compensation is tuned using circular motions with a radius of 10 and feedrates of 300, 1500, and 3000. (The circle radius and feedrates cannot be changed.) If it is necessary to add an M code and other items, check the **[Edit]** check box and edit the program.

🔁 Backlash acceleration tuning	×
Maximum learning points is 16000. Selected Path PATH-1 Feedrate, datapoint, filename 1 F3000.000 (3000pts) 2 F1500.000 (4000pts) 3 F300.000 (14000pts)	Confirmation of test program Circle programs for learning control are prepared in this step. DO NOT CHANGE learning condition (radius 10mm and three feedrate). Check the generated program below, and Press [Next] to continue. Feedrate G91G94 N1F3000.000 N2G5.8 G5.1Q1 G17G02J-10.000 G5.4Q0
	File Name SVG_AUTOTUNE01
	< <u>B</u> ack <u>N</u> ext > Cancel

NOTE

If you select rotary axes, a minute line segment program is automatically generated as the tuning program.

Note the following points:

- An environment is necessary in which the minute line segment program can be executed normally. Specifically, AI contour control (or AI advanced preview control) is required. (The program cannot be executed with normal control or advanced preview control.)
- The 30*i* series requires the AI contour control I or II option.
- In the case of 0*i*-D, the program can be used only with the M series (Al advanced preview control or Al contour control option).
- Inch input is not supported. Inch machines are not supported, either.
- An incremental command-based program is generated for an axis that supports incremental commands.
- In the case of an axis that does not support incremental commands (axes A and B of G code system A of the T series), a program is generated using absolute commands with the start point being the location where the axis is at the time of program generation.

<5> Set basic parameters.

Normally, you do not need to change the default values. Click [Next].

Change values only when a shock or vibration occurs with the default values, which affects operation as shown below.

🚰 Backlash acceleration tuning			×			
	Basic parameter setting Basic servo parameters are required for getting proper learning result. Backlash compensation and high position gain may bother the conversion of learning control, change small to avoid the influence temporary. Feed-forward enable (2005#1)					
	🔽 Use default FF timing value	(2415#1)				
	FF coef. (2092)	10000				
1,5	FF coef. (2144)	10000 🛁				
	FF timing (2095)					
	Position gain (1825)	3000				
	Backlash comp. (1851)					
	Allowable acc. (1660,1735)	600 🛨				
			_			
	< <u>B</u> ack	Next > Cancel				

- The optimum position gain of the machine is lower than 3000. When the position gain is set to 3000, vibration occurs.
 - \rightarrow Decrease the position gain to the optimum value of the machine. (In this case, it is necessary to change values for learning parameter setting.)
- A large shock occurs at the start and end of a circular motion and affects the measured axis (axis selected for Axis1) when the quadrant changes.
 - \rightarrow Decrease the allowable acceleration to a range between 250 mm/s² and 600 mm/s².

<6> Set the parameters for learning control.

Normally, you do not need to change the default values. Click [Next].

Change values only when optimum compensation calculation performed in the next step fails (the quadrant protrusion is not sufficiently small) with the default values as shown below.

🔁 Backlash acceleration tuning		×
	Learning Parameter Setting	
	Learning parameter setting (Usually no need to change) If learning convergence is not achieved, change learning parameters below and try again. Cut-off filter (100Hz as default)	
	Gx max order (10 as default) 0 * Gx min order (0 as default) 0 * Gx max coef. (64 as default) 0 * Gx min coef. (-32 as default) 0 *	
	☑ Reserve pitch error compensation in learning mode	
	< Back Next > Cancel	

- For a full-closed system with a large distortion
 - \rightarrow Check the result of learning in step <7>. If the learning process does not end (the quadrant protrusion is not sufficiently small), increase the value of **[Gx max order]** to 0, 15, and 20 in this order so that the learning process ends.

<7> Perform learning operation to calculate the optimum compensation at each feedrate.

	Learn optimum com	npensation & c	alculate co	mpensati	on facto	r			
	To obtain the optin of target tuning ax compensation facto	num compensa (is (1st axis) is ors depending	tion, sever vanished t feedrate.	ral learnin by learnin	ig trials a g contro	are requir I, press [ed. When t Calculate] t	:he protru :o calculat	sion e the
Program select	Check the calculati	on results and	Press [Ne:	xt] to con	tinue.				
1 F3000.000	Feedrate	dir.	acc.	tz	tO	t1	damp.	t2	
3 F300.000	F3000.000	(+TO-)							
	F1500.000	(+TO-)							
	F300.000	(+TO-)		((8)				-
	F3000.000	(-TO+)							
Initial trial	F1500.000	(-TO+)							
	F300.000	(-TO+)							-
(4) Learn & (1) Measure(<u>1</u>)					⊂(7)	ate(<u>2</u>)	Įv	lodify(<u>3</u>)	
) <u>C</u> ircle	This line is used for	status display	,						
Y-Time	🗖 Manual tuning (without accele	eration ove	erride fund	tion)				

<Procedure for calculating compensation factors>

- (1) Select a feedrate for tuning from the [Program select] list.
- (2) Check that [Initial trial] is checked and click the [Learn&Measure] button.
- (3) Press the "Cycle Start" button on the machine operator's panel. (Five to ten circular motions are performed.)

- (4) Check that [Initial trial] is not checked and click the [Learn&Measure] button again. (Additional learning and check)
- (5) Press the "Cycle Start" button on the machine operator's panel. (A circular motion is performed.)
- (6) Click the [Circle] button to check the shape of the circle. When the quadrant protrusion is sufficiently small for the tuned axis (horizontal axis), proceed to step (7). If the protrusion is not small, repeat steps (4) to (7) until the protrusion is sufficiently small. (*)
- (7) Click the [Calculate] button. Compensation factors are automatically calculated based on the currently obtained waveforms and added to the compensation factor list at the center of the dialog box.
- (8) Perform steps (1) to (7) above for each program (F3000, F1500, and F300). When all required compensation factors are added to the list, click the [Next] button.
- * If the shape of the circle is not improved (the protrusion is not sufficiently small) after performing steps (4) to (7) about 10 times, click the **[Back]** button. Then, change the value of a learning parameter (Gx max order) and perform steps (1) to (8) above again. (-> See the description of step <8>.)

<Example of measurement>

Initial learning (step (3))

The paths of five to ten circular motions are displayed at a time. This figure shows that the quadrant protrusion becomes small as learning progresses.

Additional learning and check (step (6)) When the quadrant protrusion is sufficiently small for the tuned axis, click the **[Calculate]** button. < 8> Calculate the compensation at all feedrates. When all required compensation factors are added to the list, click [Next].

🚱 Backlash acceleratio	on tuning								X
	Learn optimum comp	pensation & c	alculate co	mpensati	on factor				
Drogram coloct	To obtain the optimi of target tuning axis compensation facto	um compensa s (1st axis) is rs depending	tion, sever vanished t feedrate.	al learnin by learnin	ig trials a g control	re require , press [C	d. When th alculate] to	e protrusion calculate the	•
Program select	Check the calculatio	n results and	Press [Ne:	kt] to con	itinue.				
2 F3000,000	Feedrate	dir.	acc.	tz	tO	t1	damp.	t2	
3 F300.000	F3000.000	(+TO-)	434	-7	0	3	29322	55	
	F1500.000	(+TO-)	801	-3	3	7	27737	35	
	F300.000	(+TO-)	631	0	31	34	28405	45	
	F3000.000	(-TO+)	427	-6	0	4	29322	60	-
, Initial trial	F1500.000	(-TO+)	802	-2	4	7	28405	45	
	F300.000	(-TO+)	685	0	30	32	28917	50	
Learn & Measure(<u>1</u>)					Calcula	ate(<u>2</u>)	Mo	odify(<u>3</u>)	I
	Calculation is finishe	d. Press [Ne×	t] to conti	nue.					
Y- <u>T</u> ime	🔲 Manual tuning (v	without accele	ration ove	rride fun	tion)				
				< <u>B</u> ac	k [<u>N</u> ext :	>	Cancel	

<9> The override is calculated based on the optimum compensation factors obtained in the previous step. Check the setting and click [Next].

🚱 Backlash acceleration tun	ing			×
		Parameter confirmation After confirming the co continue.	n mpensation parameters, press [Next] to	
	Base <u>A</u> cc. amount T <u>1</u> (ms) Damping T <u>2</u> (ms)	588 + +0 + 28572 + 55 +	Compensation override / limit 65 434 149 3 338 27737	नन नन नन
trapezoidal acc. convex override	T <u>Z</u> (ms) T <u>Q</u> (ms) Acc. a <u>m</u> ount 2	-7 ×		÷
	Use directional co	omp.	hangeackCance	

M.QUADRANT PROTRUSION <u>TUNING USING SERVO GUIDE</u> APPENDIX

<Changing the override formats>

- If you press the <Change> button in the parameter confirmation window, the Override format setting dialog box is displayed.
- You can change the acceleration override format and damping override format.

Override format settir	۱¢	×
Select acceleration stan	dard	
C Linear acceleration		
Square root of the a	acceleration	
Select acceleration over	ride format.	
C Double resolution (4	096base) / Resolution priority	
C Standard setting (20)48base)	
C 8 times acceleration	range (256base) / Range priority	
Improvement setting	g (16384base) / New standard	
Select damping override	format.	
C Standard setting		
64 times resolution		
0	K Cancel	

• Select acceleration standard Linear acceleration

The acceleration override is calculated using the acceleration standard.

Square root of the acceleration

The acceleration override is calculated using the square root of the acceleration (improvement).

- Select acceleration override format
 - Double resolution (4096base) / Resolution priority

Priority is placed on the acceleration resolution. The maximum acceleration is limited.

Standard setting (2048base)

Default weight

8 times acceleration range (256base) / Range priority

The maximum acceleration will be larger. But the resolution will be worse. When the target machine has the high acceleration specification, please select this.

Improvement setting (16484base) / New standard

Setting not based on the detection unit (improvement)

- Select damping override format.
 - Standard setting

.

Default weight

64 times resolution (In case that larger override value is necessary than standard setting) The resolution of the damping override format is changed.
<10>When **[Use directional comp.]** is checked in the previous step, different compensation factors can be used for "reverse operation from the positive direction to the negative direction" and "reverse operation from the negative direction to the positive direction". Check the settings and click **[Next]**.

APPENDIX

Backlash acceleration tuning	×
	Parameter confirmation (directional compensation) After confirming the compensation parameters, press [Next] to continue.
Base <u>A</u> cc. amount T <u>1(</u> ms) <u>D</u> amping T <u>2</u> (ms)	Compensation override / limit 655 ± 40 ± 427 ± 38 ± 147 ± 4 ± 29045 ± 255 ± 28405 ± 60 ± 50 ± 50 ±
T <u>Z</u> (ms) T <u>O</u> (ms) Acc. a <u>m</u> ount 2	-6 543 • 36 • 161 • 1177 • 57 •
	< Back Next > Cancel

<11>Check the effect of quadrant protrusion compensation using the compensation factors determined in the previous steps. Select a feedrate from [**Program select**] and click the [**Start**] button. When there is no problem with the shape of the circle (the quadrant protrusion is improved), check [**Is it O.K.**?] and click [**Next**].

Example of a waveform at check Check the effect of the application of the quadrant protrusion compensation factors for the reduction of the quadrant protrusion. The compensation factors are applied only to the tuned axis (horizontal axis).

M.QUADRANT PROTRUSION <u>TUNING USING SERVO GUIDE</u> APPENDIX

<12>The changed parameters are listed. Click [Finish] and exit the wizard.

(5) Manually fine-tuning compensation factors

You can move back and force among the following three screens: "Learn optimum compensation & calculate compensation factor", "Acceleration setting optimize", and "Measurement of circle (verify)" to manually fine-tune optimum compensation factors for each feedrate.

After the completion of factor fine-tuning for each feedrate, uncheck the [Manual tuning] check box on the "Learn optimum compensation & calculate compensation factor" screen and click the [Next] button. The "Parameter confirmation" screen appears and the override is calculated based on the acceleration factors determined above.

	Learn optimum com	pensation & c	alculate co	mpensati	on factor				
ogram select	To obtain the optim of target tuning axi compensation facto Check the calculation	um compensa s (1st axis) is rs depending in results and	ition, seve vanished l feedrate. Press [Ne	ral learnin by learnin rt1 to cor	ig trials a g control itique	re requir , press [ed. When ti Calculate] ti	ne protrusion o calculate th	, ie
F3000.000	Feedrate	dir.	acc.	tz	10	t1	damp.	t2	-
F1500.000	F3000.000	(+TO-)	434	-7	0	3	29322	55	
	F1500.000	(+TO-)	801	-3	3	7	27737	35	
	F300.000	(+TO-)	631	0	31	34	28405	45	
	F3000.000	(-TO+)	427	-6	0	4	29322	60	-
Initial trial	F1500.000	(-TO+)	802	-2	4	7	28405	45	
	1 F300.000	(-TO+)	685	0	30	32	28917	50	
Learn & Measure(<u>1</u>)					Calcul-	ste(2)	M	odify(<u>3</u>)	1
Circle	Coloulation is finishe	d. Press [Ne:	tl to conti	nue.					
	Manual husing (uithaut accale		avido furo	rtion)				

"Learn optimum compensation & calculatecompensation

"Parameter confirmation" screen

M.QUADRANT PROTRUSION <u>TUNING USING SERVO GUIDE</u> APPENDIX

After the acceleration factors are calculated according to the result of learning, on the "Learn optimum compensation & calculate compensation factor" screen, click the [Modify] button. A screen appears, which allows the output of learning data at each feedrate and fine-tuning of characteristic points for compensation calculation. On this screen, you can set acceleration factors while checking the learning waveform.

APPENDIX

On the "Learn optimum compensation & calculate compensation factor" screen, check the [Manual tuning] check box and click the [Next] button. The "Measurement of circle (verify)" screen appears. On this screen, you can check the result of the application of acceleration factors you set.

	To obtain the optim	um compensa c (1ct pyic) is	tion, sever	mpensati al learnin	on ractor ng trials a	re requir	ed. When th Colculate 1 to	ne protrus	ion
	compensation facto	rs depending	feedrate.	y learnin	iy control	, press [calculate) (() calculate	i uni
Program select	Check the calculation	on results and	Press [Ne>	(t] to cor	ntinue.				
1 F3000.000	Feedrate	dir.	acc.	tz	tO	t1	damp.	t2	
3 F300.000	F3000.000	(+TO-)	434	-7	0	3	29322	55	
	F1500.000	(+TO-)	801	-3	3	7	27737	35	
	F300.000	(+TO-)	631	0	31	34	28405	45	
	F3000.000	(-TO+)	427	-6	0	4	29322	60	_
Initial trial	F1500.000	(-TO+)	802	-2	4	7	28405	45	
	F300.000	(-TO+)	685	0	30	32	28917	50	
Learn & Measure(<u>1</u>)					Calcul	ate(<u>2</u>)	Mo	odify(<u>3</u>)	
Circle	I Calculation is finishe	d Dress [New	tl to copti						
Y- <u>L</u> ime	Manual tuning (without accele	eration ove	rride fun	ction)				

* The Manual tuning (without acceleration override function) check box is available with SERVO GUIDE 4.10 or later.

Backlash acceleration tuning		×
	Measurement of circle (verify) Recommended backlash acceleration parameters calculated in the previous step are applied.	
Program select 11 F3000.000 2 F1500.000 3 F300.000 <u>C</u> ircle	Verify the circle with backlash acceleration	
Test Settings	☐ Is it O.K	Learning circle R10F300.000 (trial-6) R 10000 X 0.000 Y -10000 G 100000 Z 1.0 H +10um C 10000 C 1000 C 10
		CIFCLE Mode.

INDEX

<A>

ABBREVIATIONS OF THE NC MODELS
COVERED BY THIS MANUAL2
Acceleration Feedback Function
Acceleration Monitor Function
ACTIONS FOR ALARMS138
Actions for Illegal Servo Parameter Setting Alarms49
Actual Current Peak Hold Display137
Adaptive Resonance Elimination Filter
ADJUSTING PARAMETERS FOR HIGH-SPEED
AND HIGH-PRECISION MACHINING148
Alarm Detection When an Error Occurs (Function for
Monitoring the Difference in Error between the
Semi-Closed and Full-Closed Modes and Dynamic
Error Monitoring)63
ANALOG SERVO ADAPTER SETTING
PROCEDURE477

Backlash Acceleration Function	
Before Servo Parameter Initialization	5
Block Diagrams	
Brake Control Function	

<c></c>	
αCi Series	452
COMPENSATION FOR REVERSE OPERATION	IN
HIGH-SPEED FSSB RIGID TAPPING	381
CONNECTING A LARGE SERVO MOTOR USIN	G
A PWM DISTRIBUTION MODULE	586
CONTOUR ERROR SUPPRESSION FUNCTION	224
CONTROL STOP FUNCTIONS	292
Control Stop Judgment in the Quick Stop Function a	ıt
Emergency Stop	377
CORRESPONDENCE OF SERVO PARAMETER	
NUMBERS BETWEEN Series 15i, AND Series 3	30 <i>i</i> ,
0 <i>i</i> , AND OTHERS	582
Current Loop 1/2 PI Control Function	195
Cutting/Rapid Feed-forward Switching Function	227
CUTTING/RAPID SWITCHING FUNCTION	186
Cutting/Rapid Unexpected Disturbance Torque	
Detection Switching Function	319

<D>

Damping compensation function	363
DATA MEASUREMENT AND DIAGNOSIS WITH A	4
PWM DISTRIBUTION MODULE (PDM)	588
DEFINITION OF WARNING, CAUTION, AND	
NOTE	.s-1
NOTE DETAILS OF HIGH-SPEED AND HIGH-PRECISION	.s-1 N
NOTE DETAILS OF HIGH-SPEED AND HIGH-PRECISION ADJUSTMENT	.s-1 N 523

DETECTION OF AN OVERHEAT ALARM BY	
SERVO SOFTWARE WHEN A LINEAR MOTOR	
AND A SYNCHRONOUS BUILT-IN SERVO	
MOTOR ARE USED12	26
Detection of excessive error between the estimated	
position and actual position (dynamic error	
monitoring)	65
Diagnosis Information List	34
Disturbance Elimination Filter Function	
(Low-Frequency Resonance Elimination Filter)20	03
Dual Position Feedback Function (Optional Function) 21	13

<E>

Example of torque tandem setting	
Examples of position tandem setting	

<F>

FEEDBACK DUMMY FUNCTION	556
Feed-forward Function	224
Feed-forward Timing Adjustment Function	228
FINE ACCELERATION/DECELERATION (FAD)	
FUNCTION	547
Function based on the DI signal for switching the	
distance to lift	303
Function for monitoring the difference in error betwee	en
the semi-closed and full-closed modes	63
FUNCTION FOR OBTAINING CURRENT OFFSE	ТS
AT EMERGENCY STOP	383
FUNCTION FOR REDUCING EFFECTS OF	
VARIATIONS IN MACHINE	
CHARACTERISTICS	276
Functions for preventing damage between two axes	332
Functions for sharing a separate detector	346

<H>

High-Speed HRV Current Control	
High-speed Positioning Adjustment Procedure	
HIGH-SPEED POSITIONING FUNCTION	
HRV1 CONTROL PARAMETERS	

</>

α <i>i</i> F Series	450,459
α <i>i</i> F Series HV	
Inertia Estimation Function	
INITIALIZING SERVO PARAMETERS	5
Interactive Force Compensation Function	
INTERNAL UNIT SETTINGS AND COIL	
RESISTANCE SETTINGS	
α <i>i</i> S Series	443,454
α <i>i</i> S Series HV	446,457
αiS/αiF/βiS/βiF/LiS/DiS SERIES PARAMET	ER
ADJUSTMENT	
β <i>i</i> Sc Series	

<L>

LEARNING CONTROL FUNCTIONS (OPTIONAL	
FUNCTION)	.384
Lifting function against gravity at emergency stop	.299
Lifting Function Against Gravity at Emergency Stop.	.299
Linear Motor LiS Series [200V]	.461
Linear Motor LiS Series [400V]	.463
LINEAR MOTOR PARAMETER SETTING	75
Load Meter Display	.379
Low-speed Integral Function	.290

<M>

MACHINE RESONANCE ELIMINATION		Ν
FUNCTION	197	Pro
Machine Speed Feedback Function	218	S
Machining Point Control	220	
Method of setting a distance to lift in µm		<q></q>
METHODS OF STARTING UP THE MACHINE		QU
WITHOUT CONNECTING AMPLIFIERS AN	D	S
FEEDBACK CABLES	556	Qu
MODEL-SPECIFIC INFORMATION	495	Qu
Motor feedback sharing function	365	5
Motor Models and System Configurations	69	Qu
Multiaxis Tandem	349	1
MULTIPLE-MOTOR DRIVING (TANDEM		Qu
DRIVING)	322	Qu

<N>

NC MODELS AND APPLICABLE SERVO	
SOFTWARE	1
Notes on Using the Control Axis Detach Function	62

<0>

Observer Function	208
Overshoot	
Overshoot Compensation Function	
OVERVIEW	1

<P>

PARAMETERS FOR Power Motion <i>i</i> -A
PARAMETERS FOR Series 15 <i>i</i>
PARAMETERS FOR Series 16 <i>i</i> , 18 <i>i</i> , 21 <i>i</i> , 0 <i>i</i> /0 <i>i</i> Mate -C
PARAMETERS RELATED TO HIGH-SPEED AND
HIGH PRECISION OPERATIONS
PARAMETERS SET WITH VALUES IN
DETECTION UNITS
Position Gain Switching Function
Position Tandem
Preload function
Procedure for Setting the Initial Parameters of Linear
Motors
Procedure for Setting the Initial Parameters of
Synchronous Built-in Servo Motors

QUADRANT PROTRUSION TUNING USING	
SERVO GUIDE	592
Quick Stop Function at OVL and OVC Alarm	308
Quick Stop Function for Hardware Disconnection of	
Separate Detector	306
Quick Stop Function for Separate Serial Detector	
Alarms	307
Quick Stop Type 1 at Emergency Stop	296
Quick Stop Type 2 at Emergency Stop	298

<R>

Rapid Traverse Positioning Adjustment Procedure167
RELATED MANUALS
Resonance Elimination Filter Function
(High-Frequency Resonance Elimination Filter)199
Resonance Elimination Filter L (Low-Frequency
Resonance Elimination Filter)
RISC FEED-FORWARD FUNCTION554

<S>

Selecting a Resonance Elimination Function	. 197
Series 0 <i>i</i> /0 <i>i</i> Mate-D	.499
Series 15 <i>i</i> -MB	.511
Series 16i/18i/21i/0i/0iMate-MB, 0i/0i	
Mate-MC/20 <i>i</i> -FB	. 503
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A/B	.495
Series 35 <i>i</i> -B, Power Motion <i>i</i> -A	.497
Servo Card and Number of Servo Controlled Axes	.183
SERVO FUNCTION DETAILS	.176
SERVO FUNCTIONS THAT ARE NOT USED WIT	Ή
THE 30i AND 0i-D Series	. 547
SERVO HRV CONTROL	.176
Servo HRV Control Adjustment Procedure	. 148
Servo HRV2 Control	.178
Servo HRV3 Control	.178
Servo HRV4 Control	. 180
Servo Parameter Initialization Procedure	6
Servo Parameter Initialization Procedure for the Serie	s
0 <i>i</i> -D	24

SERVO PARAMETERS RELATED TO
HIGH-SPEED AND HIGH PRECISION
OPERATIONS
SERVO SETTING screen: Setting items
Servo Tuning Screen
SERVO TUNING SCREEN AND DIAGNOSIS
INFORMATION
SERVO TUNING TOOL SERVO GUIDE
SETTING PARAMETERS FOR A PWM
DISTRIBUTION MODULE (PDM)
SETTING PARAMETERS FOR LARGE SERVO
MOTORS
Setting Parameters in the Torque Tandem Configuration
SETTING PARAMETERS OF αiS/αiF/βß/βiF SERIES
SERVO MOTOR
SETTING PARAMETERS OF LINEAR MOTOR
AND SYNCHRONOUS BUILT-IN SERVO
MOTOR
Setting Parameters when an αiCZ Sensor is Used40
Setting Parameters When an Acceleration Sensor or
Temperature Detection Circuit Is Used
Setting Servo Parameters when a Separate Detector for
the Serial Interface is Used
Setting Servo Parameters when an Analog Input
Separate Detector Interface Unit is Used 39
SETTINGS FOR POWER SUPPLY MODULE LOSS
COEFFICIENTS C AND D 580
SETTINGS FOR SERVO AMPLIFIER LOSS
COEFFICIENTS A AND B 575
SETTINGS FOR THE POWER CONSUMPTION
MONITOR FUNCTION 571
Smoothing Compensation for Linear Motor
Smoothing Compensation for Synchronous Built-in
Servo Motor 125
Speed Arrival Signal and Zero-Speed Detecting Signal 373
STANDARD PARAMETERS FOR THE α <i>i</i> SERIES
SERVO MOTORS 442 453
STANDARD PARAMETERS FOR THE LINEAR
MOTORS 460
STANDARD PARAMETERS FOR THE
SYNCHRONOUS BUILT-IN SERVO MOTORS 465
Static Friction Compensation Function 246
Stick Slip 174
Synchronous axes automatic compensation 341
Synchronous Built-in Servo Motor Di Series [200V] 466
Synchronous Built-in Servo Motor Dis Series [2007] 400
SYNCHRONOUS BLIII T-IN SERVO MOTOR
DARAMETER SETTING 07
· · · · · · · · · · · · · · · · · · ·

<T>

Tandem Disturbance Elimination Control (Optional	
Function)	334
Tandem speed difference alarm function	366
Torque Command Filter (Middle-Frequency Resonand	e
Elimination Filter)	198
Torque Command Filter (Secondary) (High-frequency	<i>,</i>
Resonance Elimination Filter)	223

TORQUE CONTROL FUNCTION	571
Torque Limit Setting Function during Brake Control 2	295
Torque Tandem Control (Optional Function)	59
Torsion Preview Control Function2	248
Turning Functions On and Off Using a PMC Signal 3	\$59
Two-stage Backlash Acceleration Function2	234

<U>

Unexpected Disturbance Torque Detection Function	310
UNEXPECTED DISTURBANCE TORQUE	
DETECTION FUNCTION (OPTIONAL	
FUNCTION)	310
Unexpected Disturbance Torque Detection Switching	
Function Depending on Acc	320
USING A SERVO MOTOR FOR SPINDLE	
CONTROL	373
USING THE DUMMY FEEDBACK FUNCTION FO	R
A MULTIAXIS SERVO AMPLIFIER WHEN AN	
AXIS IS NOT IN USE	558
USING THE SERVO CHECK INTERFACE UNIT	540

<1/>

Variable Proportional Gain Function in the Stop State	193
Velocity feedback average function	.365
VELOCITY LIMIT VALUES IN SERVO	
SOFTWARE	.519
Velocity Loop High Cycle Management Function	. 190
Velocity Loop Integrator Copy Function	.328
Velocity Tandem Control	.371
Vibration Damping Control Function	.211
Vibration during Travel	.173
Vibration in the Stop State	.171
VIBRATION SUPPRESSION IN THE STOP STATI	E190

REVISION RECORD

Edition	Date	Contents
		Applied to 30 <i>i</i> -B series and 0 <i>i</i> -D series
08	Jun., 2013	Addition of functions added after issue of Edition 07
		Correction of errors
07	Eab 2000	Addition of functions added after issue of Edition 06
07	Feb., 2008	Correction of errors
		Model name change
00	Eab 2000	Addition of the DiS series motor
06	Feb., 2006	Addition of functions added after issue of Edition 05
		Correction of errors
		Applied to Series30 <i>i</i> /31 <i>i</i> /32 <i>i</i>
		Addition of HRV4 control
05	May., 2005	Total revision of chapter of Parameter Adjustment
		Addition of functions added after issue of Edition 04
		Correction of errors
		 Addition of the SERVO MOTOR βis series
04	Oct., 2003	 Addition of functions added after issue of Edition 03
		Correction of errors
		 Addition of the SERVO MOTOR αis series
02	Mar 2002	Addition of item for SERVO GUIDE(Ver 2.00)
03	IVIAL., 2003	Addition of functions added after issue of Edition 02
		Correction of errors
		 Addition of the parameter tables for αHVi
02	Son 2002	Addition of item for SERVO GUIDE
02	Sep., 2002	 Addition of functions added after issue of Edition 01
		Correction of errors
01	May, 2001	

ADDITIONAL INFORMATION

Pole Position Detection Function

1. Type of applied documents

Name	FANUC AC SERVO MOTOR αi series
	FANUC AC SERVO MOTOR βi series
	FANUC LINEAR MOTOR LiS series
	FANUC SYNCHRONOUS BUILT-IN SERVO MOTOR D <i>i</i> S series
	Parameter manual
Spec. No./Ver.	B - 65270EN / 08 - 001

2. Summary of Change

Group	Name / Outline	New, Add Correct, Del	Applicable Date
Basic Function	Add direct exciting method to 3.2.1.2 Procedure for Setting the Initial Parameters (Pole position detection).	Add	On the day
Optional Function			
Unit			
Maintenance Parts			
Notice			
Correction			
Another			

				Pole Position Detect	ion Fu	nction
01	2013.04.02	N.sonoda	Add direct exciting method	DRAW. No. B-65270EN/08-	001	CUST.
Ed.	Date		Description y. Poynaux	FANUC CORPORATION	SHEET	1/14

3.2.1.2 Procedure for Setting the Initial Parameters (Pole position detection) (Option function)

To drive a synchronous built-in servo motor, the pole detection function (option) is required. This section describes pole detection function.

(1) Outline

The pole detection function (option) detects the pole position of a motor driven when the relationship between the pole position of the motor and the phase of the encoder is unknown.

1. If the correct pole position can't be detected depending on condition, motor might move unexpectedly. To avoid this dangerous situation, the following conditions must be satisfied until completion of detection:

1) Torque limit parameter (No.2060) must be kept less than 150% of a rated current (No.2086).

2) The setting of excessive error at stop time must be 100 μ m or 0.1 degree or less. The setting of excessive error at move time must be 120% of the logical positional deviation or less. In case of the direct exciting method (No.2009#5=1), it must be set to180 degree of the corresponding value.

3) While the detecting operation is in progress and a subsequent move operation is executed, a protection doors must be closed.

If these conditions are not satisfied and detecting operation is not finished normally, the motor will make an unpredictable movement with the maximum torque until CNC detects an excessive error alarm. For safety, please create the following sequence with PMC by using the state signal for pole detection signal:

1) Don't start detecting operation while the protection doors are opened.

2) If a protection door is opened during detecting operation (Fn158=1), the operation is reset.

3) When detecting operation is uncompleted (Fn159=0), don't give any command to relevant axes.

4) When detecting operation is uncompleted (Fn159=0), don't release a brake for the gravity axis. (For brake

operation, please watch not only the SA signal but also the pole detection completion signal (Fn159).)

In general, this function can't be applied to the following motors and conditions:

1) Linear motor

2) Axis for which control axis detach function is used. (See Item (9))

3) When the joint rigidity between the motor and encoder is low.

4) When axis is completely locked.

When this function is unavoidably applied to linear motor depending on condition, the case using the absolute encoder and paying attention to safety is only approved the application of this function to linear motor.

2. When encoder is exchanged, detection operation must be executed again after AMR offset (No.2139) is set to zero.

			Pole Position Detect	ion Fu	nction
			DRAW. No. B-65270EN/08-	-001	CUST.
Ed.	Date	Description	FANUC CORPORATION	SHEET	2/14

- 1. When two axes are controlled by Tandem control or Feed axis synchronous control, and each axis has rotary encoder, detecting operation is performed at either axis under making another axis servo-off. In case of Tandem control, servo alarm two-axis monitor function (No.2007#0) should be turned off during detection.
- 2. When motor feedback sharing function (No. 2018#7) is used with Tandem control, detecting operation should be started simultaneously with both axes to avoid incorrect detection.
- 3. The following encoders are recommended for pole detection.
 - 1) If possible, use an absolute encoder.
 - 2) If incremental encoder is unavoidable, use an incremental encoder with a reference signal.

*1) Detecting method

Direct exciting method

This method excites current at any two different positions and detects pole position from stay position of motor at that time. Motor is moved maximum 180 degree as electric angle during detection. It takes about 5 seconds as detecting time. It's only used for initial starting of motor. (90G0/19.0, 90G3/5.0, 90E1/13.0, 90E3/8.0 or later)

Minute moving method

This method excites current at any plural different positions and detects pole position from movement of motor at that time. Motor is moved maximum 5 degree as **mechanical** angle during detection. It takes about 2 seconds as detecting time. It's only used for starting of motor except initial.

(2) Applicable software

CNC	Servo	software	Remark
	series	Version	
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 or later	
Power Motion <i>i</i> -A	90G3	01.0 or later	
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	J(10) or later	
	90E1	01.0 or later	
	90E3	01.0 or later	
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	J(10) or later	HRV4
Series 0 <i>i</i> -D	90C5	A(01) or later	
	90C8	A(01) or later	
	90E5	A(01) or later	
	90E8	A(01) or later	

				Pole Position Detect	ion Fu	nction
01	2013.04.02	N.Sonoda	Add *1)	DRAW. No. B-65270EN/08-	001	CUST.
Ed.	Date		Description	FANUC CORPORATION	SHEET	3/14

position detection in-progress signal (Fn158) is set to 1.

• Once detecting operation starts, it continues even if the request signal is turned off.

• Motor operation during pole detection is not under control of CNC. But CNC performs follow-up operation during detection.

 If detecting operation terminates abnormally for a mechanical cause, the servo alarm "POLE DETECTION ERROR SV0454" occurs.

• Turn off the power of CNC because this alarm can't be released by reset key.

• When a reset is performed during detection, detecting operation is suspended. To restart detection again, set the pole position detection request signal to 1 after 0.

• Once detection is completed, detecting operation can't be performed again without power off except detach operation.

• Always set the parameter (No. 2229#0) to 1. The result of detection is stored in the parameter (No.2139) after detection is completed and motor gets reference signal. In case of absolute encoder, the detection need not to be performed every power on.

In case of MDI, MEM, or EDIT mode, the result of detection is reflected on the screen immediately. In case of REF or JOG mode, it is reflected on the screen when the reset key is pressed or the mode is switched to MDI mode.
In order to restart pole detection again, clear the parameter (No. 2139) to 0 and turn off CNC power.

NOTE

- When an absolute encoder is used and the parameter (No. 2229#0) is set to 1, the pole position detection completion signal (Fn159) is set to 1 immediately after power-on if the parameter (No. 2139) is not set to 0.
- Create logic for confirming the pole position detection completion signal (Fn159) before giving a move command immediately after power-on.
- If alarm such as count miss alarm of encoder occurs by fault of encoder, the pole position detection completion signal (Fn159) is returned to 0. In this case, it is necessary to perform pole detection again.

(4) Parameter

If the following parameters are changed, necessarily turn NC power off.

by the variation in pole position detection every power on.

WATRA (#3)

unexpected motion is watched after detection

unexpected motion isn't watched after detection

When the wrong pole position is detected, it is possible to avoid unexpected motion of motor by this function. If the motor moved unexpectedly after detection, alarm 454 would occur. Please set WATRA=1 in case of Vcmd mode.

FORME (#4)0:Applied Auto select mode (minute moving + stop state mode)1:Applied Minute moving mode

Please always set FORME=1.

0:

1:

	No.	#	ŧ7	#6	#5	#4	#3	#2	#1	#0	_
	2009				PDDDM						
											-
*1)	PDDDM	(#5)	0:	Mir	nute moving	method					

1: Direct exciting method.

Please always set PDDDM=1

When AMR offset (No.2139) is 0, detection is used direct exciting method. In this case, torque is limited to less than the rated current (No.2086) until reference signal of encoder is caught. (90G0/19.0, 90G3/5.0, 90E1/13.0, 90E3/8.0 or later)

Pay attention to motor movement because motor might move max.180 degree as electric angle during detection.

static friction, this parameter is set to more than the rated current. This parameter is limited by torque limit parameter (No.2060). No. 2198 Repetitive number Data unit Number *1) Valid data range -1 to 30 Standard setting 0 In minute moving method (No.2229#4=1, No.2009#5=0), the detection is repeated up to number which adds on 1 to this parameter, and the average of result is calculated. In direct exciting method (No.2229#4=1, No.2009#5=1), if this parameter is negative, direct exciting method is used as detection method regardless of the value of No.2139. (90G0/19.0, 90G3/5.0, 90E1/13.0, 90E3/8.0 or later) No. 2199 Permissible electric angle Data unit degree (Electric angle) *1) Valid data range 0 to 45 Standard setting 0 (If 0 is set, this parameter is internally handled as 10 degree.) In direct exciting method (No.2229#4=1, No.2009#5=1), this parameter sets the permissible range for detecting accuracy. 0 means range from -10 degree to +10 degree. If the detection result is out of range, "ILLEGAL ROTOR POS DETECT SV0454" occurs. (90G0/19.0, 90G3/5.0, 90E1/13.0, 90E3/8.0 or later) No. 2268 (MFMPMD) Permissible mechanical angle % Data unit Valid data range -1000 to 1000 (Positive only) Standard setting 0 (If 0 is set, this parameter is internally handled as 100%.) In case of positive value This parameter sets permissible range for movement during detection. Permissible mechanical angle is from -5 degree to 5 degree and it's handled as 100%. If movement during detection exceeds the permissible range, "ILLEGAL ROTOR POS DETECT SV0454" occurs. In this case, this parameter should be set to more than 100%, such as 200%. In case of negative value It is possible to change the speed level (detecting sensitivity) for stop & move in minute moving method or direct exciting method. It is set to under 100% for high sensitivity and over 100% for low sensitivity. If velocity feedback is noisy, make low sensitivity (from -200 to -500). Meanwhile if the axis has large inertia, make high sensitivity (from -10 to -20). **Pole Position Detection Function** DRAW. No. CUST. B-65270EN/08-001 2013.04.02 N.Sonoda 01 Add *1) FANUC CORPORATION SHEET 7/14 Ed. Description Date

	position detection	on request signal : Gn135.0 – Gn135.7 (RPREQ1 – RPREQ8)
	Classification	Input signal
	Function	Request to execute the pole position detection. A number appended to a signal represents
	the	
		controlled axis number.
	Operation	CNC starts the pole position detection.
Pole	position detectir	ng signal : Fn158.0 – Fn158.7 (RPDET1 - RPDET8)
	Classification	Output signal
	Function	These signals indicate that CNC is detecting the pole position of each axis. A number
		appended to a signal represents the controlled axis number.
	Output Conditio	I hese signals turn to "1" when:
	These signals to	UNC is detecting the pole position
	mese signais (The pole position detection completes
		The pole position detection stops illegally
		The pole position detection stops by reset.
Pole	position detection	on completion signal : Fn159.0 – Fn159.7 (RPFIN1 - RPFIN8)
	Classification	Output signal
	Function	A number appended to a signal represents the controlled axis number
	Output Conditio	A number appended to a signal represents the controlled axis number.
		The pole position detection completes
		These signals do not turn to "0" except power-off
	DDDEO	
	NENEW	
	RPDET	
	RPFIN	
Γ	Note	
[Note In case of a	absolute encoder and No.2229#0=1, if once detection completes, Fn158.x=1 is kept even if
	Note In case of a CNC power	absolute encoder and No.2229#0=1, if once detection completes, Fn158.x=1 is kept even if is turned off. Meanwhile if No.2139 =0 and CNC power is turned off, Fn158.x turns into 0.
	Note In case of a CNC power	absolute encoder and No.2229#0=1, if once detection completes, Fn158.x=1 is kept even if is turned off. Meanwhile if No.2139 =0 and CNC power is turned off, Fn158.x turns into 0.
	Note In case of a CNC power	absolute encoder and No.2229#0=1, if once detection completes, Fn158.x=1 is kept even if is turned off. Meanwhile if No.2139 =0 and CNC power is turned off, Fn158.x turns into 0.
	Note In case of a CNC power No.	absolute encoder and No.2229#0=1, if once detection completes, Fn158.x=1 is kept even if is turned off. Meanwhile if No.2139 =0 and CNC power is turned off, Fn158.x turns into 0. #7 #6 #5 #4 #3 #2 #1 #0 BPREO8 BPREO7 BPREO6 BPREO5 BPREO4 BPREO3 BPREO2 BPREO1
	Note In case of a CNC power No. G135	absolute encoder and No.2229#0=1, if once detection completes, Fn158.x=1 is kept even if is turned off. Meanwhile if No.2139 =0 and CNC power is turned off, Fn158.x turns into 0. #7 #6 #5 #4 #3 #2 #1 #0 RPREQ8 RPREQ7 RPREQ6 RPREQ5 RPREQ4 RPREQ2 RPREQ1
	Note In case of a CNC power No. G135 F158	absolute encoder and No.2229#0=1, if once detection completes, Fn158.x=1 is kept even if is turned off. Meanwhile if No.2139 =0 and CNC power is turned off, Fn158.x turns into 0. #7 #6 #5 #4 #3 #2 #1 #0 RPREQ8 RPREQ7 RPREQ6 RPREQ5 RPREQ4 RPREQ3 RPREQ2 RPREQ1 RPDET8 RPDET7 RPDET6 RPDET5 RPDET4 RPDET3 RPDET2 RPDET1
	Note In case of a CNC power No. G135 F158 F159	absolute encoder and No.2229#0=1, if once detection completes, Fn158.x=1 is kept even if is turned off. Meanwhile if No.2139 =0 and CNC power is turned off, Fn158.x turns into 0. #7 #6 #5 #4 #3 #2 #1 #0 #7 #6 #5 #4 #3 #2 #1 #0 RPREQ8 RPREQ7 RPREQ6 RPREQ5 RPREQ4 RPREQ3 RPREQ2 RPREQ1 RPDET8 RPDET7 RPDET6 RPDET5 RPDET4 RPDET3 RPDET2 RPDET1
	Note In case of a CNC power No. G135 F158 F159	absolute encoder and No.2229#0=1, if once detection completes, Fn158.x=1 is kept even if is turned off. Meanwhile if No.2139 =0 and CNC power is turned off, Fn158.x turns into 0.#7#6#5#4#3#2#1#0#7#6#5#4#3#2#1#0RPREQ8RPREQ7RPREQ6RPREQ5RPREQ4RPREQ3RPREQ2RPREQ1RPDET8RPDET7RPDET6RPDET5RPDET4RPDET3RPDET2RPDET1RPFIN8RPFIN7RPFIN6RPFIN5RPFIN4RPFIN3RPFIN2RPFIN1
	Note In case of a CNC power No. G135 F158 F159	Absolute encoder and No.2229#0=1, if once detection completes, Fn158.x=1 is kept even if is turned off. Meanwhile if No.2139 =0 and CNC power is turned off, Fn158.x turns into 0. #7 #6 #5 #4 #3 #2 #1 #0 RPREQ8 RPREQ7 RPREQ6 RPREQ5 RPREQ4 RPREQ3 RPREQ2 RPREQ1 RPDET8 RPDET7 RPDET6 RPDET5 RPDET4 RPDET3 RPDET2 RPDET1 RPFIN8 RPFIN7 RPFIN6 RPFIN5 RPFIN4 RPFIN3 RPFIN2 RPFIN1
	Note In case of a CNC power No. G135 F158 F159	Absolute encoder and No.2229#0=1, if once detection completes, Fn158.x=1 is kept even if is turned off. Meanwhile if No.2139 =0 and CNC power is turned off, Fn158.x turns into 0. #7 #6 #5 #4 #3 #2 #1 #0 RPREQ8 RPREQ7 RPREQ6 RPREQ5 RPREQ4 RPREQ3 RPREQ2 RPREQ1 RPDET8 RPDET7 RPDET6 RPDET5 RPDET4 RPDET3 RPDET2 RPDET1 RPFIN8 RPFIN7 RPFIN6 RPFIN5 RPFIN4 RPFIN3 RPFIN2 RPFIN1
	Note In case of a CNC power No. G135 F158 F159	Absolute encoder and No.2229#0=1, if once detection completes, Fn158.x=1 is kept even if is turned off. Meanwhile if No.2139 =0 and CNC power is turned off, Fn158.x turns into 0. #7 #6 #5 #4 #3 #2 #1 #0 RPREQ8 RPREQ7 RPREQ6 RPREQ5 RPREQ4 RPREQ3 RPREQ2 RPREQ1 RPDET8 RPDET7 RPDET6 RPDET5 RPDET4 RPDET3 RPDET2 RPDET1 RPFIN8 RPFIN7 RPFIN6 RPFIN5 RPFIN4 RPFIN3 RPFIN2 RPFIN1
	Note In case of a CNC power No. G135 F158 F159	Absolute encoder and No.2229#0=1, if once detection completes, Fn158.x=1 is kept even if is turned off. Meanwhile if No.2139 =0 and CNC power is turned off, Fn158.x turns into 0. #7 #6 #5 #4 #3 #2 #1 #0 RPREQ8 RPREQ7 RPREQ6 RPREQ5 RPREQ4 RPREQ3 RPREQ2 RPREQ1 RPDET8 RPDET7 RPDET6 RPDET5 RPDET4 RPDET3 RPDET2 RPDET1 RPFIN8 RPFIN7 RPFIN6 RPFIN5 RPFIN4 RPFIN3 RPFIN2 RPFIN1 Pole Position Detection Function
	Note In case of a CNC power 0135 F158 F159	Absolute encoder and No.2229#0=1, if once detection completes, Fn158.x=1 is kept even if is turned off. Meanwhile if No.2139 =0 and CNC power is turned off, Fn158.x turns into 0. #7 #6 #5 #4 #3 #2 #1 #0 RPREQ8 RPREQ7 RPREQ6 RPREQ5 RPREQ4 RPREQ3 RPREQ2 RPREQ1 RPDET8 RPDET7 RPDET6 RPDET5 RPDET4 RPDET3 RPDET2 RPDET1 RPFIN8 RPFIN7 RPFIN6 RPFIN5 RPFIN4 RPFIN3 RPFIN2 RPFIN1
	Note In case of a CNC power No. G135 F158 F159	absolute encoder and No.2229#0=1, if once detection completes, Fn158.x=1 is kept even if is turned off. Meanwhile if No.2139 =0 and CNC power is turned off, Fn158.x turns into 0. #7 #6 #5 #4 #3 #2 #1 #0 RPREQ8 RPREQ7 RPREQ6 RPREQ5 RPREQ4 RPREQ3 RPREQ2 RPREQ1 RPDET8 RPDET7 RPDET6 RPDET5 RPDET4 RPDET3 RPDET2 RPDET1 RPFIN8 RPFIN7 RPFIN6 RPFIN5 RPFIN4 RPFIN3 RPFIN2 RPFIN1
	Note In case of a CNC power 0135 F158 F159	Absolute encoder and No.2229#0=1, if once detection completes, Fn158.x=1 is kept even if is turned off. Meanwhile if No.2139 =0 and CNC power is turned off, Fn158.x turns into 0. #7 #6 #5 #4 #3 #2 #1 #0 RPREQ8 RPREQ7 RPREQ6 RPREQ5 RPREQ4 RPREQ3 RPREQ2 RPREQ1 RPDET8 RPDET7 RPDET6 RPDET5 RPDET4 RPDET3 RPDET2 RPDET1 RPFIN8 RPFIN7 RPFIN6 RPFIN5 RPFIN4 RPFIN3 RPFIN2 RPFIN1 Pole Position Detection Function DRAW. No. B-65270EN/08-001 CUST.

(6) Detection alarm

*1) When "ILLEGAL ROTOR POS DETECT SV0454" occurs, it is possible to confirm the detail No. of alarm by diagnosis display N352. (90G0/19.0, 90G3/5.0, 90E1/13.0, 90E3/8.0 or later)

	Alarm deta	
Detail	Factor	Estimated cause
No.		
1	Motor speed doesn't get to under stop level in	Velocity feedback might be noisy.
	minute moving method.	Decrease detecting sensitivity (No.2268=-200500)
2	Motor movement exceeds permissible range	Mechanical friction might be small.
	even if No.2182 is smaller in minute moving	Increase detecting sensitivity (No.2268=-1020)
	method.	
3	Motor speed doesn't get to over stop level even	Motor might be fixed or inertia might be larger.
	if No.2182 is larger in minute moving method.	If inertia is larger, increase detecting sensitivity
		(No.2268=-1020)
5	Direction of torque is different from direction of	Mistake about conection of motor power line.
	motor rotation.	
6	Motor speed doesn't get to under stop level in	Velocity feedback might be noisy.
	direct exciting method.	Decrease detecting sensitivity (No.2268=-200500)
7	Direction of torque is different from direction of	Mistake about conection of motor power line.
	motor rotation.	
8	Motor movement exceeds permissible range in	Mistake about parameter setting of pole number, or
	direct exciting method.	motor is fixed, or mechanical friction is larger.

				Pole Position Detection Function		
01	2013.04.02	N.Sonoda	Add *1)	DRAW. No. B-65270EN/08-	001	CUST.
Ed.	Date		Description	FANUC CORPORATION	SHEET	9/14

(7) Countermeasure to trouble

Phenomenon	Detail	Request G135	Detecting F158	Finish F159	Cause	Me as ur es
Before detection	Motor doesn't move at a∥			r –	Request signal OFF	Set request signal
start		0	0	0	G 135=0)	G135=1)
		1	0	0	Function is invalid	Confirm function parameter No 2213#7) or option.
					SERVO OFF	Set SERVO ON
) etection doesn't	M otor seem s to m ove only a little, but detection doesn't finish	1	1	0	Friction is smaller.	Decrease current No.2182.
	and any a kammi doesn't occur.				Detection unit of encod is rough or fine.	der Change detecting sensitivity (negative No.2268).
					Velocity feedback is	Take m easures of feedback signal noise.
xcess error brstop	Excess error occurs during detection. \$V0410)	1	0	0	Friction is smaller.	Set excess error to larger. Or set current No.2182 to less than rated current.
legaldetection	llegaldetection alarm occurs. SV0454)	1	0	0	Friction is larger.	Set current N o 2182 to m ore than rated current.
i a i iii					Current bop gan is sm :	all Set current bop gain to appropriate value.
A fter detection					-	
0 sc illation		-	0	1	Relation between phase sequence of motor pow line and direction of sensor is inconsistent	e Change phase sequence ofmotorpowerline. (*1-2) er
					M stake about param etc setting for encoder. (*2	er Set correct detection unit of enco der. (*2-2)
					M stake about param etc setting for pole of m otc (#3-1)	er Set correct pole num ber ofm otor. (*3-2) or.
					High vebcity bop gain	Tune up velocity bop gain.
xcesserror h	M otor m oves unexpected ly, or doesn't	_	0	1	Refer to (*1-1) (*2-1)	Refer to (#1-2) (#2-2) (#3-2).
loton	in ove in spile of giving command.				scale with distance-	Apply servo software 90D0, E0/10.0 or later
MR offset isn't	A fter detection, detection result isn't		0	1	N o.2229#0=0	+ Set param eter No.2229#0=1.
updated.	written in AMR offset (No.2139).	_	0		notMDIm ode	Change MDIm ode.
					hcrem ental encoder	Rotatemotor over one revolution.
llegal detection a arm	llegaldetection alarm occurs. \$V0454)	-	0	1->0	VCMD mode	No2229#3=1
A fter restart	1					
	M otor doesn't m ove in spite that			<u> </u>	hcrem ental encoder	Need to detect every pow er-on.
l otion less in spite of giving command	command is given and AMR offset isn'tzero.	-	-	-		
					Som e a kamn for sensor	Try pole detection again.
) ispersion of	Detection result has dispersion each detection	_	_	_	Friction is larger.	Set current N o 2182 to m ore than rated current N o.2086.
<u> </u>						Dela Desition Datastian Europian

			Pole Position Detection Function			
			DRAW. No. B-65270EN/08-	-001	CUST.	
Ed.	Date	Description	FANUC CORPORATION	SHEET	10/14	

(8) Detection of the pole position detection request alarm

The pole position detection function specifies that no torque occurs on an axis where pole position detection is not completed (servo-off state). So, conventionally, the customer's ladder needs to monitor the pole position detection completion signal in order to judge whether to release the brake of an axis or to specify a move command for an axis.

The servo software and CNC software indicated below execute the following processing when pole position detection is not completed [pole position detection enabled (bit 7 of No. 2213=1) and the pole position detection completion signal is off (Fn159=0)]:

1) The interlock state is set.

(Interlock is applied onto each axis. "INTER/START LOCK ON" on the diagnosis screen No. 0000 displays 1.) 2) The servo ready signal SA is turned off (the SA signal for all axes is turned off.)

3) Alarm DS0650 is displayed (cleared by a reset).

Safety is thus ensured even if the customer's ladder processing is not performed. [Applicable servo software]

[Applicable servo software]

CNC	Servo software		Remark
	series	version	
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 or later	
Power Motion <i>i</i> -A	90G3	01.0 or later	
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	M(13) or later	
	90E1	01.0 or later	
	90E3	01.0 or later	
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	M(13) or later	HRV4
Series 0 <i>i</i> -D	90C5	A(01) or later	
	90C8	A(01) or later	
	90E5	A(01) or later	
	90E8	A(01) or later	

[Applicable system software]

CNC	System softw	are
	series	version
Series 30 <i>i</i> -A	G00C,G01C,G02C	27.0 or later
	G004,G014,G024	1.0 or later
Series 31 <i>i</i> -A5	G12C,G13C	27.0 or later
	G124,G134	1.0 or later
Series 31 <i>i</i> -A	G103,G113	4.0 or later
	G104,G114	1.0 or later
Series 32 <i>i</i> -A	G203	4.0 or later
	G204	1.0 or later
Series 0 <i>i</i> -MD	D4F1	01 or later
Series 0 <i>i</i> -TD	D6F1	01 or later
Series 0 <i>i</i> Mate-MD	D5F1	01 or later
Series 0 <i>i</i> Mate-TD	D7F1	01 or later

Series 30i/31i/32i/35i-B, Power Motion i-A are supported with all version.

The alarm number and message are indicated below.

Number	Message	Message Description
DS0650	POLE DETECTION REQUEST	With an absolute detection axis (bit 5 of No. 1815=1), pole position
		detection is not completed (Fn159=0). With a non-absolute detection axis (bit 5 of No.1815=0), pole position detection is once completed then the state is changed to the pole position detection uncompleted state (Fn159=0).

			Pole Position Detection Function			
			DRAW. No. B-65270EN/08-	001	CUST.	
Ed.	Date	Description	FANUC CORPORATION	SHEET	11/14	

With the parameters below, operation to be performed when pole position detection is not completed can be changed.

[Input type] Parameter input

[Data type] Bit path

#0 SAN

When the pole position detection function is used, pole position detection is enabled (bit 7 of No. 2213=1), and pole position detection is not completed (Fn159=0) with an axis, the servo ready signal SA <Fn000.6> of the path to which the axis belongs and the servo ready signals SA8 to SA1 <Fn186.7 to Fn186.0> for all axes that belong to the path are:

0: Not set to 0.

1: Set to 0.

When applying pole position detection to a gravity axis, basically release the brake after confirming pole position detection completion (Fn159=1) and the servo ready signal. When releasing the brake by checking the servo ready signal alone for an avoidable reason, set this parameter to 1.

#1 PAO

When the pole position detection function is used, pole position detection is enabled (bit 7 of No. 2213=1), and pole position detection is not completed (Fn159=0) with an axis:

0: Alarm DS0650 (POLE DETECTION REQUEST) is issued.

1: Alarm DS0650 (POLE DETECTION REQUEST) is not issued.

NOTE

1 The issue condition of alarm DS0650 varies, depending on whether the axis in question is an absolute detection axis, as described below.

- The alarm is issued with an absolute detection

axis (bit 5 of No. 1815=1) when pole position detection is not completed (Fn159=0).

- The alarm is issued with a non-absolute detection axis (bit 5 of No. 1815=0) when pole position detection is once completed then the state is changed to the pole position detection uncompleted state (Fn159=0).

2 If this alarm is issued, detect a pole position again. After a pole position is detected again, this alarm is cleared by a reset.

			Pole Position Detection Function		
			DRAW. No. B-65270EN/08-001 CUST.		
Ed.	Date	Description	FANUC CORPORATIONSHEET12/14		

(9) Using the pole position detection function and control axis detach function together

When the pole position detection function is used with an axis of a synchronous built-in servo motor, motor switching using the detach function is conventionally impossible. However, the servo software and CNC software of the series and editions indicated below enable the pole position detection function and detach function to be used at the same time.

CNC	Servo software		Remark
	series	version	
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B	90G0	03.0 or later	
Power Motion <i>i</i> -A	90G3	01.0 or later	
Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -A	90E0	M(13) or later	
	90E1	02.0 or later	
	90E3	01.0 or later	
Series 30 <i>i</i> /31 <i>i</i> -A	90D0	M(13) or later	HRV4
Series 0 <i>i</i> -D	90C5	A(01) or later	
	90C8	A(01) or later	
	90E5	A(01) or later	
	90E8	A(01) or later	

[Applicable system software]

CNC	System software			
	series	version		
Series 30 <i>i</i> -A	G00C,G01C,G02C	27.0 or later		
	G004,G014,G024	1.0 or later		
Series 31 <i>i</i> -A5	G12C,G13C	27.0 or later		
	G124,G134	1.0 or later		
Series 31 <i>i</i> -A	G103,G113	4.0 or later		
	G104,G114	1.0 or later		
Series 32 <i>i</i> -A	G203	4.0 or later		
	G204	1.0 or later		
Series 0 <i>i</i> -MD	D4F1	01 or later		
Series 0 <i>i</i> -TD	D6F1	01 or later		

Series 30i/31i/32i/35i-B, Power Motion i-A are supported with all version.

1 When switching is made by using the detach function among those motors that need the pole position detection function, the motors and encoders need to be of the same type.

2 The detach function is supported only by a combination of the CNC software and servo software indicated above. When CNC software and servo software not listed above are used, the pole position detection function and detach function cannot be used at the same time.

When the detach function is used, the relationship of the Z phase of the encoder with the pole position of the motor may vary. So, pole position detection needs to be performed again or the AMR offset (No.2139) needs to be rewritten to a proper value. To perform pole position detection again and rewrite the AMR offset, however, the conventional specification requires that the power be turned off then back on. With the servo software and CNC software listed above, the power to the CNC need not be turned off then back on to perform pole position detection again and rewrite the AMR offset.

				Pole Position Detection Function					
				^{DRAW. No.} B-65270EN/08-	001	CUST.			
Ed.	Date		Description	FANUC CORPORATION	SHEET	13/14			

When detaching an axis to which pole position detection is applied, use the procedure below.

• Start detach operation with Gn124 or bit 7 of parameter No. 12.

(Pole position detection completion signal Fn159=0)

• Rewrite the AMR offset (No. 2139) to a proper value manually or by using G10 (*1)

· Cancel detach operation.

• Pole position detection request alarm DS0650 is issued (*2).

• If an absolute encoder is used and the AMR offset value is other than 0, the alarm can be canceled by a reset to enable operation (pole position detection completion signal Fn159=1).

• If an absolute encoder is used and the AMR offset value is 0, the alarm can be canceled by a reset after executing pole position detection to enable operation (pole position detection completion signal Fn159=0 changed to Fn159=1 after pole position detection completion).

• If an incremental encoder is used, the alarm can be canceled after pole position detection to enable operation (pole position detection completion signal Fn159=0 changed to Fn159=1 after pole position detection completion).

*1 : By setting bit 0 of No. 1809 to 1, the servo ready signal SA can be turned off when pole position detection is not completed.

*2 : By setting bit 1 of No. 1809 to 1, alarm display can be disabled even when pole position detection is not completed. If the AMR offset is rewritten not during detach operation, a power-off request is issued. When performing pole position detection with an absolute

				Pole Position Detection Function					
				DRAW. No. B-65270EN/08-001 CUST.					
Ed.	Date		Description	FANUC CORPORATION	SHEET	14/14			

Notice of the Update of Digital Servo Software for Series 30i/31i/32i/35i-B/Power Motion i-A (90G0)

1. Update Edition

ROM series	New edition	Available CNC
90G0	21 .0	Series 30 <i>i</i> / 31 <i>i</i> / 32 <i>i</i> / 35 <i>i</i> -B/Power Motion <i>i</i> -A

2. Contents of change

 Servo/Spindle synchronous control (FSSB TYPE) Servo/Spindle synchronous control (FSSB TYPE) has been supported.

• The smooth backlash compensation to error counter in semi-closed loop

The smooth backlash compensation to error counter in semi-closed loop has been supported when Dual Position Feedback Function is enabled. Please refer attached file "About Dual Position Feedback Function with Smooth Backlash Compensation " for detail.

				TITLE Notice of the Update of Digital Servo Software for Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> /35 <i>i</i> -B/Power Motion <i>i</i> -A (90G0)				
				DRAW. No.	CUST.			
01	13.04.17	Tang	Newly designed	A-81017-066 EN				
Ed.	Date	Design	Description	FANUC CORPORATION	1/2			

About Dual Position Feedback Function with Smooth Backlash Compensation

(1) Outline

Dual Position Feedback function has two position control loop. The one is scale position feedback loop (full-closed loop), the other is PULSECODER potision feedback loop (semi-closed loop).

Using Dual Position Feedback Function with Smooth Backlash Function, the conpensation onto semi-closed side has been supported.

(2) Notice

· When servo software is not supported (90G0/20.0 or former), semi-full error increases.

(3) Parameter

	#7	#6	#5	#4	#3	#2	#1	#0
11601		SBN						

SBN (#6) When both of smooth backlash compensation and Dual Position Feedback are enabled, a smooth backlash compensation value is :

0: Used for compensation on the semi-closed side.

1: Dependent on the settings of bit 4 of No.2206 and bit 5 of No.2010.

				Notice of the Update of Digital Servo Software for Series $30i/31i/32i/35i$ -B/Power Motion i -A (90G0)			
				DRAW. No.	CUST.		
01	13.04.17	Tang	Newly designed	A-81017-000 EN			
Ed.	Date	Design	Description	FANUC CORPORATION	SHEET 2/2		

Notice of the Update of Digital Servo Software for Series 30i/31i/32i/35i-B/Power Motion i-A (90G0)

1. Update Edition

ROM	series	New edition	Available CNC
900	GO	22 .0	Series 30 <i>i</i> / 31 <i>i</i> / 32 <i>i</i> / 35 <i>i –</i> B/ Power Motion <i>i -</i> A

- 2. Contents of change
 - Feedrate constant type of Servo delay compensation for chopping setting screen (R614)

Chopping feedrate constant type of Servo delay compensation (No.8360#1) has been supported. For detail please refer TMN11/039 "FANUC Series 30*i*/31*i*/32*i*-MODEL A FANUC Series 30*i*/31*i*/32*i*-MODEL B Chopping setting screen"

				TITLE Notice of the Update of Digital Servo Sof Series 30 <i>i</i> / 31 <i>i</i> / 32 <i>i</i> / 35 <i>i</i> -B/Power Moti	tware for ion <i>i</i> -A (90G0)
				DRAW. No.	CUST.
01	13.05.27	Tang	Newly designed	A-81017-069 EN	
Ed.	Date	Design	Description	FANUC CORPORATION SHEET	1/1